
On graphs whose orientations are

determined by their Hermitian spectra

Yi Wang∗ Bo-Jun Yuan
School of Mathematical Sciences

Anhui University
Hefei, 230601, P. R. China

wangy@ahu.edu.cn ybjmath@163.com

Submitted: Jun 11, 2020; Accepted: Aug 28, 2020; Published: Sep 18, 2020

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A mixed graph D is obtained from a simple graph G, the underlying graph of D,
by orienting some edges of G. A simple graph G is said to be ODHS (all orientations
of G are determined by their H-spectra) if every two H-cospectral graphs in D(G)
are switching equivalent to each other, where D(G) is the set of all mixed graphs
with G as their underlying graph.

In this paper, we characterize all bicyclic ODHS graphs and construct infinitely
many ODHS graphs whose cycle spaces are of dimension k. For a connected graph
G whose cycle space is of dimension k, we also obtain an achievable upper bound
22k−1+2k−1 for the number of switching equivalence classes inD(G), which naturally
is an upper bound of the number of cospectral classes in D(G). To achieve these, we
propose a valid method to estimate the number of switching equivalence classes in
D(G) based on the strong cycle basis, a special cycle basis introduced in this paper.

Mathematics Subject Classifications: 05C50

1 Introduction

All graphs considered in this paper are finite and loopless. A mixed graph DG (or D,
for short) is obtained from a simple graph G = (V,E), the underlying graph of DG, by
orienting a subset of E(G). Accordingly, a mixed graph DG is also called an orientation
of G, whose vertex set V (D) is same as the vertex set V (G) and whose edge set E(D)
consisting of two parts: undirected edge set E0(D) and directed edge (or arc) set E1(D).

∗The corresponding author. Supported by National Natural Science Foundation of China (11771016,
11871073).
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Denote by D(G) the set of all mixed graphs with G as their underlying graph. To distin-
guish undirected and directed edges, we denote an undirected edge between the vertices
u and v by {u, v} and a directed edge from u to v by (u, v). If there is no confusion, we
write uv (or vu) instead of {u, v} or (u, v). We may view undirected edges in a mixed
graph as bi-directed edges. From this point of view, a mixed graph is indeed a digraph.

The Hermitian adjacency matrix of D is defined as H(D) = [huv] with

huv =


1 if {u, v} ∈ E0(D);
i if (u, v) ∈ E1(D);
−i if (v, u) ∈ E1(D);
0 otherwise,

where i =
√
−1. The eigenvalues (spectrum) of H(D) are called the H-eigenvalues (H-

spectrum) of D. The characteristic polynomial of H(D) is denoted by Φ(D,λ). Two
mixed graphs are called H-cospectral (or cospectral for short) if they have the same H-
spectrum. These terminologies were introduced by Liu and Li [11] and independently
by Guo and Mohar [8]. They investigated the properties of characteristic polynomials
and H-eigenvalues of mixed graphs and studied cospectral problems for mixed graphs. A
number of linear algebraic properties of undirected graphs have been shown to hold for
mixed graphs.

Problems about existence of cospectral graphs have long history, motivated by a nat-
ural question: can we determine a graph by its spectrum? The problem traces back to
more than 50 years ago and has received a lot of attention from researchers in recent
years. Formally, an undirected graph G is said to be determined by its spectrum (DS, for
short) if every graph cospectral to G is isomorphic to G. For the background and known
results about this problem, readers are referred to two surveys [5, 6] and the references
therein.

The same question has yielded fewer results for mixed graphs. So far, mixed graphs
that can be determined by their H-spectra have proven elusive. From a spectral analysis
point of view, one of leading causes is that a large number of mixed graphs with the
same underlying graph have an identical H-spectrum. Thus, researchers have turned
to spectral determination of classes of switching equivalent mixed graphs rather than
individual mixed graphs.

Let G be a simple graph. Guo and Mohar [13] presented an operation on mixed graphs
in D(G), called switching equivalence, that can preserve the H-spectrum of mixed graphs.
Switching equivalence relationship naturally partitions D(G) into the equivalence classes.
In this sense, mixed graphs in an equivalence class can be considered as having the same
orientation. In addition, the number of switching equivalence classes of D(G), denoted
by ns(G), can be used to estimate the number of mixed graphs in D(G) having the same
H-spectrum. For instance, if ns(G) = 1, it implies that all mixed graphs in D(G) have
the same H-spectrum. More on switching equivalence will be presented in Section 2.2.

Let D be a family of mixed graphs. Based on the above discussion, a mixed graph
D ∈ D is said to be determined by its H-spectrum (or DHS, for short) on D if every
graph in D cospectral to D is switching equivalent to D. If D is the set consisting of
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all mixed graphs, we say that D is DHS for short. Obviously, the property DHS is a
stronger property than DS. Namely, if an undirected graph is DHS, then it is necessarily
DS. However, the converse is not true as evidenced by the two graphs in Figure 2 of [13].

Recently, the H-spectrum of mixed graphs has been the subject of several publications.
In addition to two fundamental papers [8, 11] mentioned above, Mohar [13] characterized
all mixed graphs with rank 2, that is mixed graphs whose Hermitian adjacency matrices
have rank 2, and investigated which mixed graphs with rank 2 are DHS. Wang et al.
[18] and Tian and Wong [16] extended the research in [13] to mixed graphs with rank
3 and shown all connected mixed graphs with rank 3 are DHS on their family. Guo
and Mohar [9] determined all mixed graphs whose spectral radii with respect to their
Hermitian adjacency matrices are less than 2 and investigated which paths are DHS.
Wissing and van Dam [19] constructed the first infinite family of connected (strongly)
DHS mixed graphs. For further research works concerned with the H-spectra of mixed
graphs, readers are referred to the literature [2, 3, 4, 7, 10, 20] and the references therein.

From a structural point of view, the structure of a mixed graph can be understood
as two parts: the incidence structure, that is the structure of its underlying graph, and
the orientation. Determining the former by spectrum is the familiar as “DS” problem
and is widely studied. Orientations of graphs are closely related to colorings and flows of
graphs. For instance, Minty [12] and Vitaver [17] proved that a graph G is k-colorable
if and only if G has an orientation such that every cycle C of G contains at least |C|/k
edges in each of the two directions around the cycle. Steinberg and Younger [14] proved
that a bridgeless graph G admits a nowhere-zero 3-flow if and only if G has a modular
3-orientation. However, determining orientations of graphs by spectra has received less
attention. This motivates us to discuss “DHS” on D(G). If for any D ∈ D(G), every
graph in D(G) H-cospectral to D is switching equivalent to D, that is, D is DHS on
D(G), we say that orientations of G are determined by their H-spectra (or G is ODHS,
for short). Clearly, if G is not ODHS, then there are at least two mixed graphs (two
switching equivalence classes) in D(G) which are not DHS.

The main purpose of our study is to determine which graphs are ODHS and which
are not. The difficulty of this problem is that the switching equivalences of two mixed
graphs are not well-understood. In Section 2, we will present a rough characterization
of switching equivalences between two mixed graphs. In Section 4, we propose a valid
method to estimate the number of switching equivalence classes in D(G) based on the
strong cycle basis, and special cycle basis will be introduced in Section 3. As an application
of the method, we prove that ns(G) is bounded above by 22k−1 + 2k−1 for any connected
graph G whose cycle space has dimension k, which is naturally an upper bound of the
number of cospectral classes in D(G). In Section 5, some necessary conditions of ODHS
graphs are proposed. Using these results, we characterize all bicyclic ODHS graphs and
construct infinitely many ODHS graphs achieving the upper bound given in Section 4.
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2 Preliminaries

2.1 Characteristic polynomials of mixed graphs

Let D be a connected mixed graph and H(D) = [hij] be its Hermitian adjacency matrix.
The value of a mixed walk W : v1v2 . . . vs is defined as h12h23 . . . hs−1,s and is denoted
by h(W ). For a mixed cycle C, we assign a direction to C before calculating its value.
Obviously, if in one direction the value of a mixed cycle or a mixed path is α, then in the
reversed direction its value is α, the conjugate number of α. A cycle C is called positive
(negative, resp.) if h(C) = 1 (−1, resp.). Positive or negative cycles are called real cycles,
whose values are independent of their assigned direction. A cycle C is called imaginary if
h(C) ∈ {±i}.

For any cycle C of a mixed graph D, we assign a direction for C. The operation
is called cycle orientation of D. Let D′ and D′′ be two mixed graphs with the same
underlying graph G. Taking a cycle in D′, we obtain the corresponding cycle in D′′

naturally. Hereafter, discussing two mixed graphs with the same underlying graph, we
always suppose that they have the same cycle orientation, which is also called the cycle
orientation of G. It is different to the terminology orientation of G mentioned in Section
1.

Let D be a mixed graph of order n. The characteristic polynomial of H(D) is denoted
by

Φ(D,λ) = λn + c1λ
n−1 + · · ·+ cn.

A Sachs subgraph is a subgraph only having K2 or cycles as connected components. Let S
be a Sachs subgraph of D. For a given cycle orientation of D, the signature of S, denoted
by σ(S), is defined as |f − b|, where f denotes the number of forward arcs and b denotes
the number of backward arcs in S. A Sachs subgraph S is called basic if each cycle C
in S is real. Equivalently, C has an even number of directed edges, and σ(C) is even for
each cycle C of S.

For a basic subgraph B, let r(B) = 1
2
σ(B). It is clear that (−1)r(B) =

∏
C⊂B h(C),

which is independent of the cycle orientation of D.
We state the following theorem from [11] in different format and notation.

Theorem 1. [11] Let D be a mixed graph of order n with characteristic polynomial
Φ(D,λ) =

∑n
j=0 cjλ

n−j. Then

cj =
∑
B

(−1)r(B)+s(B)2c(B) =
∑
B

∏
C⊂B

h(C)(−1)s(B)2c(B),

where the sum runs over all basic subgraphs B of order j in D, s(B) is the number of
connected components in B, and c(B) is the number of cycles in B.

The authors of [21] proved the following theorem as a consequence of Theorem 1.

Theorem 2. [21] Let D be a mixed graph and v ∈ V (D). Let Cv be the set of all basic
mixed cycles in D containing v. Then

Φ(D,λ) = λΦ(D − v, λ)−
∑

uv∈E(D)

Φ(D − u− v, λ)− 2
∑
C∈Cv

h(C)Φ(D − C, λ).

the electronic journal of combinatorics 27(3) (2020), #P3.55 4



2.2 The switching equivalence

In [8, 13], the authors considered the so-called four-way switching operations, that preserve
the H-spectrum of mixed graphs. We describe the definition in the matrix-theoretic
language below.

Definition 3. [13] Let D′ and D′′ be two mixed graphs of order n with the same under-
lying graph. A four-way switching is the operation of changing D′ into D′′, if there exists
a diagonal matrix S with diagonal entries in {±1,±i} such that H(D′′) = S−1H(D′)S.

Proposition 4. [8, 13] The four-way switching on any mixed graph D gives a mixed graph
that is cospectral with D.

By Definition 3, it is easy to see that if D′′ is obtained from D′ by a sequence of
four-way switchings, then D′′ can be obtained from D′ by a single four-way switching. In
[8, 13], the authors described the four-way switching as a special transformation between
two mixed graphs with the same underlying graph. Their work implies that if D′ and D′′

are two mixed forests with the same underlying graph, then D′′ can be obtained from D′

by a four-way switching. This is naturally generalized as follows.

Lemma 5. Let D′ and D′′ be two connected mixed graphs with the same underlying graph
of order n. Then D′′ can be obtained from D′ by a four-way switching if and only if all
corresponding cycles of D′ and D′′ have the same values.

Proof. Let H(D′) = [h′uv] and H(D′′) = [h′′uv].
Necessity. By Definition 3, there is a diagonal matrix S = diag{s1, . . . , sn} such that

h′′uv = s−1u h′uvsv

for any uv ∈ E(D′). Let C ′ = v1v2 . . . vlv1 be a cycle of D′. Denote the corresponding
cycle of C ′ in D′′ by C ′′. We have

h(C ′′) = h′′v1v2h
′′
v2v3
· · ·h′′vlv1

= s−1v1
h′v1v2sv2s

−1
v2
h′v2v3sv3 · · · s

−1
vl
h′vlv1sv1

= h′v1v2h
′
v2v3
· · ·h′vlv1 = h(C ′).

We prove the sufficiency by induction on k, the dimension of the cycle space of D′. If
k = 0, then D′ and D′′ are two mixed trees with the same underlying graph, and thus the
conclusion follows.

Assume that k > 1 and that the assertion holds for the mixed graphs with dimension
less than k. Let D′ be a mixed graph with dimension k. Take a cycle C ′ = v1v2 . . . vlv1 in
D′ and an edge e′ = v1v2 ∈ E(C ′). The corresponding cycle and edge in D′′ is denoted
by C ′′ and e′′, respectively. By the induction hypothesis, D′′ − e′′ can be obtained from
D′ − e′ by a four-way switching, that is, there is a diagonal matrix S = diag{s1, . . . , sn}
such that h′′uv = s−1u h′uvsv for any edge uv ∈ E(D′ − e′). By Definition 3, it is enough to
prove h′′v1v2 = s−1v1

h′v1v2sv2 . Note that h(C ′′) = h(C ′), that is,

h′′v1v2h
′′
v2v3
· · ·h′′vlv1 = h′v1v2h

′
v2v3
· · ·h′vlv1 .

It implies that h′′v1v2 = s−1v1
h′v1v2sv2 .
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A mixed graph is positive if each cycle is positive. By Lemma 5, we immediately have
the following corollary which was given by Liu and Li in [11].

Corollary 6. [11] Let D be a mixed graph with the underlying graph G. Then D is positive
if and only if D can be obtained from G by a four-way switching.

Reversing all directed edges in mixed graph D, we obtain a mixed graph, called the
converse of D, denoted by D>. Obviously, D> is cospectral to D because of H(D>) =
H(D)>. We immediately obtain the following lemma.

Lemma 7. Let D be a mixed graph, and let C and C ′ be two corresponding cycles in D
and D>, respectively. Then h(C) = h(C ′).

By Lemma 7, the converse operation is different from the four-way switching operation
because it does not preserve the cycle values while the four-way switching does. Mohar
[13] defined that two mixed graphs D1 and D2 are switching equivalent if one can be
obtained from the other by a sequence of four-way switchings and converse operations.

Proposition 8. [13] For each graph G, switching equivalence gives an equivalence relation
on D(G).

Clearly, cospectral relation is an equivalence relation on D(G). Denote by n(G) the
number of cospectral equivalence classes of D(G). By Proposition 4, it is clear that
n(G) 6 ns(G).

The proof of Proposition 8 (Proposition 3.3 in [13]) implies the following lemma.

Lemma 9. [13] Let D′ and D′′ be two mixed graphs with the same underlying graph. If
D′′ can be obtained from D′ by a four-way switching and then taking the converse, then
D′′ can be obtained by a four-way switching from the converse of D′.

By Lemma 7, Proposition 8 and Lemma 9, the definition of switching equivalence can
be reduced as follows.

Definition 10. [13] Two mixed graphs D′ and D′′ are switching equivalent if one can be
obtained from the other by a four-way switching and taking a possible converse.

By Lemma 5, Lemma 7 and Definition 10, we present the main theorem of this section,
which characterizes the switching equivalence between two mixed graphs.

Theorem 11. Let D′ and D′′ be two connected mixed graphs with the same underlying
graph. Then D′ is switching equivalent to D′′ if and only if all corresponding cycles of D′

and D′′ have the same values or the conjugate values.

Usually, it is difficult to find all corresponding cycles of D′ and D′′ and compare
their values while the edge density is enough large. Thus, Theorem 11 is only a rough
characterization on switching equivalence. To refine it, the strong cycle basis, a special
cycle basis, will be introduced in next section.
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3 Strong cycle basis

The graphs considered in this section maybe have multiple edges, but have no loops.
Denote by E(G) the set of all subsets of E(G) for a graph G. This set forms a vector
space over the 2-element field F2 under the symmetric difference, which is called the edge
space of G. The cycle space C(G) is the subspace of E(G) spanned by the edge sets of
cycles in G. In the other word, C(G) can be considered as the subspace of E(G) consisting
of edge sets of all even subgraphs (that is, the subgraph whose all vertices have even
degree) in G. Accordingly, denote by C̃(G) the set consisting of all cycles in G.

The dimension of the cycle space is equal to |E(G)| − |V (G)| + s(G), where s(G) is
the number of connected components of G. A connected graph is said to be k-cyclic if
the dimension of its cycle space is k. A cycle basis of G is a basis for the cycle space of
G which consists entirely of cycles. Let C = {E(C1), . . . , E(Ck)} be a cycle basis of G.
For convenience, we write {C1, . . . , Ck} instead of {E(C1), . . . , E(Ck)}. It is known that
all induced cycles can generate cycle space which implies the existence of cycle basis for
any graph.

Let G1 and G2 be two subgraphs of G. The symmetric difference of G1 and G2, denoted
by G1⊕G2, is defined to be a subgraph of G induced by the symmetric difference of E(G1)
and E(G2). Notably, it is possible that the symmetric difference of two connected graphs
is not connected.

Let C1 and C2 be two cycles of G. It is easy to see that C1 ⊕ C2 is an even graph. If
the intersection of C1 and C2 is exactly a non-trivial path Pk(k > 2), we say that cycle
C1 ⊕ C2 is obtained from C1 and C2 by making a strong symmetric difference, and write
C1 ⊕s C2 instead of C1 ⊕ C2.

Let F be a family of cycles of D. We recursively construct the family F̂ as follows:

(1) Initially, F̂ = F .

(2) For any cycle C ∈ C̃(G), if there are two cycles C1 and C2 in F̂ such that

C = C1 ⊕s C2, then we add C to F̂ .

The above process will terminate as G is a finite graph and we finally obtain a set F̂ ,
which is called the closed set of F with respect to strong symmetric difference.

Definition 12. Let G be a connected graph. A set C ⊆ C̃(G) is called a strong cycle
basis of G if

(1) C is a cycle basis of G;

(2) Ĉ = C̃(G).

Remark 13. To show C = {C1, . . . , Ck} being a strong cycle basis of k-cyclic graph G, it

is sufficient to verify that Ĉ = C̃(G).

The existence of cycle basis with some constraints is an important topic of cycle theory,
and has received wide attention. One can refer to [1, 15] and references therein for more
details. In the following, we present the main theorem in this section.

Theorem 14. Every graph admits a strong cycle basis.
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Figure 1: G and G/e.

Proof. Without loss of generality, we may assume that the graph considered is connected.
Otherwise, the cycle space is the direct sum of the cycle spaces of the connected compo-
nents.

Let G be a counterexample with the minimum number of edges. We can claim that G
is a connected k-cyclic graph for k > 2, since the assertion is trivial for trees and unicyclic
graphs.

We may claim that G is 2-connected. If not, let v be a cut vertex of G. Then,
G can be obtained from a number of connected subgraphs G1, . . . , Gl (l > 2) of G by
identifying some vertex in each Gi at a common vertex v. Since |E(Gi)| < |E(G)| for
each i (1 6 i 6 l), Gi contains a strong cycle basis, say Ci. It is easy to verify that
C1 ∪ · · · ∪ Cl is a strong cycle basis of G.

Take an edge e = uv in G. As G is 2-connected, e is not a cut edge. We consider the
following cases.

Case 1: There is another edge f joining u and v.
Since G − e is a connected (k − 1)-cyclic graph, G − e admits a strong cycle basis,

say {C1, . . . , Ck−1}. Denote by C0 the digon consisting of e and f . We prove that C :=
{C0, C1, . . . , Ck−1} is a strong cycle basis of G, which contradicts to the choice of G. By

Remark 13, it is enough to prove that C ∈ Ĉ for any cycle C ∈ C̃(G) \ C . If e /∈ E(C),

then C ∈ Ĉ as C ∈ Ĉ (G − e). If e ∈ E(C), replacing e by f , we can obtain a cycle in

G− e, denoted by C ′. Note that C = C ′ ⊕s C0 and C ′ ∈ Ĉ (G− e) ⊂ Ĉ . So, C ∈ Ĉ .
Case 2: The edge e is a unique edge joining u and v.
Let U = {u1, . . . , up} be the set of vertices which are adjacent to u, but not to v.

Let V = {v1, . . . , vq} be the set of vertices which are adjacent to v, but not to u. Let
W = {w1, . . . , ws} be the set of vertices which are adjacent to both u and v. Denote by
G/e the graph obtained from G by contracting the edge e into a new vertex ve, which
becomes adjacent to all the former neighbors of u and v. In particular, the edge uwi and
vwi are relabeled as two parallel edges between ve and wi for 1 6 i 6 s, denoted by vuewi

and vvewi, respectively, see Figure 1.
Now, we define a mapping φ from C̃(G/e) to C̃(G) as follows, which is the key of

remaining proof. For any C ∈ C̃(G/e), if ve /∈ C, then φ(C) is the cycle corresponding to
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Figure 2: K3,3 and its two orientations.

C in G. If ve ∈ C, we denote f1vef2 to be the segment of C containing ve. Let

Eu = {veu1, . . . , veup, vuew1, . . . , v
u
ews},

Ev = {vev1, . . . , vevq, vvew1, . . . , v
v
ews}.

Since e is the unique edge between u and v, contracting e from G does not create loops.
Then, Eu∪Ev is the set consisting of all edges incident to ve in G/e. If f1 and f2 lie in the
same set, say Eu, then φ(C) is defined to be the cycle in G obtained from C by replacing
the segment f1vef2 by the segment of f ′1uf

′
2, where f ′i is the edge in G corresponding to

fi for i = 1, 2. If f1 ∈ Eu, f2 ∈ Ev, then φ(C) is defined to be the cycle in G obtained
from C by replacing the segment f1vef2 by the segment of f ′1uevf

′
2.

Let C,C ′, C ′′ be three cycles in G/e. It is clear that if C = C ′ ⊕s C
′′, then φ(C) =

φ(C ′)⊕s φ(C ′′). Since G/e is a connected k-cyclic graph with fewer number of edges and
without loops, G/e admits a strong cycle basis, say {C1, . . . , Ck}. Next, we prove that
φ(C ) = {φ(C1), . . . , φ(Ck)} is a strong cycle basis of G, which yields a contradiction.

For any cycle C̃ in G, if there exists a cycle C in G/e such that φ(C) = C̃, it is easy

to check that C̃ ∈ φ̂(C ). If not, it implies that u, v ∈ C̃ and e /∈ C̃. We rewrite C̃ by
uP1vP2u, where P1 and P2 are paths with length at least two. Denote by C̃ ′ (C̃ ′′, resp.)
the cycle obtained from C̃ by replacing P1 (P2, resp.) by e. By the above discussion,

C̃ ′ ∈ φ̂(C ) and C̃ ′′ ∈ φ̂(C ). Since C̃ = C̃ ′ ⊕s C̃ ′′, we have C̃ ∈ φ̂(C ).

Remark 15. Not all cycle bases are strong cycle bases. Consider the complete bipartite
graph K3,3 with vertex labeling shown in Figure 2. Let C1 = 1b3c2a1, C2 = 1b2c3a1,
C3 = 1c2b3a1 and C4 = 1c3b2a1. It is easy to check that C = {C1, C2, C3, C4} is a cycle

basis of K3,3, but not a strong cycle basis, since Ĉ = C .

4 The number of switching equivalence classes

Based primarily on strong cycle basis, in this section, we will refine the characterization
of switching equivalence between two mixed graphs in Section 2, and give a method to
estimate the number of switching equivalence classes in D(G). Using this method, an
upper bound for ns(G) is obtained.
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Lemma 16. Let C,C1, C2 be three cycles of simple graph G satisfying C = C1⊕sC2, and
let w1, w2 ∈ {±1,±i} be two complex numbers. Under any given cycle orientation of G,
h(C) is determined by h(C1) and h(C2). That is, for any mixed graph D ∈ D(G) with
h(C1) = w1 and h(C2) = w2, the value of C only depends on w1 and w2.

Proof. Let C1 = uPvP1u, C2 = uP2vPu, and C = uP2vP1u (see Figure 3). Without
loss of generality, we calculate the values of C,C1 and C2 anticlockwise, considering the
values of P, P1 and P2 in the direction from u to v. For any mixed graph D ∈ D(G) with
h(C1) = w1 and h(C2) = w2, we have

h(C) = h(P1)h(P2) = h(P1)h(P )h(P )h(P2) = h(C1)h(C2) = w1w2.

The result follows.

Remark 17. In Lemma 16, if C = C1 ⊕ C2, then h(C) may be not determined by h(C1)
and h(C2). For example, consider two mixed graphs D′ and D′′ shown in Figure 2. Let
C1 = 1b3c2a1, C2 = 1b2c3a1 and C = a2b3a. Then C = C1 ⊕ C2 and C 6= C1 ⊕s C2. In
D′, h(C1) = h(C2) = h(C) = 1, however, in D′′, h(C1) = h(C2) = 1 and h(C) = −1.

In the proof of Lemma 16, if the directions of C and C1 are anticlockwise, the direction
of C2 is clockwise, it follows from the proof that h(C) = h(C1)h(C2). Hereafter, the
directions of C1, C2 and C are said to be coincident if h(C) = h(C1)h(C2) under these
cycle orientations.

Let G be a connected k-cyclic simple graph. By Theorem 14, G admits a strong cycle
basis, denoted by C = {C1, . . . , Ck}. For any mixed graph D ∈ D(G) and its given cycle
orientation, if we fix the values of C1, . . . , Ck in D, by Lemma 16, the values of all cycles
in C̃(D) are determined. Based on this, ordered sequence s(D) = (h(C1), . . . , h(Ck)) is
called an essential vector of D, which depends on C and the given cycle orientation.

Let D′ and D′′ be two mixed graphs with the same underlying graph G. We always
assume that D′ and D′′ have the same cycle orientation. Let s(D′) = (h(C ′1), . . . , h(C ′k))
and s(D′′) = (h(C ′′1 ), h(C ′′2 ), . . . , h(C ′′k )), where C ′j (C ′′j , resp.) is the corresponding cycle
in D′(D′′, resp.) of Cj for any j(1 6 j 6 k). For any cycle C ′ of D′ and its corresponding

cycle C ′′ of D′′, it is easy to see that h(C ′) = h(C ′′) if s(D′) = s(D′′); h(C ′) = h(C ′′)
if s(D′) = s(D′′). Two vectors s(D′) and s(D′′) are said to be conjugate equivalent if
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s(D′) = s(D′′) or s(D′) = s(D′′). Using this terminology, we refine Theorem 11 as
follows.

Theorem 18. Let D′ and D′′ be two mixed graphs with the same underlying graph. Two
mixed graphs D′ and D′′ are switching equivalent if and only if s(D′) and s(D′′) are
conjugate equivalent for any fixed strong cycle basis and cycle orientation.

Proof. It follows from Theorem 11 and Lemma 16.

Denote by S(G) the set of essential vectors of all mixed graphs in D(G). The conju-
gate equivalence naturally defines an equivalence relation on S(G). By Theorem 18, the
determination of ns(G) is equivalent to find the number of conjugate equivalence classes
in S(G). As an application, a natural upper bound of ns(G) is given in following theorem.

Theorem 19. For any connected k-cyclic graph G, ns(G) 6 22k−1 + 2k−1.

Proof. Let xj be the number of conjugate equivalence classes in S(G) whose essential
vectors have exactly j imaginary entries at the same position. For j = 0, the corresponding
essential vectors are real, so x0 6 2k. For 1 6 j 6 k, xj 6 1

2

(
k
j

)
2k. Therefore

ns(G) =
k∑

j=0

xj 6 2k +
k∑

j=1

1

2

(
k

j

)
2k = 22k−1 + 2k−1.

This completes the proof.

A connected k-cyclic graph G is called free with respect to a strong cycle basis C if
for any vector s = {s1, . . . , sk} whose components are in {±1,±i}, there exists D ∈ D(G)
such that s(D) = s. Clearly, the equality in Theorem 19 holds if and only if G is free
with respect to some strong cycle basis. Unfortunately, not all graphs are free. While the
edge density of a graph is enough large, it may be not free. For instance, it follows from
a rough estimation that Kn is not free for n > 11. Here, we only give an obvious lemma
which will be used in Section 5.

Lemma 20. Let C = {C1, . . . , Ck} be a strong cycle basis of G. If for any i (2 6 i 6 k),
Ci contains at least two edges which are not in other cycles in C , then G is free with
respect to C .

5 ODHS graphs

We first introduce some families of graphs to be used later. Let G be a connected k-cyclic
graph. The kernel of G, denoted by Ĝ, is the unique minimal connected induced k-cyclic
subgraph of G. It is clear that Ĝ is the unique k-cyclic induced subgraph of G containing
no pendant vertices, and G can be obtained from Ĝ by attaching trees to some vertices of
Ĝ. A 2-cyclic graph is also called a bicyclic graph. A theta graph, denoted by θ(l1, l2, l3),
is a bicyclic graph consisting of three internally disjoint paths P1, P2, P3 with the same
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endpoints, where Pi has length li for each i. A bicyclic graph G is said to be of theta-type
graph, if Ĝ is a theta graph. Hereafter, we always assume that l1 6 l2 6 l3, and denote
Cij to be the cycle consisting of two paths Pi and Pj for 1 6 i < j 6 3.

Let D′ and D′′ be two mixed graphs with the same underlying graph G. If C is a cycle
of G, we always denote the corresponding cycle of C in D′ (D′′, resp.) by C ′ (C ′′, resp.).

In this section, we will characterize all bicyclic ODHS graphs, and construct infinitely
many k-cyclic ODHS graphs, both of which can achieve the upper bound in Theorem
19. Note that two switching equivalent mixed graphs are cospectral. By the definition of
ODHS graph, we immediately have the following lemma.

Lemma 21. A simple graph G is ODHS if and only if n(G) = ns(G).

By Theorem 11, all mixed trees with the same underlying graph are switching equiv-
alent, which implies that all trees are ODHS. For unicyclic graph G, by Theorem 1 and
Theorem 11, it is clear that n(G) = ns(G) = 3, which implies that all unicyclic graphs are
ODHS. Thus, it is natural to ask which k-cyclic graphs are ODHS for k > 2. To answer
this question, the following lemmas are needed.

Lemma 22. Let D′ and D′′ be two mixed graphs with underlying graph G, and let
Φ(D′, λ) =

∑n
j=0 c

′
jλ

n−j (Φ(D′′, λ) =
∑n

j=0 c
′′
jλ

n−j, resp.) be the characteristic polyno-
mial of D′(D′′, resp.). If the corresponding basic cycles whose lengths are less than p have
the same values, then c′j = c′′j for any j(1 6 j 6 p − 1). Furthermore, if the difference
of the number of positive cycles and the number of negative cycles of order p in D′ is not
equal to that in D′′, then c′p 6= c′′p.

Proof. Let E ′j and E ′′j be two basic subgraphs of order j containing at least one cycle of
D′ and D′′, respectively. Let M ′

j and M ′′
j be two basic subgraphs of order j (for even

j) consisting of j/2 isolated edges of D′ and D′′, respectively. By Theorem 1, for any
j(1 6 j 6 p),

c′j − c′′j =
∑
B′

j

∏
C⊂B′

j

h(C)(−1)s(B
′
j)2c(B′

j) −
∑
B′′

j

∏
C⊂B′′

j

h(C)(−1)s(B
′′
j )2c(B′′

j )

=

∑
E′

j

∏
C⊂E′

j

h(C)(−1)s(E
′
j)2c(E′

j) +
∑
M ′

j

(−1)s(M
′
j)


−

∑
E′′

j

∏
C⊂E′′

j

h(C)(−1)s(E
′′
j )2c(E′′

j ) +
∑
M ′′

j

(−1)s(M
′′
j )


=
∑
E′

j

∏
C⊂E′

j

h(C)(−1)s(E
′
j)2c(E′

j) −
∑
E′′

j

∏
C⊂E′′

j

h(C)(−1)s(E
′′
j )2c(E′′

j ).

Note that for corresponding basic subgraphs E ′j and E ′′j , s(E ′j) = s(E ′′j ) and c(E ′j) = c(E ′′j ).
It is easy to check that c′j = c′′j for any j (1 6 j 6 p−1) and c′p 6= c′′p. The result follows.
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Lemma 23. Let G be a connected simple graph. If there exists a cycle C of G which has
no common edge with other cycles of G, then G is not ODHS.

Proof. By Lemma 21, it is sufficient to prove that n(G) < ns(G). Since C is edge-
disjoint to the other cycles, C must be contained in any strong cycle basis of G. Let
{C,C1, . . . , Ck−1} be a strong cycle basis of G. We will complete the proof by constructing
two mixed graphs D′ and D′′ in D(G) which are cospectral but not switching equivalent.
Noting that the direction of E(C) is independent of the directions of the rest cycles, we
construct two mixed graphs D′ and D′′ in D(G) satisfying:

(1) h(C ′) = i, h(C ′′) = −i;
(2) (h(C ′1), . . . , h(C ′k−1)) = (h(C ′′1 ), . . . , h(C ′′k−1)) is not a real vector.
Clearly, s(D′) and s(D′′) are not conjugate equivalent. It follows from Theorem 18

that D′ and D′′ are not switching equivalent. Since C ′ (C ′′, resp.) is imaginary and
edge-disjoint to the other cycles in D′ (D′′, resp.), any basic cycle in D′ (D′′, resp.)
can be generated by {C ′1, . . . , C ′k−1} ({C ′′1 , . . . , C ′′k−1}, resp.). By Lemma 16 and the fact
(h(C ′1), . . . , h(C ′k−1)) = (h(C ′′1 ), . . . , h(C ′′k−1)), one can deduce that all corresponding basic
cycles in D′ and D′′ have the same value. By Lemma 22, c′j = c′′j for any j, which implies
that Φ(D′, λ) = Φ(D′′, λ).

In what follows, we characterize bicyclic ODHS graphs. By Lemma 23, the question
can be reduced to determine which theta-type graphs are ODHS.

Lemma 24. Let G be a theta-type bicyclic graph and let D′ and D′′ be two mixed graphs
with underlying graph G. Then D′ is cospectral to D′′ if and only if∑

C′∈C′v

h(C ′)Φ(D′ − C ′, λ) =
∑

C′′∈C′′v

h(C ′′)Φ(D′′ − C ′′, λ),

where v is one of the common vertices of all cycles in G, and C ′v (C ′′v , resp.) is the set of
basic cycles in D′ (D′′, resp.) containing v.

Proof. By Theorem 2, we have

Φ(D′, λ) = λΦ(D′ − v, λ)−
∑

uv∈E(D′)

Φ(D′ − u− v, λ)− 2
∑
C′∈C′v

h(C ′)Φ(D′ − C ′, λ)

and

Φ(D′′, λ) = λΦ(D′′ − v, λ)−
∑

uv∈E(D′′)

Φ(D′′ − u− v, λ)− 2
∑

C′′∈C′′v

h(C ′′)Φ(D′′ − C ′′, λ).

Note that G− v is a forest. By Theorem 11, all mixed forests with the same underlying
graph are switching equivalent, and therefore have the same spectrum. Thus we have

Φ(D′ − v, λ) = Φ(D′′ − v, λ)
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and ∑
uv∈E(D′)

Φ(D′ − u− v, λ) =
∑

uv∈E(D′′)

Φ(D′′ − u− v, λ).

Therefore,

Φ(D′, λ)− Φ(D′′, λ) = 2
∑

C′′∈C′′v

h(C ′′)Φ(D′′ − C ′′, λ)− 2
∑
C′∈C′v

h(C ′)Φ(D′ − C ′, λ).

This completes the proof.

Theorem 25. A bicyclic graph G is ODHS if and only if its kernel is θ(l1, l2, l3) for some
positive integers l1, l2, l3 satisfying one of the following conditions:

(1) l1, l2, l3 are mutually distinct.
(2) If exactly two of l1, l2, l3 are equal (that is, there are exactly two cycles having the

same length, say C1 and C2), then Φ(G−C1) 6= Φ(G−C2) and Φ(G−C1)−Φ(G−C2) 6=
2Φ(G− C3).

(3) If l1 = l2 = l3, then for any indexes i, j, k with {i, j, k} = {1, 2, 3}, Φ(G − Ci) 6=
Φ(G− Cj) and Φ(G− Ci) + Φ(G− Cj) 6= 2Φ(G− Ck).

Proof. By Lemma 23, every bicyclic ODHS graph G must contain a theta graph as its
kernel, say θ(l1, l2, l3). Denote C = {C1, C2} to be a strong cycle basis of G and denote
the third cycle of G by C3.

Without loss of generality, we assume that the directions of C1, C2, C3 are coincident
and ‖C1‖ 6 ‖C2‖ 6 ‖C3‖, where ‖Cj‖ is the length of Cj for 1 6 j 6 3. It follows from
Lemma 16 that the value of C3 is the product of C1’s and C2’s for any mixed graph in
D(G). Let D′ and D′′ be two mixed graphs in D(G). Applying Lemma 24, we have the
following Claims. We only prove one of them as their proofs are similar.

Claim 1 If s(D′) = (1,−1) and s(D′′) = (i, i), then D′ is cospectral to D′′ if and only
if Φ(G− C1) = Φ(G− C2).

Since the directions of C1, C2, C3 are coincident, it follows from Lemma 16 that h(C ′3) =
−1 and h(C ′′3 ) = −1. Using Lemma 24 and assuming that v is one of the common vertices
of C1, C2 and C3, D

′ is cospectral to D′′ if and only if

Φ(D′ − C ′1)− Φ(D′ − C ′2)− Φ(D′ − C ′3) = −Φ(D′′ − C ′′3 ).

Noting that all mixed forests with the same underlying graph have the same characteristic
polynomial which is the characteristic polynomial of their underlying graph, we have
Φ(D′ − C ′1) = Φ(G− C1), Φ(D′ − C ′2) = Φ(G− C2) and Φ(D′ − C ′3) = Φ(D′′ − C ′′3 ). This
proves Claim 1.

Claim 2 If s(D′) = (1,−1) and s(D′′) = (i,−i), then D′ is cospectral to D′′ if and
only if Φ(G− C1)− Φ(G− C2) = 2Φ(G− C3).

Claim 3 If s(D′) = (1, i) and s(D′′) = (±i, 1), then D′ is cospectral to D′′ if and only
if Φ(G− C1) = Φ(G− C2).

Claim 4 If s(D′) = (−1,−1) and s(D′′) = (i, i) or (−i,−i), then D′ is cospectral to
D′′ if and only if Φ(G− C1) + Φ(G− C2) = 2Φ(G− C3).
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To prove the necessity, it is enough to show that for any graph G not satisfying the
conditions (1), (2) and (3), there exist two mixed graphs D′ and D′′ in D(G) which are
not switching equivalent, but cospectral. In fact, the Claims 1-4 imply the necessity.

To prove the sufficiency, denote Φ(D′, λ) =
∑n

j=0 c
′
jλ

n−j (Φ(D′′, λ) =
∑n

j=0 c
′′
jλ

n−j,
resp.) to be the characteristic polynomial of D′ (D′′, resp.). Obviously, it is sufficient to
prove that for any mixed graphs D′ and D′′ with the same underlying graph G satisfying
one of the conditions (1), (2) and (3), if s(D′) and s(D′′) are not conjugate equivalent,
then D′ and D′′ are not cospectral, that is, c′j 6= c′′j for some j (1 6 j 6 n).

Claim 5 If s(D′) and s(D′′) contain no real entry, then c′‖C3‖ 6= c′′‖C3‖.

Since s(D′) and s(D′′) are not conjugate equivalent, without loss of generality, we as-
sume that s(D′) = (i, i) and s(D′′) = (i,−i). It follows from Lemma 16 that {h(C ′3), h(C ′′3 )}
= {−1, 1}. By Lemma 22, we have c′‖C3‖ 6= c′′‖C3‖. This proves Claim 5.

Thus, we may assume that s(D′) or s(D′′) contains at least one real component. We
divide the remaining proof into three cases according to the conditions of the theorem.

Case 1: l1, l2, l3 are mutually distinct.
We can assume that j (1 6 j 6 2) is the first index such that one of h(C ′j) and h(C ′′j )

is real and h(C ′j) 6= h(C ′′j ). By Lemma 22, c′‖Cj‖ 6= c′′‖Cj‖, as required.
Case 2: Exactly two of l1, l2, l3 are equal.
We can assume that ‖C1‖ = ‖C2‖ < ‖C3‖ and the number of real entries of s(D′) is at

most that of s(D′′). Firstly, we consider s(D′) as a real vector. If h(C ′1) = h(C ′2) ∈ {±1}
and s(D′) 6= s(D′′), it follows from Lemma 22 that D′ and D′′ are not cospectral. If
h(C ′1) = −h(C ′2) ∈ {±1}, without loss of generality, let s(D′) = (1,−1). By Lemma 22,
only three cases need to consider that h(C ′′1 ) = h(C ′′2 ) ∈ {±i}, h(C ′′1 ) = −h(C ′′2 ) ∈ {±i}
and s(D′′) = (−1, 1). For the case h(C ′′1 ) = h(C ′′2 ) ∈ {±i}, without loss of generality, we
write s(D′′) = (i, i). One can deduce that h(C ′3) = −1 and h(C ′′3 ) = −1 as s(D′) = (1,−1)
and s(D′′) = (i, i). By Claim 1, D′ and D′′ are not cospectral since Φ(G−C1) 6= Φ(G−C2).
For the case h(C ′′1 ) = −h(C ′′2 ) ∈ {±i}, without loss of generality, we write s(D′′) = (i,−i).
Hence, h(C ′3) = −1 and h(C ′′3 ) = 1. By Claim 2, D′ and D′′ are not cospectral, since
Φ(G − C1) − Φ(G − C2) 6= 2Φ(G − C3). For the case s(D′′) = (−1, 1), h(C ′3) = −1 and
h(C ′′3 ) = −1. It follows by a proof similar to the proof of Claim 1 that D′ and D′′ are not
cospectral, since Φ(G− C1) 6= Φ(G− C2).

Next, we consider the case that s(D′) exactly contains one real entry. Without loss of
generality, let s(D′) = (1, i). We only consider the cases that s(D′′) = (±i, 1). Otherwise,
by Lemma 22, it is easy to check that D′ and D′′ are not cospectral if s(D′) and s(D′′)
are not conjugate equivalent. We have h(C ′3) = i and h(C ′′3 ) = ±i from s(D′) = (1, i) and
s(D′′) = (±i, 1). Using Lemma 24, it follows by a proof similar to the proof of Claim 1
that D′ and D′′ are not cospectral since Φ(G − C1) 6= Φ(G − C2). This completes the
proof of Case 2.

Case 3: l1 = l2 = l3.
Clearly, ‖C1‖ = ‖C2‖ = ‖C3‖. We also assume that the number of real components

of s(D′) is at most that of s(D′′). Firstly, we consider s(D′) as a real vector. If h(C ′1) =
h(C ′2) = 1 and s(D′) 6= s(D′′), it follows from Lemma 22 thatD′ andD′′ are not cospectral.
If h(C ′1) = h(C ′2) = −1, then h(C ′3) = 1. If s(D′) 6= s(D′′) and s(D′′) exactly contains
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v

Figure 4: Graph G(l0, l1, . . . , lk).

two real components, by Lemma 22, D′ and D′′ are not cospectral, we are done. If s(D′′)
exactly contains one real component, one can conclude that it must be −1. Otherwise,
by Lemma 22, D′ and D′′ are not cospectral. Without loss of generality, write s(D′′) =
(−1,±i). It implies that h(C ′′3 ) = ±i. Using Lemma 24, it follows by a proof similar to the
proof of Claim 1 that D′ and D′′ are not cospectral as Φ(G−C2) 6= Φ(G−C3). Suppose
that s(D′′) contains no real component. By Lemma 22, s(D′′) must be equal to (i, i) or
(−i,−i). By Claim 4, D′ and D′′ are not cospectral as Φ(G−C1)+Φ(G−C2) 6= 2Φ(G−C3).

Finally, we consider the case that s(D′) contains exactly one real component. Without
loss of generality, we assume that s(D′) = (1, i). One can deduce that h(C ′3) = i. If s(D′′)
contains exactly one real component, we only need to consider the cases that s(D′′) =
(±i, 1). Otherwise, by Lemma 22, it is easy to verify that D′ and D′′ are not cospectral if
s(D′) and s(D′′) are not conjugate equivalent. We have h(C ′′3 ) = ±i since s(D′′) = (±i, 1).
By Claim 3, D′ and D′′ are not cospectral if Φ(G−C1) 6= Φ(G−C2). Suppose that s(D′′)
contains exactly no real component. By Lemma 22, h(C ′′1 ) = −h(C ′′2 ) ∈ {±i}. Using
Lemma 24, it follows by a proof similar to the proof of Claim 1 that D′ and D′′ are not
cospectral as Φ(G− C1) 6= Φ(G− C3).

The problem which k-cyclic graphs with k > 3 are ODHS is open. In the rest of
paper, we construct an infinite family of k-cyclic ODHS graphs. They can achieve the
upper bound in Theorem 19.

Let G(l0, l1, . . . , lk) be a graph with two given vertices u, v and k+1 paths joining them,
say P0, P1, . . . Pk, where Pi has length li for all i (0 6 i 6 k), satisfying ‖Cij‖ < ‖Ci′j′‖ if
and only if i < i′, or i = i′, j < j′, where Cij is a cycle with length ‖Cij‖ consisting of Pi

and Pj (0 6 i < j 6 k). See Figure 4. It is easy to see that {C01, . . . , C0k} is a strong
cycle basis of G(l0, l1, . . . , lk) as Cij = C0i ⊕s C0j for all 1 6 i < j 6 k. We suppose that
the directions of any cycles in G(l0, l1, . . . , lk) are clockwise. Thus C0i, C0j and Cij are
coincident for all 1 6 i < j 6 k.

Theorem 26. The graph G(l0, l1, . . . , lk) defined above is ODHS and ns(G(l0, l1, . . . , lk)) =
22k−1 + 2k−1.

Proof. It follows from Lemma 20 that G(l0, l1, . . . , lk) is free with respect to the strong
cycle basis {C01, . . . , C0k}, which implies that ns(G(l0, l1, . . . , lk)) = 22k−1 + 2k−1.
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Let D′ and D′′ be two mixed graphs with underlying graph G(l0, l1, . . . , lk). In order
to prove that G(l0, l1, . . . , lk) is ODHS, it is sufficient to prove that if s(D′) and s(D′′) are
not conjugate equivalent, then D′ and D′′ are not cospectral.

We first assume that for any j (1 6 j 6 k), either h(C ′0j) = h(C ′′0j) or h(C ′0j) =

h(C ′′0j) ∈ {±i}. If not, there is some p such that h(C ′0p) 6= h(C ′′0p) and one of h(C ′0p) and
h(C ′′0p) is real. Suppose that p is the first index satisfying the condition. This implies that

either h(C ′0j) = h(C ′′0j) or h(C ′0j) = h(C ′′0j) ∈ {±i} for any j (1 6 j 6 p − 1). It follows
from Lemma 22 that c′j = c′′j for 0 6 j < l0 + lp and c′l0+lp

6= c′′l0+lp
, we are done.

Since s(D′) 6= s(D′′) and s(D′) 6= s(D′′), we may suppose that p is the first index
such that h(C ′0p) 6= h(C ′′0p) and q is the first index such that h(C ′0q) 6= h(C ′′0q). By

the assumption mentioned above, h(C ′0p) = h(C ′′0p) ∈ {±i} and h(C ′0q) = h(C ′′0q) ∈ {i,−i}.
One can conclude that the corresponding basic cycles with length less than lp+lq in D′ and
D′′ have the same value. By Lemma 22, c′i = c′′i for 1 6 i < lp + lq and c′lp+lq

6= c′′lp+lq
.

By Theorem 26, G(tl0, tl1, . . . , tlk) is ODHS for every integer t > 1. This implies the
following result.

Corollary 27. There are infinitely many k-cyclic ODHS graphs for any k > 2.

Acknowledgements

The authors are very grateful to the referees for their valuable comments and corrections.

References

[1] J. A. Bondy and L. Lovász. Cycles through specified vertices of a graph. Combina-
torica, 1:117–140, 1981.

[2] C. Chen, J. Huang, and S.-C. Li. On the relation between the H-rank of a mixed
graph and the matching number of its underlying graph. Linear Multilinear Algebra,
66:1853–1869, 2018.

[3] C. Chen, S.-C. Li, and M.-J. Zhang. Relation between the H-rank of a mixed graph
and the rank of its underlying graph. Discrete Math., 342:1300–1309, 2019.

[4] X.-L. Chen, X.-L. Li, and Y.-Y. Zhang. 3-regular mixed graphs with optimum Her-
mitian energy. Linear Algebra Appl., 496:475–486, 2016.

[5] E. R. van Dam and W. H. Haemers. Which graphs are determined by their spectrum?
Linear Algebra Appl., 373:241–272, 2003.

[6] E. R. van Dam and W. H. Haemers. Developments on spectral characterization of
graphs. Discrete Math., 309:576–586, 2009.

[7] G. Greaves, B. Mohar, and O. Suil. Interlacing families and the Hermitian spectral
norm of digraphs. Linear Algebra Appl., 564:201–208, 2019.

[8] K. Guo and B. Mohar. Hermitian adjacency matrix of digraphs and mixed graphs.
J. Graph Theory, 85:217–248, 2016.

the electronic journal of combinatorics 27(3) (2020), #P3.55 17



[9] K. Guo and B. Mohar. Digraphs with Hermitian spectral radius below 2 and their
cospectrality with paths. Discrete Math., 340:2616–2632, 2017.

[10] D. Hu, X.-L. Li, X.-G. Liu, and S.-G. Zhang. The spectral distribution of random
mixed graphs. Linear Algebra Appl., 519:343–365, 2017.

[11] J.-X. Liu and X.-L. Li. Hermitian-adjacency matrices and Hermitian energies of
mixed graphs. Linear Algebra Appl., 466:182–207, 2015.

[12] G. J. Minty. A theorem on n-coloring the point of a linear graph. Amer. Math.
Monthly, 67:623–624, 1962.

[13] B. Mohar. Hermitian adjacency spectrum and switching equivalence of mixed graphs.
Linear Algebra Appl., 489:324–340, 2016.
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