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Abstract

We determine the optimal strategy for a family of lottery games involving re-
peated drawings with the same conditions, which includes Brazil’s jogo do bicho
and games typically offered by state lottery organizations in the United States un-
der names such as Daily 4 or Cash 3. The proof that the strategy is optimal and
the resulting formula for the probability of success both rely on a solution to a re-
cursion that generalizes the usual Pascal recursion for binomial coefficients, which
itself relies on a count of lattice paths. We illustrate how our result can be applied
to focus on-the-ground investigations of suspicious patterns of lottery wins.

Mathematics Subject Classifications: 60G40, 60C05

1 Introduction

Motivation and context

Most US states operate a lottery and most of them will provide, if asked in the right way,
a list of the prizes (of at least some minimum size, often $600) they have given out. The
list will include additional information about each prize awarded, such as the game played
and the name and city of residence of the person receiving the prize. It is rather rare for
someone to win a prize that would appear on such a list. For a typical scratcher game,
a gambler might expect to spend $30,000 on lottery tickets to claim one such prize. Yet
the lists of prizes awarded in some states include persons who have claimed more than
100 prizes. It is natural to wonder if such a person is truly a legitimate gambler (the null
hypothesis) or is up to some kind of possibly-illegal shenanigans.

With this question in mind, the paper [1] developed a method to provide a lower bound
on how much the person would have had to spend on lottery tickets under the null, in
which case they win prizes in lottery games with a probability that is deducible from the
rules of the games. For some specific people, it was found that they had to have spent
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more than $1000 per day on lottery tickets over a period of years [7]. Spending that much
on lottery tickets is time consuming, raising doubts about the null hypothesis. Moreover,
it is easy to then check the null hypothesis with “shoe leather”: under the null, the person
was spending a very large amount of money over a long period of time on lottery tickets,
so store clerks and others will remember them and have stories to share.

The mathematical analysis saves labor by focusing on-the-ground investigations. Fol-
lowing the first application of the techniques from [1] in [7], they have been used to analyze
frequent prize winners in at least 15 other states, including a governmental analysis in
South Carolina [9]. Investigations have led to jail time for some frequent winners, see
for example [3]. It has also buttressed court cases concerning various shenanigans, in the
state of Georgia and elsewhere.

This paper’s contribution

We address here a missing piece of the analysis, concerning prizes won in games with
repeated drawings such as California’s Daily 4 or Florida’s Play 4 or Brazil’s jogo do bicho
(“animal game”). These games are very similar to the “numbers” and “policy” games
that predate the current generation of state-run lotteries in the US, see e.g. [2, Ch. VI]
or [11]. The gambler bets on one or more 4-digit numbers. (Of course, versions with 3
digits, etc., also exist.) Later, at a pre-scheduled time, the winning number is revealed.
If the gambler had chosen to bet on the winning number, then he or she would win a
prize. Because each instance of the game, each drawing, has the same odds of winning
and the same payoff, we call these games repeated draw games. These are in contrast with
instant-win or scratcher games, where the gambler immediately learns whether they have
won, and whose outcomes are well-approximated by the binomial distribution.

Our two main contributions are to answer the following about repeated draw games:

e Given a total amount M to wager and a number k, what betting strategy mazimizes
the probability of achieving k wins? See Theorem 5.1.

o What is the probability of achieving at least k wins with this strateqy? See Proposi-
tion 4.1.

In §2, we give a precise statement of an abstracted version of the problem and define
the strategy that will be proved to be optimal. Section 3 can be read independently of the
rest of the paper; it gives a general result about a weighted version of the Pascal recursion
for binomial coefficients, whose proof relies on counts of lattice paths. The solution to
the recursion is then used in the proofs of each of the main results (§4 and §5).

The optimal strategy we describe here is adaptive, in the sense that the outcome of
the next drawing will influence what the strategy says to do for the following drawing. In
contrast to this, a naive strategy is to wager 1 unit per drawing for M drawings, in which
case the probability of success is a straightforward application of the binomial distribution
as in §6. We observe that the optimal strategy has at most twice the probability of success
as the naive strategy. The final section of the paper, §7, illustrates how this can be applied
to analyzing frequent prize claimants.
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2 A strategy and its probability of success

The precise problem statement

Consider a game where in each round you draw one card (with replacement) from a deck
of N equally likely cards. On any round of the game, you can bet on any subset of the
cards, at a cost of 1 coin per card. You win if the drawn card is any of the cards in your
chosen set.

You will wager up to M coins (your “bankroll”) in total across all rounds of the game,
and you want to get at least £ wins. There is no benefit to you to getting more than k
wins, and anything less than & wins counts as a failure. We ignore any monetary payout
for a win.

Note that after each round you are back at another instance of the same game, with
your bankroll lowered by your previous bets and your goal number of wins lowered by the
number of wins you have already achieved. Therefore to describe the optimal strategy it
suffices to describe your first move for any pair (M, k); these are the parameters that are
specific to the gambler.

An adaptive strategy

Here is a strategy described in terms of three cases. (We will prove below in Theorem 5.1
that this strategy achieves the optimal probability of success.)

[. If M > kN, then you bet on all N possibilities in the next draw. (Note that this
will lower M by N and also guarantee a win, so k& will decrease by 1. Thus you will
be back in this same case on the next round, and you will be guaranteed success.)

II. If (k—1)N < M < kN, then you bet on M — (k — 1)N possibilities in the next
draw. (Note that if you win, you will be left with (k — 1)V coins needing k — 1 more
wins. Hence you will be in case (I) and guaranteed success.)

III. If M < (k—1)N, then bet on one card in the next round.

Here is another way of describing this strategy. Say that you are ridiculously rich if
your bankroll exceeds N times the number of desired wins. You are ridiculously rich if
you could buy out some full number of draws, guaranteeing you win, and still have money
left over at the end. The basic strategy is to always bet on one card, with one exception.
If you look ahead and see that a win would make you ridiculously rich, then you increase
the number of cards you bet on (to M — (k — 1)N) to maximize the chance that this
happens in the current round.
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Probability of success

Let pr(M) be the probability that you achieve success with the strategy described above.
Then the description of the cases shows that po(M) = 1 for all M and

1 it M > kN,

pr(M) = MoQoUN o RNEM (k= 1)N) if (k—1)N <M < kN, 21)
Ao (M =1+ (1= F)pe(M —1) if k<M< (k=1)N ‘
0 if0< M < k.

The first three cases represent (I)—(III) and the last says that you cannot succeed if your
bankroll is less than the number of wins you want to achieve.

Example 2.2. When k = 1, if we are in case (II), then we bet on M cards in the first
round. Note that this is optimal since regardless of how we bet the expected total number
of wins is % and this is therefore an upper bound for the probability of getting at least
one win. We have:

N

(1) — F=1-5" f0<M<LN
P if N < M.

3 Interlude: a weighted Pascal recursion

This section may be read independently of the rest of the paper. It provides a key relation
that we will use in a few different places in the rest of the paper.

Suppose we have a family By, By, ... of polynomials that satisfy the recursion
1
Br(M) = NBk,l(M — 1)+ Br(M —1) (3.1)

for some constant N, with the convention that B, = 0 for k less than some bound. We
recognize this as a weighted version of the usual Pascal Rule for the binomial coefficients,

which is the case N =1 and By(M) = (A]f)

Example 3.2. From the similarity to Pascal’s Rule, we see that a family of polynomials
of the form

M+a

k—b

for integer a, b is a solution. Since the recursion (3.1) is linear we can assemble these into
more complicated solutions. In particular, the solution with given initial values By(0) is
given by

Bi(M) = N"’“(

By(M) = 2; By,—;(0) (]\Q N,
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The recursion (3.1) can be rewritten as saying that the finite difference By(M) —
Bi(M — 1) = +By_1(M — 1) of By, is proportional to (a shift of) By_;. In particular, if
B is the first nonzero polynomial on the list, then B, is constant and By, has degree k —j
for k > j.

Iterating the recursion in a clever way provides the following extremely useful identity.

Proposition 3.3. With the notation abowve,
By(M) = ¢;Bra—;(M — jN) (3.4)
j=1

where the constant c; is defined to be

UN-DGN =2)---(GN -j+2)

Cj = (] — 1>‘ NJ*Q . (35)
We note that ¢; = ¢, =1 and ¢3 = 3]2\7];1.

Proof. Applying the recursion (3.1) a second time to every term on the right side gives

1

) = mBk—z(M —2)+ sz_l(M —2) + By (M — 2).

Bi(M I

If we keep iterating the recursion we see the binomial coefficients appear
r r
Bk(M) = ZN_j (]) Bk_j(M - 7’).
=0

Think of the binomial coefficient (;) as the number of lattice paths from (0,0) to (r—j, j).
To get a more interesting identity instead of iterating the recursion on every term on the
right, we choose a subset of the terms and agree to stop iterating when we hit one of them.
The specific case we want is to stop when we encounter a term of the form By1_;(M —jN)
for some j, which corresponds to a lattice path ending at (N —j+ 1,7 — 1). The result
will be a sum of the required form, where the terms c¢; have not yet been determined.
Note that there is no issue with paths escaping to infinity since if j gets too large all
the terms are zero anyway. As a result the sum (3.4) is not really infinite, as for each
fixed k only finitely many terms are nonzero. The constants ¢; (depending on N only) are
N7 times a combinatorial term counting lattice paths. In this case a direct translation
of the iteration above describes this combinatorial term as the number of the lattice paths
that start at (0,0) and have absorbing points at (jN — j + 1,j — 1) that are absorbed at
the j-th such point. This can be rephrased as a more standard lattice path count. Note
that if we add an extra absorbing point at (1, —1) (corresponding to j = 0), then we can
think of our lattice path as starting at (0, —1). The paths that leave (0, —1) horizontally
are immediately absorbed so they contribute nothing new. Shifting everything up so that
we again start at (0,0) we see that the absorbing points shift to (j(N — 1) + 1,7) for
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j = 0. Next we note that a path absorbed at (j(N — 1) + 1,j) must have ended with a
horizontal move from (j(/N —1), 7). Thus rather than absorbing points, we can just count
paths that stay on or above the line y = z/(N — 1). Putting this together we conclude
that N7~!¢; is the number of lattice paths starting at (0,0), ending at (j(N — 1),7), and
always on or above the line y = /(N — 1). The explicit formula for ¢;, then, is either a
result of Spivey [10] or of Niederhausen [8], depending on taste. O

4 A precise formula for py (M)

In this section we give a formula for py(M) that is less recursive than (2.1). The prob-
ability pg(M) is most naturally thought of as breaking up into ranges, which to a first
approximation are indexed by r = [M/N]. We have already done this for the case k = 1
(Example 2.2) and the formula is trivial for r > k (case (I) with pi(M) = 1), so we are
left to address the cases k£ > r > 1.

Polynomials Qi and By,
First we define polynomials Q(M) € Q[M] for k > 2 of degree k — 2 via

Qr(M) = ki%(k—J—l)(M_.]{:H)Nj,

=0 J

i.e., Qr(M) is the Laurent series for the function

(33

taken up to the N27* term. For example,
M —2

2.
N—|—

QQ(M) =1 and Qg(M) =

We set @, := 0 for k < 2.
We use the @y to build polynomials By, (M) € Q[M] for k > r > 1 of degree k —r —1

via
o

Biy(M) =Y ¢iQus1—i(M — iN)

for ¢; as in (3.5). Note that the sum has only finitely many nonzero terms and that By,
is a polynomial of degree kK —r — 1. For example,

Bii1,(M)=c¢, forr>1
and (as in the previous section)
By (M) = Qr(M).
We define By, (M) =0 for k < r.
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Proposition 4.1. For (r—1)N < M <rN and k > r > 1, we have

kN — M

A, + By, (M) (1 _ %) e (4.2)

where A, is given by

with ¢; as defined in (3.5).

Note that A, depends only on r and N. The first few values are:

1 N 1 N 1 2N—-1
wet e (1) e (0 ()

Therefore, in case k = 2, the proposition asserts that

1 2NM (g L)Y fO<SM<N+1
pa(M) = 1= M (1 (1= 1)) if N <M <2N
1 if 2N < M.
For k = 3, the proposition asserts that
1 — BNM g (Mo2 4 9) (1 L)yM! if0< M <N +2
a4 VoM (] (1 — %)N> F(-DM NS M <OV
D3 = -
1= 2 (1- (1= )Y = (1= )™ if2v <M <3N
1 if 3N < M.

Note that we have allowed the ranges to overlap slightly here and in the statement of
the proposition, as long as the formulas give the same numerical value. Indeed we will
see that adjacent ranges give formulas that always agree on at least one value. We will
refer to each such formula as a layer of the full formula. So for example, the formula
for p3(M) consists of four layers. In general the formula for py (M) will consist of k + 1
layers, the last of which will just be py(M) = 1 for M > kN. Excluding this trivial
case, the r-th layer will hold for (r — 1)N < M < rN and will have the functional form
displayed in the statement of the proposition. One consequence of the slight overlap of
the layers is that we may always assume M — 1 and M are included in the same layer.
(We have also included, for example, that the (k — 1)-st layer and the k-th layer overlap
at M = (k — 1)N + 1, because in that situation (II) says to bet one coin on the next
draw.)
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Proof of Proposition 4.1. Example 2.2 shows that the claim holds when & = 1. For k > r,
define B} (M) via

kN — M 1\ Mt
and set B, , = 0. We aim to prove that B) . = By, for k >r > 1.
Suppose now that r < k, i.e., case (III), so pr(M) satisfies the recursion

pe(M) = %pkl(]\/[ — 1)+ (1 - %) pe(M —1). (4.3)
This recursion is linear in pj and is satisfied by the constant function 1 and by the function
kN — M. Therefore the B) . satisfy the weighted Pascal recursion (3.1), separately for each
r. The recursion (3.1) has a number of interesting features. In particular, the polynomials
By, (M) are determined inductively (in k) by the recursion, with a fairly explicit formula,
if we have one value of By , for each k.

Continue to assume r < k. Since pg(0) = 0 for k > 2, we see that

Bia0) = (- 1) (1 - %)

and hence Proposition 3.3 gives

B (M) = kf(k _ion) @4) N <1 _ %)H_Q.

0

<

Note that we have omitted the last two terms in the sum since they vanish. If instead we
use the initial values py(k — 1) = 0 we get B; ,(k — 1) = k — 1 and hence a different (but
equivalent) formula B ; (M) = Qx(M), verifying the claim for 1 =r < k.

For the inductive step, suppose we have proved the result for layer » — 1. Thus we only
care about py(M) for k > r. For k = r we are in case (II) of the strategy and therefore
we have the recursion

M—-(r—-—1)N rN-M

pr(M) = N + N pr((r—1)N).

This recursion can be restated as saying that for M in the interval [(r — 1)N,rN] the
probabilities p,(M) interpolate linearly between p,.((r — 1)N) at M = (r — 1)N and
pr(rN) =1 at M = rN. We can also compute p,((r — 1)M) from the (r — 1)-st layer
formula giving

pr((T — 1)N) =1- Ar_l + Bm_1 ((7‘ _ 1)N) (1 . %)(r—l)N-y-Q_r

1= Ay ey (1= L)
=1-A,.
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We conclude that
rN — M

N

for (r—1)N < M < rN since p, linearly interpolates between 1 — A, and 1, verifying the
claim for r = k.

pr(M) = 1_Ar

For the general case, since By, ,. satisfies the recursion (3.1) it suffices to show that the
stated formula is correct for one value of M and for this value we take M = (r—1)N. The
equality of the (r — 1)-st and r-th layer formulas for pi((r — 1)) says (after cancelling
out equal terms and using the formula we just found for A, — A, _;):

1\ (r=DN+2-k 1\ N2k
B, —1)N)|1—— = By, ,_ —1)N)|{1——
=0 (1 ) ol =08 (1= )

1 (r—1)N—r+2
+ (k' —7r+ 1)Cr—1 (1 — N)

or

By ((r — 1)N) = Beyy ((r — DN) + (k — 1+ L)ery (1 _ %) o

Since we recognize that Qy_,12(0) = (k —r+1) (1 — %)kir, we conclude that

Bl/c,r(M) = Bk—lﬂ”(M) + Cr—le—H-Q(M - (T - 1)N) - Bk,r<M)

and hence the formula above for By, is correct. O

5 Proof of optimality

Theorem 5.1. The function py,(M) defined in (2.1) is the probability of obtaining at least
k wins while betting a total of M coins (across any number of drawings), allocating bets
i an adaptive manner to maximize said probability.

In fact we will prove something slightly stronger.

Lemma 5.2. In case (II1), the expected return on betting on b cards for the next round
(with 1 < b < N),

b N —b

—pr_1(M —b

NPk 1( ) + N

s a non-increasing function of b.

Proof. In formulas, the claim says that

b N —b b+1 N—-b—-1
_ — _ > — b= R —
Npk_l(M b) + I (M —b) > ~ (M —b—1)+ N

pk(M —b— 1)
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Setting M’ = M — b and writing this as

%(pk—l(M,) +pe(M' = 1) = pp(M') = ppa (M — 1))

# (00 = goesar = = (1= 5 ) mOr 1) >0

and noting that the last term is the recursion satisfied by py since the pair (M, k) is also
in case (IIT), we see that proving monotonicity is equivalent to showing that

(M) 4+ pr(M' = 1) = pp(M') + pr—1(M' = 1).
Dropping the primes, this amounts to showing that
Pr-1(M) + pp(M — 1) = pp(M) + pp1(M — 1)

as long as M is in case (III) of the strategy. Since M — 1 and M always share a layer,
we may restrict to just a single layer of the formula for p;, say the r-th layer. The con-
tributions of the constant 1 and the linear terms A, ¥ ~ M to both sides of this inequality
cancel. Hence we see that it suffices to show that

1\ M3k 1\ M1k
Bk—l,T(M) (1 - _) + Bk,r(M — ].) (]_ — —)

N N

1\ M2k 1\ M2k
> By, (M)(1—— B, 1, (M—-1)1——
oo ( )( N) + Bj_1,( )( N)

(N —1)°By_1,(M) + N*By, (M — 1) > N(N — 1)(By(M) + Bj_1,(M — 1)).

In the particular case r = 1, for which By 1 (M) = Qr(M), we find that the left hand side

of this inequality minus the right hand side is

(M—-1)(M—-2)--- (M —-k+2)
(k —2)! Nk=3

Rp(M) = : (5.3)

This can be simply ground out from the formulas for @);. An alternative (slightly less
computational) proof is to note that

Ri(M) = (N = 1)*Qi—1(M) + N*Q(M — 1) = N(N — 1)(Qr(M) + Qr—1(M — 1))

satisfies the same linear recursion as @) and we compute that Ry(1) = N and for k > 2

w=ov-ap (k-2-3) () e (1-4)

(3 (-3) e (-3))
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Hence we get (5.3). Since Rg(M) > 0 trivially holds, we get the r = 1 case of the
monotonicity inequality. The inequality above is linear and invariant under shifts of M.
Hence it follows from the formula for By, that the general r inequality reduces to

Rk<M) — Cle(M — N) — Cng,1<M — 2N) — = Cr,le,T+2(M — (T’ — 1)N) 2 0.

But this is obvious since Rj, (as a binomial coefficient) also satisfies the recursion (3.1)
and hence the identity

o0
Riy(M) = ¢;jRpe1—;(M — jN)
=0
and in particular subtracting any truncation of the sum from Ry (M) leaves a nonnegative
remainder (since every term in the sum is nonnegative). O

Proof of Theorem 5.1. Lemma 5.2 proves the optimality of p.(M) as long as we are in
case (III). The optimality in case (I) when py(M) = 1 is trivial. For case (II), we note
that by the monotonicity we only need to consider bets of at most M — (k — 1)N. But in
this range the quantity we wish to maximize

N

b
—pk_l(M — b) +

N pk(M — b)

is a quadratic function of b (since py_1(M — b) = 1 and pg(M — b) is linear). Further the
coefficient of b? is positive (since py(M — b) has negative slope as a function of b). Thus
the maximum is attained at the endpoints, that is at either b=0or b= M — (k —1)N.
Note that the values at these points are equal since b = 0 is equivalent to a “no-op” which
has the same probability of success as doing the intended move immediately. O

6 An upper bound

It is natural to wonder how the probability pi(M) of success under the optimal strategy
compares to the probability by (M) of success of the naive strategy of betting one coin in
each of M drawings. That is, by(M) = P(Xy > k) where X, is a Binomial(M,1/N)

random variable, so
bk(M):Il/N(k7M—k?+1) fOI'M)kZ,
where [ denotes the regularized Beta function

Syt (A=)t at
[ te=1(1 —typ-tdt

I.(a,b) =

We have:

Proposition 6.1. by(M) < pp(M) < 2bp(M).
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Proof. The first inequality is trivial from Theorem 5.1. For the second, we apply induction
on k and M.

The base case is k = 0, where py(M) = bp(M) = 1. If M < k, then clearly py(M) =
be(M) = 0.

Now we assume that we have verified pgp(M) < 2b,(M) in case at least one of k or
M is diminished. When £ < M < (k — 1)N, we are done by induction using (2.1). If
(k—1)N < M < kN, we have, for § =k — M/N:

pe(M) = (1 = 0) + Opp((k — 1)N).
Now bi(kN) > 1/2 as in [5] or [6]. Therefore,
pe(M) < (1 —6)20,(kN) + 620, ((k — 1)N).

As the density function of the binomial distribution (probability of k successes on z trials)
is increasing for < kN (elementary), the survival function by (z) is concave down, whence
For kN < M, we have pi(M) =1 and 2b,(M) > 2b(kN) > 1. O

In one extreme case, if M = 1, then b;(1) = p(1) for all N > 1, so the first inequality
in the proposition is sharp.
The other inequality also cannot be improved, in the sense that

lim pe(kN)/bi(kN) = 2.

To see this, note that X,y is a sum of kN i.i.d. Bernoulli random variables, so Y, :=
(Xgn — k)/VEN converges to a mean zero Gaussian, whence P(X,n > k) = P(Y;, > 0)
converges to 1/2.

7 An application to lottery security

Let’s apply the main results to lottery security, as suggested in the introduction. Suppose
a person claimed k prizes in a repeated draw game where each drawing has N possible
outcomes, where k and N are known. For any hypothetical amount M of money spent on
tickets, one may calculate using Theorem 5.1 and Proposition 4.1 an upper bound py (M)
on the probability that the gambler won so many times. This presents three challenges.

First, it may be tiresome to compute py (M) for large k, even in the form provided in
Proposition 4.1. We address this using Proposition 6.1.

Second, this probability is only immediately relevant for detecting illicit behavior if
one began by selecting that person for inspection and only later discovered the property
that they were a frequent prize claimant. However, the typical situation is that the focus
is on the frequent claimant because of the fact they are a frequent claimant, in which case
one must adjust the probability to account for that. (See, for example, [4] for a discussion
of this issue in the specific context of the lottery.)
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Third, examining px(M) has the disadvantage of involving two numbers that require
the user to pick them or interpret them, namely the spending level M and a threshold for
the probability.

The paper [1] addressed the second and third challenges. It argued that winning so
many times has a negligible probability if, when we imagine the entire gambling population
spending M per capita on tickets, the probability of at least one of them winning so many
times is at most 107%. In this way, one can deduce a (rather conservative) lower bound
M for the frequent winner’s spending, assuming they are obtaining tickets in the usual
way of buying them.

Example 7.1. Suppose someone claims 100 prizes in Play 4, a repeated draw game
offered by the Florida lottery game where players bet $1 to wager on a a 4-digit number
(N = 10%). The population of Florida is about 21 million. Taking & = 100 and solving
the equation

20, (M) = 107°/(21 million)

provides a lower bound M = 420,000 on M. That is, if the prize claimant is obtaining
tickets by buying them in the usual legal way (as opposed to engaging in shenanigans),
then there is a negligible probability that they spent less than $420,000 on tickets. In
particular, if these wins were claimed over a period of one year, we would infer that a
legitimate gambler who claimed so many prizes would have been spending at least $1150
per day on lottery tickets for that year.

The above example is somewhat unusual, in that a typical frequent prize claimant will
have claimed prizes in a variety of games. The paper [1] explains how to compute an
overall lower bound on spending, assuming one can calculate a lower bound on spending
for each individual game. Here we have provided such a bound for games consisting of
repeated drawings.
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