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Abstract

Recently, Farnik asked whether the hat guessing number HG(G) of a graph G
could be bounded as a function of its degeneracy d, and Bosek, Dudek, Farnik,
Grytczuk and Mazur showed that HG(G) > 2d is possible. We show that for all

d > 1 there exists a d-degenerate graph G for which HG(G) > 22
d−1

. We also
give a new general method for obtaining upper bounds on HG(G). The question of
whether HG(G) is bounded as a function of d remains open.

Mathematics Subject Classifications: 05C57, 05C15, 91A12, 00A08

1 Introduction

Hat puzzles have long been a mainstay of recreational mathematics, colorfully touching
on ideas as diverse as the axiom of choice, modular arithmetic, and coding theory (see
e.g. [19, 20]). In this note, we study a particular hat puzzle on graphs introduced by
Butler, Hajiaghayi, Kleinberg, and Leighton [5], which has attracted some recent interest
in discrete mathematics [2, 3, 8, 9, 10, 12, 18].

Suppose n players are sitting on the vertices of a (finite, simple) graph G. An adversary
puts a colored hat on each of their heads, in one of q colors. The players can only see the
hats on their neighbors’ heads, and in particular no player sees their own hat. The players
simultaneously guess the colors of their own hats, and they collectively win if any single
one of them guesses correctly. The players may not communicate after the hat colors are
assigned but may agree upon a strategy beforehand. The hat guessing number HG(G) of
G is then the largest q for which the players have a winning strategy in the game with q
colors.
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To our knowledge, the only connected graphs G for which the exact value of HG(G)
is known are complete graphs, trees, pseudotrees (connected graphs with exactly one
cycle), and complete bipartite graphs Km,n for which n is sufficiently large in terms of m.
The classic case is when G = Kn is the complete graph on n vertices, and in this case
HG(Kn) = n. One winning strategy is for the i-th player to guess the hat color (identifying
colors with Z/nZ) that would make the total of all the colors sum to i (mod n). Butler,
Hajiaghayi, Kleinberg, and Leighton [5] determined that HG(T ) = 2 for all trees T , and
Szczechla [18] showed that for the cycle Cn of length n, HG(Cn) = 3 if n = 4 or n is a
multiple of 3, and HG(Cn) = 2 otherwise. Kokhas and Latyshev [15] showed that in fact
the only connected graphs G with HG(G) = 2 are trees and graphs with a single cycle
whose length is not 4 or a multiple of 3.

Farnik [9] observed that if G has maximum degree ∆, then HG(G) 6 e∆ by the Lovász
Local Lemma, and asked whether HG(G) is also bounded as a function of its degeneracy
d (which is always at most ∆). Recall that a graph G is d-degenerate if there is a left-
to-right ordering of its vertices where each vertex has at most d neighbors to its left.
Farnik showed that if the players strategies are constrained to have a so-called “bi-polar”
property, then the players cannot win unless there q 6 d+ 1 colors, and conjectured that
HG(G) 6 d+ 1 in general. This was later disproved by Bosek, Dudek, Farnik, Grytczuk,
and Mazur [3], who showed that for n large enough, HG(Bd,n) > 2d for the so-called
book graph Bd,n, which consists of a d-clique complete to n isolated vertices, and which is
d-degenerate.1 Alon, Ben-Eliezer, Shangguan, and Támo [2] considered another variant of
this question, showing that if q is a prime power and the players’ strategies are constrained
to be linear (identifying the q hat colors with elements of Fq), then the players cannot
win unless q 6 d+ 1.

Our first main result proves that in fact HG(G) can be at least double exponential
in terms of the degeneracy d of G. Furthermore, we determine the hat guessing number
exactly for a certain family of d-degenerate graphs G, adding an infinite family to the
small list of graphs whose hat guessing number is known precisely.

Let Td(N) denote the complete rooted N -ary tree with depth d, and define Gd(N) to
be the graph obtained from Td(N) by drawing an edge between every vertex and each of
its ancestors (if the edge does not exist already). Ordering the vertices by their depth
in Td(N), we see that Gd(N) is d-degenerate. Recall that Sylvester’s sequence (sn)∞n=0,
defined by s0 = 2 and

sn = s0 · · · sn−1 + 1 = s2n−1 − sn−1 + 1

for n > 1, satisfies sn = bE2n+1
+ 1

2
c for some E ≈ 1.264.

Theorem 1. For any d > 1 and all N sufficiently large in terms of d,

HG(Gd(N)) = sd − 1.

We say that a vertex ordering of a graph G is d-degenerate if each vertex has at most
d neighbors to the left, and that such an ordering has depth D if the longest left-to-right

1[3, 9] refer to d+ 1 as the coloring number of the graph.
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path contains D edges. Our second main result shows that Theorem 1 is close to best
possible, in the sense that HG(G) is always doubly-exponentially bounded in terms of d
and D.

Theorem 2. If d > 2, D > 1 and G has a d-degenerate vertex ordering of depth D, then

HG(G) < 2dD+1

.

Our last result shows that HG(Bd,n) = d(1+o(1))d for n sufficiently large, improving the
bounds in [3] and characterizing the asymptotic growth of HG(Bd,n) up to a lower order
term in the exponent.

Theorem 3. For all d > 1 and n sufficiently large in terms of d, we have

(d+ 1)! 6 HG(Bd,n) 6 1 +
d∑

i=1

ii. (1)

The upper bound is a simple corollary of a theorem of Gadouleau [10], which bounds
HG(G) as a function of the vertex cover number of G. Our main contribution is the
superexponential lower bound above.

In the next section we prove the upper bounds in Theorems 1 and 2; the main in-
novation is a deterministic adversary strategy that precommits to using very few colors
on certain vertices of G. The lower bound in Theorem 1 is then proved separately in
Section 3; we build a guessing strategy starting with the largest depth and show that,
from depth i+1 to depth i, we can roughly square-root the number of candidate colorings.
We finish by proving Theorem 3 in Section 4.

Related work Perhaps the most famous hat guessing puzzle was introduced by Ebert
[6]. Each player is independently given a red or blue hat with equal probability and the
players, seeing the other players’ hats, simultaneously either guess their hat color or pass.
They win if at least one player guesses correctly and no player guesses incorrectly. The
3 player version was popularized in the New York Times [17]. Many variations of this
puzzle have been studied (see [9, 14] for surveys), including one [5] where, like in this
work, the sight graph is an arbitrary graph, rather than a clique. Hat guessing puzzles
have found connections to coding theory [7], to auctions [1], to network coding [13, 16],
to finite dynamical systems [10], and possibly to understanding DNA [11].

2 Upper bounds

We prove a general upper bound on HG(G) that implies both Theorem 2 and the upper
bound in Theorem 1.

If G is a graph with vertices ordered v1, . . . , vn, define A(vi) := N(v) ∩ {v1, . . . , vi−1}
to be the set of neighbors of vi to the left of vi (A for “ancestor”). Let [n] be the set
{1, . . . , n}, and for a set S, let

(
S
k

)
denote the collection of k-element subsets of S.
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Lemma 4. Let G be a graph with vertices ordered v1, . . . , vn, and define ti for i = 1, . . . , n
recursively by

ti := 1 +
∏

vj∈A(vi)

tj,

where the empty product is 1. Then, HG(G) < max{t1, . . . , tn}.

Proof. Fix any guessing strategy for the players, which we may assume the adversary
knows. We describe an adversary strategy which prevents any vertex from guessing cor-
rectly using q colors, where q = max{t1, . . . , tn}.

The adversary pre-commits to using only a color from [ti] for the hat of vi. The
adversary then chooses the hat colors of vi in decreasing order of i, starting from the
rightmost vertex vn. Assume that, for some 1 6 i 6 n, all vertices to the right of vi have
been assigned hat colors. Over all possible remaining ways to place the hats, there are at
most ∏

j∈A(vi)

tj = ti − 1

distinct tuples of colors that can appear on the set A(vi). Since the hat colors to the right
of vi have all been assigned, the guess of vi now depends solely on the colors in A(vi), so
at most ti − 1 colors are possible for vi to guess. Hence, the adversary can find a color
out of [ti] that vi is guaranteed not to guess.

We have shown that there exists a color qi ∈ [ti] not guessed by vi, regardless of the
hat assignments yet to be made. Giving vi this hat color and continuing to the left, we
are done.

We now can deduce the upper bounds simply by exhibiting the appropriate vertex
orderings.

Proof of Theorem 2. Suppose G has a vertex ordering where each vertex has at most d
left-neighbors, and the longest left-to-right path has length D. We say that vi has depth
k if the longest left-to-right path with vi as its rightmost vertex has length k. Applying
Lemma 4 to this ordering, we find that if ak satisfies a0 = 2 and ak = adk−1 + 1 for
k > 0, then ti 6 ak if k is the depth of vi, and so HG(G) < aD. It is easy to check that
aD 6 2dD+1

, as desired.

The upper bound in Theorem 1 is similar.

Proof of upper bound in Theorem 1. Order the vertices of the graph Gd(N) so that every
vertex comes after its parent in the tree Td(N), so that for each v ∈ Gd(N), the set A(v)
is exactly the set of ancestors of v in Td(N). By the definition of Gd(N), each vertex at
depth k has exactly one ancestor of every depth smaller than k. Applying Lemma 4 to
this ordering, we see that ti = sk where k is the depth of vi and sk is the k-th term of
Sylvester’s sequence. The depth is d, so HG(G) < sd, as desired.
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3 The lower bound

We now show the lower bound HG(Gd(N)) > sd−1 for sufficiently large N . Our guessing
strategy uses repeatedly the simple observation that each player can act under the assump-
tion that every other player guesses incorrectly, since otherwise they would collectively
win.

Proof of the lower bound in Theorem 1. Let q = sd−1 and N > qdq. For i = 0, 1, . . . , d−
1, let ri = si+1 − 2 and let rd = qd+1, so that in particular rd−1 = q− 1. Order the family
[q]∗ of all tuples over [q] by length, with ties broken lexicographically. Order the vertices
of G = Gd(N) so that each vertex comes to the right of its parent in Td(N).

We say v ∈ V (G) is a child (parent, descendant, ancestor) of w ∈ V (G) if and only
if it is a child (parent, descendant, ancestor) of w in Td(N). Let D(v) denote the set of
descendants of v, let A(v) denote the set of ancestors of v, and let Ā(v) = A(v) ∪ {v}. If
χ is an assignment of hat colors to V (G) and U ⊂ V (G), let χ(U) ∈ [q]|U | be the tuple of
hat colors of elements of U , ordered according to the vertex ordering of G.

For each v ∈ V (G) of depth 0 6 i 6 d − 1, assign each of its children w a subset

Sw ⊂ [q]i+1 of size ri +1 such that all
(
qi+1

ri+1

)
such subsets are assigned to at least one child

of v. This is possible as the number of children of v is N >
(
qi+1

ri+1

)
for all i 6 d− 1.

We are now ready to describe the guessing strategy. Roughly speaking, the idea is that
the vertices of larger depth in the tree are so numerous that the vertices of smaller depth
can deduce a lot of information about their own colors from the assumption that their
descendants all guess incorrectly. The strategy will be built starting from the largest depth
d, so that we first fix the guess of w before the guess of any element of A(w). Crucially,
by the definition of G, all information available to w is available to any v ∈ A(w) except
for the color of v.

We prove that, for any 0 6 i 6 d and any depth-i vertex v, the vertices of D(v) can
guess their hat colors so that vertex v (and its ancestors) can deduce a set of ri possibilities
for χ(Ā(v)), using solely the information χ(D(v)). Formally, there is a guessing strategy

for vertices of depth > i and a functions fv : [q]D(v) →
(
[q]i+1

ri

)
depending only on χ(D(v)),

such that if all vertices of depth greater than i guess wrong, then fv(χ(D(v)) contains
χ(Ā(v)).

We proceed by reverse induction on i. The base case i = d is trivial, as for every vertex
v of depth d, we can take fv(·) = [q]d+1, which indeed is a set of size rd and contains every
possible hat assignment for Ā(v).

Now suppose i 6 d − 1 and the assertion is true for i + 1, so that we have built the
guessing strategy for vertices of depth greater than i + 1, and there exist functions fw
for vertices w at depth i + 1. For each such w, let Rw := fw(χ(D(w))) be the set of ri+1

assignments that w can “deduce” for χ(Ā(w)). Say that a color c ∈ [q] is w-abundant
if there are at least ri + 1 colorings χ′ ∈ Rw with χ′(w) = c, and let Cw be the set of
w-abundant colors.

If i = d − 1, then there are clearly at most q = ri + 1 many w-abundant colors. If
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i < d− 1,
|Rw| = ri+1 = r2i + 3ri + 1 < (ri + 1)(ri + 2),

so by the pigeonhole principle, there are again at most ri + 1 w-abundant colors. Thus,
we may define φw : Cw → Sw mapping the kth smallest w-abundant color to kth smallest
element of Sw for all k. Note that vertex w can compute φw: w sees all of D(w), so w can
compute Rw, and thus Cw, and thus φw as Sw was predetermined. If χ(Ā(v)) = φw(c) for
some w-abundant color c, vertex w guesses c. Otherwise, w guesses arbitrarily.

Let v be a vertex of depth i. We show that, from the hat colors ofD(v), we can compute
a set fv(χ(D(v)) of ri hat assignments to Ā(v) that contains the correct assignment if all
vertices in D(v) guess incorrectly. First, from χ(D(v)), for each child w of v, one can
compute the set of w-abundant colors Cw and the injection φw, and hence can determine
if v has a child w for which χ(w) not w-abundant.

We break into two cases based on whether cw = χ(w) is w-abundant for all children
w of v. If there exists a single w for which cw is not w-abundant, then there are at most
ri colorings χ′ ∈ Rw for which χ′(w) = cw, and v can just let fv(χ(D(v)) be this set
of at-most-ri colorings, restricted to Ā(v). If all descendants of w guess incorrectly, Rw

contains the correct coloring of Ā(w), so fv(χ(D(v)) contains the correct coloring of Ā(v).
Otherwise, all children w of v have a hat color that is w-abundant. Call an assignment

to Ā(v) good if it is not equal to φw(χ(w)) for any child w. Since the sets Sw range over all
(ri+1)-subsets of [q]i+1, and φw(χ(w)) ∈ Sw always, there are at most ri good assignments.
Let fv(χ(D(v))) be the set of good assignments, with some arbitrary assignments thrown
in to make it size exactly ri. Suppose all vertices in D(v) guess incorrectly. We show
the assignment to Ā(v) is good. For each w, either χ(Ā(v)) is not in the image of φw,
or w guesses the color corresponding to χ(Ā(v)), which cannot be χ(w) since we assume
w guesses incorrectly. In either case, χ(Ā(v)) 6= φw(χ(w)) for all children w of v, so the
assignment to Ā(v) is good, and therefore in fv(χ(D(v))). This shows how to construct
fv(·) in all cases, completing the induction.

By the induction, it follows that the root vertex v0 at depth 0 can determine a set
fv0(χ(D(v0))) of r0 = s1−2 = 1 colorings for Ā(v0) = {v0}, and so v0 uniquely determines
its hat color assuming all the other vertices guess incorrectly. This completes the proof.

4 Books

In this section, we prove Theorem 3. Recall that the book graph Bd,n is obtained by
removing an n-clique from a complete graph Kn+d. The vertices of the removed n-clique
are called the pages of the book, and the remaining d vertices are its spine. Note that
Bd,n is d-degenerate.

We first reduce HG(Bd,n) to an equivalent geometric problem, introduced by Bosek,
Dudek, Farnik, Grytczuk, and Mazur [3]. Let h(Nd) (which is µa(Kd) in the notation
of [3]) denote the largest t such that every t-subset of Nd can be covered by picking
at most one point from every axis-aligned line. Formally, we say that a set S ⊆ Nd is
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coverable if there exists a partition S = S1tS2t· · ·tSd such that Si contains at most one
point along any line parallel to the i-th coordinate axis. For example, h(N2) = 5 because
any 5-set in the plane is coverable, but the 6-set {0, 1}×{0, 1, 2} is not. A similar concept
was also considered e.g. in [4].

Lemma 5. For any d > 1 and n sufficiently large in terms of d,

HG(Bd,n) = h(Nd) + 1.

Proof. In [3, Theorem 13], it was shown that HG(Bd,n) > h(Nd)+1 for all n large enough.
We show HG(Bd,n) 6 h(Nd) + 1 for all n. Let U denote the spine of Bd,n and V denote its
pages, so that U forms a d-clique complete to the n pages V , which form an independent
set. Let S ⊆ Nd be a set of size q = h(Nd) + 1 that is not coverable. Without loss of
generality, S is a subset of [q]d, so we can also view elements of S as hat colorings of U .
In fact the adversary will pre-commit to using only elements of S as the coloring on U .

Fix a guessing strategy on Bd,n with colors [q + 1], and for any s ∈ S and v ∈ V let
fv(s) denote the guess that vertex v makes if s is the coloring of U . Since |S| = q, by the
pigeonhole principle there is some color qv ∈ [q+ 1] that never appears in {fv(s) : s ∈ S}.
Give each v ∈ V hat color qv; this guarantees that no v ∈ V guesses correctly. For each
u ∈ U , the subset Su ⊆ S of colorings of U where u guesses correctly contains at most one
point along any line parallel to u’s coordinate axis in Nd. By the definition of S, there
must exist some s ∈ S outside all of the Su. Thus there is a hat assignment where no
vertex guesses correctly, and the upper bound follows.

A lower bound h(Nd) > 2d − 1 was shown in [3]. We give a stronger lower bound and
an upper bound that matches it up to o(1) in the exponent.

Lemma 6. For all d > 1,

(d+ 1)!− 1 6 h(Nd) 6
d∑

i=1

ii.

Proof. To prove the upper bound, we use [10, Theorem 3], which in our language implies
that for any graph G with a vertex cover of size d,

HG(G) 6 1 +
d∑

i=1

ii. (2)

Taking G = Bd,n, we see that the spine of the book has exactly d vertices and is a vertex
cover for G, so HG(Bd,n) = 1 + h(Nd) satisfies (2).

For the lower bound, as h(N) = 1, it suffices to prove for d > 2 that

h(Nd) > (d+ 1)h(Nd−1) + d.

Let S ⊂ Nd have size (d + 1)h(Nd−1) + d and define Pi,y := {x ∈ Nd : xi = y} to be a
hyperplane orthogonal to the xi-axis. Say y ∈ N is i-abundant if |S ∩ Pi,y| > h(Nd−1) + 1
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(vacuously, no value is 0-abundant), and that x ∈ Nd is type-i if i is the smallest index
such that xi is not i-abundant, and say x is type-0 if it is not type-i for any i ∈ [d]. By
definition, for any x, there is exactly one i > 0 such that x is type-i. By the pigeonhole
principle, for any i, at most d integers are i-abundant. Without loss of generality, these
integers are 1, 2, . . . , di 6 d.

Let L0,0 denote the set of type-0 points. Let Li,y ⊆ Pi,y denote the set of type-i points
x such that xi = y. Clearly the sets Li,y partition Nd. For any i, y with Li,y defined,
let Li,y denote the set of lines through a point in Li,y parallel to some j-axis with j 6= i.
One can check that the Li,y are pairwise disjoint: for any i < i′ and y and y′, a line in
both Li,y and Li′,y′ must be parallel to some j axis for j 6= i and j 6= i′ and furthermore
must pass through points x ∈ Li,y and x′ ∈ Li′,y′ . Then xi′ is not i′-abundant, so x is
not type-0, contradicting the fact that x ∈ Li,y if i = 0. Also, x′i is not i-abundant, so
if i 6= 0, then x′ is not type-i′ as 0 < i < i′, contradicting the fact that x′ ∈ Li′,y′ . We
conclude that the Li,y are pairwise disjoint. For all i ∈ [d] and y not i-abundant, we have
|S∩Li,y| 6 |S∩Pi,y| 6 h(Nd−1). By definition of h(·) it is possible to pick a point on each
line in Li,y to cover S ∩Li,y. For each line in L0,0 in the ith direction, we pick the unique

point x ∈ [d]d on the line such that
∑d

j=0 xj ≡ i mod d. This picks at most 1 point on
each line and covers all elements of S, completing the proof.
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