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Abstract

We give a formula for the number of lozenge tilings of a hexagon on the triangular
lattice with unit triangles removed from arbitrary positions along two non-adjacent,
non-opposite sides. Our formula implies that for certain families of such regions,
the ratios of their numbers of tilings are given by simple product formulas.

Mathematics Subject Classifications: 05C70

1 Introduction

The triangular lattice induces a tiling of the plane, by unit equilateral triangles, which
contains no holes and where the triangles1 do not overlap. A region on the triangular
lattice is a connected union of finitely many of those triangles. We say triangles that share
an edge are adjacent. A lozenge on the triangular lattice is the union of two adjacent
triangles, and a lozenge tiling or simply tiling of a region is a set of lozenges within that
region, which cover the region, and which do not overlap. A region with at least one
tiling is called tileable. A hexagonal region is said to be semiregular if its parallel sides
are the same length. We identify congruent regions and let Ha,b,c denote the semiregular
hexagon(al region) with pairs of parallel sides of lengths a, b, and c.

A formula for the number of lozenge tilings of a semiregular hexagon was first given by
MacMahon [23] in the context of plane partitions. A bijection between plane partitions
and lozenge tilings was later given by David and Tomei [8]. Letting M(R) denote the
number of lozenge tilings of a region R, MacMahon’s formula can be expressed

M(Ha,b,c) = P (a, b, c), where P (a, b, c) :=
c∏

i=1

(a+ i)b
(i)b

(1)

1When we say ‘triangle’ in this paper, we always mean a unit triangle on the lattice.
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(a) (b)

Figure 1: (a) H3,4,2; (b) a tiling of H3,4,2.

and (x)y is the Pochhammer symbol, (x)y =
∏y−1

i=0 (x + i); throughout this paper we
consider the empty product to be 1, so that (x)0 = 1. When Rx denotes a family of
regions defined by parameters x (as with {Ha,b,c : a, b, c ∈ N})2 we say that M(Rx)
denotes the tiling function of Rx with parameters x. So P (a, b, c) is the tiling function
for semiregular hexagons.

Hexagons on the triangular lattice need not be semiregular, but the lengths of parallel
sides necessarily differ by the same amount, say t. When t > 0 we say the longer of each
parallel pair is a long side and the rest are short sides. We can therefore define hexagonal
regions by the lengths of their short sides a, b, c, and the difference t, using the notation
Ha,b,c,t. The sides of the hexagon alternate around the perimeter between short and long,
so without a loss of generality we will assume that the side lengths of the hexagon appear
in the clockwise order a, b+ t, c, a+ t, b, c+ t starting from the northern side. The hexagon
in Figure 2 (a) is H4,3,2,4. Semiregular hexagons have t = 0, so Ha,b,c = Ha,b,c,0.

The region H4,3,2,4 has no lozenge tilings at all. A lozenge covers exactly one up-
pointing triangle and one down-pointing triangle, so that a region can only be tileable
if it contains the same number of triangles with each orientation: we call such a region
balanced. The hexagon Ha,b,c,t contains an excess of t triangles with one orientation,
so semiregular hexagons are the only hexagons which are balanced. The triangles in
excess are those that lie along3 the long sides of Ha,b,c,t (by our conventions, these are
up-pointing).

In this paper we study regions we call dented hexagons, obtained by removing triangles
from two long sides of a hexagon. We suppose m triangles are removed from the northeast
side, and n triangles are removed from the northwest side. For balanced regions, this
implies t = n + m. Figure 2 (b) gives one example of such a region. The black triangles
have been removed from the region; we call these dents. The grey areas are part of the
dented hexagon but are covered by forced lozenges, which are described at the end of

2We use N to denote the nonnegative integers.
3When we say a triangle lies along a side of the hexagon, we mean it shares an edge with the border

of that side. When we say we a triangle is removed from a side, we mean that the removed triangle lies
along that side.
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Figure 2: (a) H4,3,2,4; (b) H4,3,2,4,(1,4),(3,4) with forced lozenges shaded grey. For this region
u1 = 5, u2 = 3, and v1 = v2 = 2.

Section 2.
Given non-negative integers a, b, c, t suppose ~u = (ui)

m
i=1 and ~v = (vj)

n
j=1 are vectors

of integers with 1 6 ui < ui+1 6 b + t for 1 6 i < m, and 1 6 vj < vj+1 6 c + t for
1 6 j < n, with a > 0 or u1 > 1 or v1 > 1.4 Then we use Ha,b,c,t,~u,~v to denote the
dented hexagon formed by removing dents from Ha,b,c,t at locations indexed by ~u and
~v. Specifically, we remove each uith triangle from the northeast side of Ha,b,c,t and each
vjth triangle from the northwest side of Ha,b,c,t. The indexing in both cases starts at the
northernmost triangle lying along each side. It is straightforward to check that Ha,b,c,t,~u,~v

with parameters as described is well-defined and unique.
Other natural parameters of dented hexagons we will use are ui := b+n+i−ui and vj :=

c+m+ j−vj. The parameter ui counts the number of triangles lying along the northeast
side south of the dent indexed by ui which have not been removed from the region: these
are the up-pointing triangles directly southeast of that dent, as shown in Figure 2 (b).
The parameter vj analogously counts up-pointing triangles directly southwest of the dent
indexed by vj.

The main result of this paper is a remarkably simple product formula for the ratio of
the tiling functions of Ha,b,c,t,~u,~v and H0,b,c,t,~u,~v so long as the latter region is well-defined.
It follows that the first family of regions has a tiling function given by a simple product
formula whenever the second family does, and we identify some instances of this. This
is not the first paper to identify families of regions with simple ratios of tiling functions;
similar results were recently found by Lai, Ciucu, Rohatgi, and Byun [1], [5], [6], [19],

4For the hexagon H0,b,c,t, the northernmost triangle on the northwest side is the same as the north-
ernmost triangle on the northeast side. For this reason, it is a little unclear what a dented hexagon with
a = 0 and u1 = v1 = 1 should look like, since we cannot remove that triangle from the region twice.
Since well-defined dented hexagons with u1 = v1 = 1 have no tilings anyway (by Proposition 4) we do
not dwell on this.
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[20], [21]. One specific subfamily of dented hexagons was studied by Lai, who found a
lovely tiling function [18].

Eisenkölbl gave a tiling function for hexagonal regions with one dent on each long side
(Theorem 1 from [9]); in the special case that one of these dents is at a corner of the region,
tiling these is equivalent to tiling one of our dented hexagons of the form Ha,b,c,2,(u1),(v1). A
general tiling function for hexagonal regions with any number of dents lying at arbitrary
positions along their border was later discovered by Ciucu and Fischer (Theorem 3 from
[2]) and presented as a generalization of Eisenkölbl’s result, but that function is given only
as the Pfaffian of a matrix. Gilmore in [13] gives tiling functions for even more general
families of regions, in which the removed triangles need not lie along the boundary of the
regions. Our main result gives a tiling function for dented hexagons and generalizes this
special case of Eisenkölbl’s result. In contrast the regions we discuss are themselves a
special case of Ciucu and Fischer’s, but our function’s presentation highlights the effects
of transforming the regions naturally by stretching.

2 Further Background

A region on the triangular lattice can be identified with a graph, so that each triangle
corresponds to a vertex and adjacent triangles correspond to adjacent vertices - this
is often called the planar dual of the region. This graph is bipartite, with its vertex
bipartition defined by the orientations of the triangles, since triangles are only adjacent
to triangles of the opposite orientation. A lozenge tiling of a region naturally partitions
the triangles of that region into adjacent pairs, and so a lozenge tiling can be identified
with a perfect matching on the planar dual of that region.

We will therefore borrow some graph-theoretic techniques. For an introduction to this
perspective see [15], a classical paper by Kasteleyn which discusses connections between
several types of problems in graph theory including matching problems5. Another classical
paper on matching problems is [24] by Temperley and Fisher. These three authors were
all pioneers of this field.

The following is a direct application of the Graph Splitting Lemma, which appears as
Lemma 3.6 in a 2014 paper by Lai [17], and is implicit in earlier work by Ciucu [3].

Lemma 1 (Region Splitting Lemma). Let R be a balanced region of the triangular lattice
with a partition into regions P and Q such that triangles in P which are adjacent to
triangles in Q are all of the same orientation, and that this orientation is not in excess
within P . Then M(R) = M(P ) ·M(Q), and in particular M(R) = 0 if either P or Q is
not balanced.

We will also use Kuo’s graphical condensation method. The following is a special case
of his Theorem 5.4 from [16], expressed in the language of this paper.

5Perfect matchings in that paper are referred to as dimer coverings.
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Lemma 2. Let R be a simply connected region of the triangular lattice, and let α, β, γ, δ
be triangles in R of the same orientation which touch the boundary of R at a corner or
edge, so that the places they touch the boundary appear in the cyclic order α, β, γ, δ. Then

M(R− α− γ) ·M(R− β − δ)
= M(R− α− δ) ·M(R− β − γ) + M(R− α− β) ·M(R− γ − δ) (2)

It is a classical result of Lindström (Lemma 1 from [22]) that the signed weighted
count6 of families of non-intersecting paths from a set of sources {si : i ∈ [n]} to a set of
sinks {tj : j ∈ [n]} on a directed acyclic graph is given by the determinant of a matrix:
namely an n × n matrix whose (i, j)th entry is the weighted count of paths from si to
tj. We henceforth refer to this as the path matrix. This actually generalizes an earlier
independent result by Karlin and McGregor ((B) from [14]) regarding discrete Markov
processes, which uses the determinant of an analogue to the path matrix to calculate the
probability of n particles starting and ending in specified states without two particles ever
coinciding in a state. Gessel and Viennot later explored how Lindström’s result applied to
families of paths on the north-east-directed integer lattice, including identifying natural
conditions for applying the result [11, 12]. Their result developed into a very important
method for counting tilings, especially when the determinant of the path matrix has a
closed form. What follows is a restatement of their Corollary 2 from [12]:

Proposition 3. Let S = {(si, ti) : i ∈ [n]} and E = {(pj, qj) : j ∈ [n]} be sets of
coordinates on the square lattice Z2, such that every north-east lattice path from (si, ti) to
(pj, qj) intersects any north-east lattice path from (sj, tj) to (pi, qi) for i 6= j. The number
of families of n non-intersecting north-east lattice paths which each start at a point in S
and end at a point in E is given by det((ai,j)

n
i,j=1), where ai,j =

(
pj+qj−si−ti

qj−ti

)
is the number

of north-east lattice paths from (si, ti) to (pj, qj).

When a fixed lozenge occurs in every tiling of a region, we say that lozenge is forced.
Often, a region contains a triangle which is adjacent to only one other triangle - the
lozenge covering those two triangles is forced. One can remove the triangles covered by
a forced lozenge to produce a new region, the tilings of which are in a natural bijection
with the tilings of the original region; the bijection is defined by removing or replacing
the forced lozenge. The new region may itself have a triangle only adjacent to one other
triangle, which means it too is covered by a lozenge that is forced in the new region, and
therefore in the original region. Removing triangles covered by forced lozenges yields a
sequence of regions that all have the same number of tilings. Figure 2 (b) serves as an
example. The forced lozenges are shown and colored grey.

3 Main Results

Our first remark about dented hexagons is a characterization of when they have any tilings
at all.

6The signed weight of such a family is the product of the weights of each path, multiplied by the sign
of the permutation σ so that each path which starts at si ends at tσ(i).
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(a) (b)

Figure 3: H5,5,3,4,(5,6),(2,5) depicted in (a) partitioned into three tileable regions; depicted
in (b) partitioned into many regions.

Proposition 4. Let a balanced dented hexagon Ha,b,c,t,~u,~v be given. Let LN be the Nth
horizontal lattice line south of the northern side7 of Ha,b,c,t,~u,~v, and µN be the number of
dents north of LN . Then H has a tiling iff µN 6 N for all N ∈ N.

Proof. Suppose for some N , µN > N ; assume that N is minimal such that this is the
case. It is straightforward to check the region above LN is unbalanced. By Lemma 1,
applied to the regions north and south of LN , the dented hexagon has no tilings.

If µN 6 N for each N , we can exhibit a partition of the overall region into tileable
regions, proving the existence of a tiling for the entire region. We induct on the number
of dents.

If the region has no dents, it is a semiregular hexagon and is tileable. Suppose Propo-
sition 4 holds for dented hexagons with fewer than t dents. Suppose without a loss of
generality that um > vn; in other words the southernmost dent is on the northeast side of
the region. We sketch the semiregular hexagon H1,um,c directly underneath the southern-
most dent, so that its northern side is the border of that dent. Figure 3 (a) depicts this
hexagon (dark). We also sketch a parallelogram consisting of all triangles directly west
of the southwest edge of the dark hexagon. This parallelogram is also depicted (light) in
Figure 3 (a). Both the hexagon and parallelogram are tileable, and the rest of the region
is tileable by the induction hypothesis; so the entire region is tileable.

The fact that µt−1 6 t − 1 implies that um > t, and um 6 b. This guarantees the
northeast and southwest sides of the dark hexagon are of length 6 b, so that the light
region west of the dark hexagon is actually a parallelogram. Had it been the case that
vn > um, we would reflect the picture across a vertical axis to get a depiction of Ha,c,b,t,~v,~u,
find a partition of that region, and then reflect the picture again across the same axis to
get a partition of Ha,b,c,t,~u,~v.

7LN is then
√
3
2 N units south of the northern side of Ha,b,c,t,~u,~v.
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Our application of the inductive hypothesis in the proof implies that one could con-
tinue subdividing the entire region into parallelograms and semiregular hexagons. Such
a subdivision is depicted in Figure 3 (b). Proposition 4 shows that untileable dented
hexagons are characterized by having too many dents too far north, which yields the
following consequence.

Corollary 5. Let H = Ha,b,c,t,(ui)m1 ,(vj)n1
and H ′ = Ha′,b′,c′,t,(u′i)

m
1 ,(v′j)

n
1

be dented hexagons

with ui 6 u′i and vj 6 v′j for each i, j. If H is tileable then so is H ′.

Our main result is that families of dented hexagons with fixed parameters, b, c, t, ~u,~v
have a tiling function given by the following rational function in a:

Theorem 6. Where Ha,b,c,t,(ui)m1 ,(vj)n1
is a tileable dented hexagon,

M(Ha,b,c,t,(ui)m1 ,(vj)n1
) =M(H0,b,c,t,(ui)m1 ,(vj)n1

)
m∏
i=1

(ui)ui

n∏
j=1

(vj)vj

× P (a, b+ n, c+m)∏m
i=1(a+ ui)ui

∏n
j=1(a+ vj)vj

.

In fact, the right hand side of this expression is a polynomial in a as a result of Lemma
7 which we prove in the next section. When H0,b,c,t,~u,~v has a simple tiling function,
Theorem 6 shows that Ha,b,c,t,~u,~v also has a simple tiling function. In particular, this
explains a result found by Lai (Theorem 3.1 from [18], with q = 1), that when the dents
lying along each side of the region are adjacent and vn = um the tiling function for the
region is a simple product formula. We discuss this and related results in Section 6.

4 Groundwork

In this section we lay the technical foundation for the arguments that follow.

Lemma 7. If H0,b,c,t,~u,~v is a tileable dented hexagon, then M(Ha,b,c,t,~u,~v) is a polynomial
in a when fixing b, c, t and the vectors ~u and ~v.

Proof. The tilings of Ha,b,c,t,(ui)m1 ,(vj)n1
are in bijection with families of (b + n) non-inter-

secting lattice paths which start at points along the southwest boundaries of the dented
hexagon and end at points along the northeast boundaries. This bijection is explained
briefly in Figure 4. Using this type of bijection is a standard technique when enumerating
lozenge tilings, and similar examples of the technique explained in greater detail can be
found in Sections 4 and 5 of [4].

The start points along the southwest side of the region can be interpreted as having
coordinates {(−i, i) : i ∈ [b]}, and the start points from the dents would then have
coordinates {(−b, b + c + t + 1 − vi) : i ∈ [n]}. The end points then have coordinates
{(a− b− t− 1 + j, b+ c+ t+ 1− j) : j ∈ [b+ t]− {ui : i ∈ [m]}}. It is clear these satisfy
the path-intersection condition of Proposition 3 when each set is labeled with indices
increasing from north to south.
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(a) (b)

Figure 4: Tilings of H3,4,2,5,(3,6),(2,5,6) correspond to lattice paths which start at points
on edges along the southwest borders of the region (including along the southwest side
of the hexagon and also along the western dents) and end at points on edges along the
northeast borders, the steps of which are directly east or northeast. The correspondence is
as follows: given a tiling, place dots in the middle of these edges as exhibited in (a). Then,
connect each dot by a path to the middle of the opposite edge of the lozenge containing
it, and then to the middle of the opposite edge of the next lozenge, and so on until the
dots are connected by paths. Warping the picture as in (b) transforms the paths into
non-intersecting north-east lattice paths. This process is reversible.

Applying Proposition 3, the number of lattice paths with these start and end points is
given by the determinant of a matrix, the entries of which are of the form

(
a−t−1+vi

vi−j

)
and(

a+c
b+c+t+1−j−i

)
. Since each entry in the matrix is a polynomial in a, so is the determinant.

The arguments that follow are largely about the proportionality of functions of a.
For p, q rational functions in a (and possibly other indeterminates) we will use the non-
standard notation

p(a) ≡a q(a)

to mean there exists some (not identically zero) rational function k which is independent
of a and k · p(a) = q(a). It is easy to check ≡a is an equivalence relation and satisfies the
following properties, where p1, p2, and q are rational functions in a, and neither (p1 + p2)
nor q is identically zero.

p1(a) ≡a p2(a)⇒ p1(a) + p2(a) ≡a p1(a) ≡a p2(a) (3)

p1(a) ≡a p2(a) ⇐⇒ p1(a)q(a) ≡a p2(a)q(a) (4)

We will make use of the following technical lemma.
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Lemma 8. For d an integer, y a positive integer, and z a nonnegative integer,

P (a+ d, y − 1, z + 1) ≡a P (a+ d, y, z)
(a+ d+ z + 1)y−1

(a+ d+ y)z
. (5)

Proof. It is straightforward to show from the definition of P (x, y, z) that P (x,y,z+1)
P (x,y,z)

=
(x+z+1)y
(z+1)y

; in turn it is straightforward to show

P (x, y − 1, z + 1) = P (x, y, z)
(y)z(x+ z + 1)y−1
(x+ y)z(z + 1)y−1

. (6)

Relation (5) follows from equation (6) where x = a+ d.

5 Proof of Theorem 6

For b, c ∈ N and (ui)
m
1 , (vj)

n
1 vectors of positive integers so that there exists a well-defined

dented hexagon H0,b,c,m+n,(ui)m1 ,(vj)n1
, define

fb,c,(ui)m1 ,(vj)n1
(a) :=

P (a, b+ n, c+m)∏m
i=1(a+ ui)ui

∏n
j=1(a+ vj)vj

.

The main method of our proof is to show that M(Ha,b,c,m+n,(ui)m1 ,(vj)n1
) interpreted as a

function of a is proportional to f . We will do this by showing f is a polynomial in a
which can be defined recursively and obeys the same recursion as the tiling function.
Observe that for tileable regions the equation in Theorem 6 can be expressed

M(Ha,b,c,t,~u,~v) ≡
a
fb,c,~u,~v(a).

It will sometimes be convenient for us to assume that u1 > 1 or v1 > 1. A dented
hexagon with u1 = v1 = 1 has no tilings by Proposition 4, in which case Theorem 6 holds
trivially. In the case that u1 = 1, and v1 > 1 or n = 0, the top row of triangles of the
region Ha,b,c,t,~u,~v are covered by forced lozenges, and may be removed from the region.
Figure 5 (a) depicts an example of this. Removing the forced lozenges gives the region
Ha+1,b,c,t−1,(ui−1)mi=2,(vj−1)nj=1

, which thus has the same tiling function as Ha,b,c,t,~u,~v. We will
show that our definition of fb,c,~u,~v respects this and the analogous case with v1 = 1.

If um = 0 (or vn = 0), then the southeast (or southwest) side of the region is cov-
ered by forced lozenges. If um = 0, then Ha,b,c,t,~u,~v thus has the same tiling function as
Ha,b,c+1,t−1,(ui)

m−1
i=1 ,~v, which is the region that is obtained by removing the forced lozenges.

This is depicted in Figure 5 (b). We will show our definition of fb,c,~u,~v respects this fact,
and the analogous fact when vn = 0.

Lemma 9. If Ha,b,c,t,(ui)m1 ,(vj)n1
is tileable then

a. If u1 = 1, and v1 > 1 or n = 0, then fb,c,~u,~v(a) ≡a fb,c,(ui−1)m2 ,(vj−1)n1 (a+ 1).

the electronic journal of combinatorics 27(3) (2020), #P3.60 9



(a) (b)

Figure 5: H4,3,2,3,(1,6),(3,4) with forced lozenges shown in grey; (a) the top row is forced
since u1 = 1; (b) the southeast side is forced since um = 0.

b. If v1 = 1, and u1 > 1 or m = 0, then fb,c,~u,~v(a) ≡a fb,c,(ui−1)m1 ,(vj−1)n2 (a+ 1).

c. If um = 0 then fb,c,~u,~v(a) = fb,c+1,(ui)
m−1
i=1 ,(vj)n1

(a).

d. If vn = 0 then fb,c,~u,~v(a) = fb+1,c,(ui)mi=1,(vj)
n−1
1

(a).

Proof. These identities are straightforward to check when written explicitly.

Let ~∅ denote the empty vector. We will now verify that Theorem 6 holds when ~u = ~∅.
The case where ~v = ~∅ follows by symmetry.

Lemma 10. The dented hexagon Ha,b,c,n,~∅,(vj)n1
is tileable and M(Ha,b,c,n,~∅,(vj)n1

) ≡a fb,c,~∅,~v(a)
where

fb,c,~∅,~v(a) :=
P (a, b+ n, c)∏n
j=1(a+ vj)vj

. (7)

This is equivalent to a result by Cohn, Larsen, and Propp which gives a formula for
the number of tilings of a trapezoid with dents lying along its long base (see Section 2
of [7]), but the equivalence is not obvious so we will prove this result directly using Kuo
Condensation.

Proof. Dented hexagons with dents on just one side are tileable by Proposition 4.
We will induct on n + c, with base cases at n = 0 and c = 0. Note that if c = 0

then the region has a unique tiling8 and fb,0,~∅,~v(a) := P (a,b+n,0)∏n
j=1(a+vj)0

= 1. In the case n = 0,

equation (7) reduces to MacMahon’s formula (1).
For our inductive hypothesis, assume (7) holds for dented hexagons Ha,b′,c′,n′,~∅,(v′j)

n′
1

with c′ + n′ < c+ n. Consider dented hexagons Ha,b,c,n,~∅,(vj)n1
.

8The entire northwest side is comprised of dents, and the unique tiling extends to the unique tiling of
the a× (b+ n) parallelogram.
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Figure 6: (a) H3,5,4,3,~∅,(2,3,5); (b) R3 with α, β, γ, δ labeled, and the border of H3,5,4,3,~∅,(2,3,5)

depicted with a thick line.

In the case v1 = 1, Ha,b,c,n,~∅,(vj)n1
has forced lozenges along its northern side so has the

same tiling function as Ha+1,b,c,n−1,~∅,(vj−1)n2 , so

M
(
Ha,b,c,n,~∅,(vj)n1

)
≡a M

(
Ha+1,b,c,n−1,~∅,(vj−1)n2

)
(by IH) ≡a fb,c,~∅,(vj−1)n2 (a+ 1)

(by Lemma 9b) ≡a fb,c,~∅,(vj)n1
(a).

In the case vn = 0, Ha,b,c,n,~∅,(vj)n1
has forced lozenges along its southwest side so has

the same tiling function as Ha,b+1,c,n−1,~∅,(vj)
n−1
1

, so

M
(
Ha,b,c,n,~∅,(vj)n1

)
≡a M

(
Ha,b+1,c,n−1,~∅,(vj)

n−1
1

)
(by IH) ≡a fb,c+1,~∅,(vj)

n−1
1

(a)

(by Lemma 9d) ≡a fb,c,~∅,(vj)n1
(a).

We therefore assume that n > 0, v1 > 1, and vn > 0. Regard Ha,b,c,n,~∅,~v as a subregion
of the (unbalanced) region Ra = Ha,b,c−1,n+1,~∅,(vj+1)n−1

j=1
. Within each region Ra, let α be

the triangle indexed by vn, let β be the northernmost triangle lying along the northwest
side, let γ be the southernmost triangle lying along the northeast side, and let δ be the
southernmost triangle lying along the northwest side. These placements are depicted in
Figure 6.

We will apply Kuo Condensation (Lemma 2) to Ra, α, β, γ, δ. Figure 7 depicts each
region referenced in the condensation formula, in some cases with forced lozenges shaded
(we regard these as not being part of the region). Note they are all balanced dented
hexagons. Since these regions can be regarded as dented hexagons with dents on only
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Ra − α− γ

α

β

γ

δ

α

γ

Ha,b,c,n,~∅,(vj)n1

Ra − β − δ

α

β

γ

δ

β

δ

Ha+1,b+1,c−1,n−1,~∅,(vj−1)n−1
1

Ra − α− δ

α

β

γ

δ

α

δ

Ha,b+1,c−1,n,~∅,(vj)n1

Ra − β − γ

α

β

γ

δ

β

γ

Ha+1,b,c,n−1,~∅,(vj−1)n−1
1

Ra − α− β

α

β

γ

δ

α

β

Ha+1,b,c−1,n,~∅,(vj−1)n1

Ra − γ − δ

α

β

γ

δ

γ

δ

Ha,b+1,c,n−1,~∅,(vj)
n−1
1

Figure 7: Ra with two of α, β, γ, δ removed and forced lozenges shaded.
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one side, each is tileable by Proposition 4. The parameter c + n is strictly minimal on
Ra − α− γ, so we may apply the inductive hypothesis to each of the other regions.

Recall Lemma 2 states

M(R−α− γ)M(R−β− δ) = M(R−α− δ)M(R−β− γ) +M(R−α−β)M(R− γ− δ).

Removing forced lozenges as depicted in Figure 7, we can rewrite this:

M
(
Ha,b,c,n,~∅,(vj)n1

)
M
(
Ha+1,b+1,c−1,n−1,~∅,(vj−1)n−1

1

)
= M

(
Ha,b+1,c−1,n,~∅,(vj)n1

)
M
(
Ha+1,b,c,n−1,~∅,(vj−1)n−1

1

)
+M

(
Ha+1,b,c−1,n,~∅,(vj−1)n1

)
M
(
Ha,b+1,c,n−1,~∅,(vj)

n−1
1

)
.

(8)

Applying the inductive hypothesis to each region except Ha,b,c,n,~∅,(vj)n1
, this implies

M
(
Ha,b,c,n,~∅,(vj)n1

)
· P (a+ 1, b+ n, c− 1)∏n−1

j=1 (a+ vj)vj

≡a P (a, b+ n+ 1, c− 1)∏n
j=1(a+ vj)vj−1

· P (a+ 1, b+ n− 1, c)∏n−1
j=1 (a+ vj)vj+1

+
P (a+ 1, b+ n, c− 1)∏n

j=1(a+ vj)vj
· P (a, b+ n, c)∏n−1

j=1 (a+ vj)vj
.

(9)

We shall show that when the term M(Ha,b,c,n,~∅,(vj)n1
) is replaced with fb,c,~∅,(vj)n1

(a), the
products on each line of (9) are ≡a -equivalent, so that

M(Ha,b,c,n,~∅,(vj)n1
) ≡a fb,c,~∅,(vj)n1

(a)

by relations (3) and (4). Making this replacement, it is easy to see that

fb,c,~∅,(vj)n1
(a) · P (a+ 1, b+ n, c− 1)∏n−1

j=1 (a+ vj)vj
=
P (a+ 1, b+ n, c− 1)∏n

j=1(a+ vj)vj
· P (a, b+ n, c)∏n−1

j=1 (a+ vj)vj

so it remains to show that the two products on the last two lines of (9) are ≡a -equivalent.
We rewrite

n∏
j=1

(a+ vj)vj−1 =
n∏

j=1

(a+ vj)vj/(a+ c)n (10)

n−1∏
j=1

(a+ vj)vj+1 = (a+ c+ 1)n−1

n−1∏
j=1

(a+ vj)vj . (11)

We can therefore rewrite the product on the second line of (9):

P (a, b+ n+ 1, c− 1)∏n
j=1(a+ vj)vj−1

· P (a+ 1, b+ n− 1, c)∏n−1
j=1 (a+ vj)vj+1
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(by eqns. (10), (11)) =
P (a, b+ n+ 1, c− 1)∏n

j=1(a+ vj)vj
· P (a+ 1, b+ n− 1, c)∏n−1

j=1 (a+ vj)vj
· (a+ c)n

(a+ c+ 1)n−1

(by Lemma 8) ≡a P (a, b+ n, c)∏n
j=1(a+ vj)vj

· (a+ b+ n+ 1)c−1
(a+ c)b+n

× P (a+ 1, b+ n, c− 1)∏n−1
j=1 (a+ vj)vj

· (a+ 1 + c)b+n−1

(a+ b+ n+ 1)c−1
· (a+ c)n

(a+ c+ 1)n−1

=
P (a+ 1, b+ n, c− 1)∏n

j=1(a+ vj)vj
· P (a, b+ n, c)∏n−1

j=1 (a+ vj)vj
,

which is exactly the product on the third line of (9). This completes the proof.

Note that H0,b,c,n,~∅,(vj)n1
has forced lozenges at its northern tip that when removed leave

a region of the form H1,b,c+1−v1,n−1,~∅,(vj−v1)n2 , which is a dented hexagon with fewer dents
which still all lie along the northwest side. Through repeated application of Lemma 10, one
can obtain a complete product formula for M(Ha,b,c,n,~∅,~v); in particular, when a = b = 0,
this may be regarded as an independent proof for the number of tilings of a trapezoid
with dents lying along its long base. This result is first mentioned in the literature by
Cohn, Larsen, and Propp (see Section 2 of [7]) who rephrased an earlier result by Gelfand
and Tsetlin [10] regarding monotone triangles. Our main theorem can be interpreted as
a generalization of that result.

We are now ready to prove Theorem 6. The proof is similar to that of Lemma 10, and
uses that lemma as a base case.

Proof of Theorem 6. We shall show by induction that if Ha,b,c,t,~u,~v is tileable then

M(Ha,b,c,t,~u,~v) ≡
a
fb,c,~u,~v(a) (12)

where

fb,c,~u,~v(a) :=
P (a, b+ n, c+m)∏m

i=1(a+ ui)ui

∏n
j=1(a+ vj)vj

.

We will induct on the number of dents m + n, using m = 0 and n = 0 as base cases. In
these cases, relation (12) follows immediately from Lemma 10.

For our inductive hypothesis, suppose relation (12) holds for dented hexagons with
fewer than m+n dents. Consider a tileable dented hexagon with dents indexed by (ui)

m
1 ,

and (vj)
n
1 .

In the case where um = 0, Ha,b,c,t,(ui)m1 ,(vj)n1
has forced lozenges along its southeast side

and therefore has the same tiling function as Ha,b,c+1,t−1,(ui)
m−1
1 ,(vj)n1

, so

M(Ha,b,c,t,(ui)m1 ,(vj)n1
) ≡a M(Ha,b,c+1,t−1,(ui)

m−1
1 ,(vj)n1

)

(IH) ≡a fb,c+1,(ui)
m−1
1 ,(vj)n1

(a)
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α β

γ

δ

(a)

α β

γ

δ

(b)

Figure 8: (a) H3,4,2,5,(3,6),(2,5,6); (b) R3 with α, β, γ, δ labeled.

(Lemma 9c) ≡a fb,c,(ui)m1 ,(vj)n1
(a).

Relation (12) holds when vn = 0 by a similar argument.
Assume therefore that m,n > 0, um > 0 and vn > 0. Regard Ha,b,c,t,(ui)m1 ,(vj)n1

as a
subregion of the (unbalanced) region Ra := Ha,b,c,t,(ui)

m−1
1 ,(vj)

n−1
1

. Within Ra let α denote
the triangle indexed by vn, let β denote the triangle indexed by um, let γ denote the
southernmost triangle lying along the northeast side of Ra, and let δ denote the southern-
most triangle lying along the northwest side of Ra. Since m,n > 0 and um > 0 and vn > 0
these locations are clearly defined within Ra and are distinct, as depicted in Figure 8.

We will apply Kuo Condensation (Lemma 2) to Ra, α, β, γ, δ. Figure 9 depicts each
region referenced in the condensation formula, in some cases with forced lozenges shaded
(we regard these as not being part of the region). Note they are all families of tileable
dented hexagons.

Since Ha,b,c,t,~u,~v is tileable so are each of these regions by Corollary 5. The number of
dents is strictly minimal on Ra−α−β, so we may apply the inductive hypothesis to each
of the other regions. Lemma 2 can be expressed

M(R−α−β)M(R− γ− δ) = M(R−α− γ)M(R−β− δ)−M(R−α− δ)M(R−β− γ).

Removing forced lozenges as depicted in Figure 9, we can rewrite this:

M
(
Ha,b,c,t,(ui)m1 ,(vj)n1

)
M
(
Ha,b+1,c+1,t−2,(ui)

m−1
1 ,(vj)

n−1
1

)
=

M
(
Ha,b,c+1,t−1,(ui)

m−1
1 ,(vj)n1

)
M
(
Ha,b+1,c,t−1,(ui)m1 ,(vj)

n−1
1

)
(13)

−M
(
Ha,b+1,c,t−1,(ui)

m−1
1 ,(vj)n1

)
M
(
Ha,b,c+1,t−1,(ui)m1 ,(vj)

n−1
1

)
.
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Applying the inductive hypothesis to each region except Ha,b,c,t,(ui)m1 ,(vj)n1
, this implies

M
(
Ha,b,c,t,(ui)m1 ,(vj)n1

)
· P (a, b+ n, c+m)∏m−1

i=1 (a+ ui)ui

∏n−1
j=1 (a+ vj)vj

≡a P (a, b+ n, c+m)∏m−1
i=1 (a+ ui)ui

∏n
j=1(a+ vj)vj

· P (a, b+ n, c+m)∏m
i=1(a+ ui)ui

∏n−1
j=1 (a+ vj)vj

− P (a, b+ n+ 1, c+m− 1)∏m−1
i=1 (a+ ui)ui+1

∏n
j=1(a+ vj)vj−1

· P (a, b+ n− 1, c+m+ 1)∏m
i=1(a+ ui)ui−1

∏n−1
j=1 (a+ vj)vj+1

.

(14)

We shall show that when the term M
(
Ha,b,c,t,(ui)m1 ,(vj)n1

)
is replaced with the term

fb,c,(ui)m1 ,(vj)n1
(a), the products on each line of (14) are ≡a -equivalent, so that

M(Ha,b,c,n,(ui)m1 ,(vj)n1
) ≡a fb,c,(ui)m1 ,(vj)n1

(a)

by relations (3) and (4). It is easy to see that

fb,c,(ui)m1 ,(vj)n1
(a) · P (a, b+ n, c+m)∏m−1

i=1 (a+ ui)ui

∏n−1
j=1 (a+ vj)vj

=
P (a, b+ n, c+m)∏m−1

i=1 (a+ ui)ui

∏n
j=1(a+ vj)vj

P (a, b+ n, c+m)∏m
i=1(a+ ui)ui

∏n−1
j=1 (a+ vj)vj

(15)

so it remains to show that the two products on the last two lines of (14) are ≡a -equivalent.
We will manipulate the terms on the third line to show this, employing the following
analogues to equations (10) and (11):

k∏
j=1

(a+ vj)vj−1 =
k∏

j=1

(a+ vj)vj/(a+ c+m)k (16)

k∏
i=1

(a+ ui)ui−1 =
k∏

i=1

(a+ uj)ui
/(a+ b+ n)k (17)

k∏
j=1

(a+ vj)vj+1 = (a+ c+m+ 1)k

k∏
j=1

(a+ vj)vj (18)

k∏
i=1

(a+ ui)ui−1 = (a+ b+ n+ 1)k

k∏
i=1

(a+ uj)ui
. (19)

We can therefore rewrite:

P (a, b+ n+ 1, c+m− 1)∏m−1
i=1 (a+ ui)ui+1

∏n
j=1(a+ vj)vj−1

· P (a, b+ n− 1, c+m+ 1)∏m
i=1(a+ ui)ui−1

∏n−1
j=1 (a+ vj)vj+1

(eqns. (16)-(19)) =
P (a, b+ n+ 1, c+m− 1)∏m−1
i=1 (a+ ui)ui

∏n
j=1(a+ vj)vj

· (a+ c+m)n
(a+ b+ n+ 1)m−1
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Ra − α− β

α β

γ

δ

Ha,b,c,t,(ui)m1 ,(vj)n1

Ra − γ − δ

α β

γ

δ

Ha,b+1,c+1,t−2,(ui)
m−1
1 ,(vj)

n−1
1

Ra − α− γ

α β

γ

δ

Ha,b,c+1,t−1,(ui)
m−1
1 ,(vj)n1

Ra − β − δ

α β

γ

δ

Ha,b+1,c,t−1,(ui)m1 ,(vj)
n−1
1

Ra − α− δ

α β

γ

δ

Ha,b+1,c,t−1,(ui)
m−1
1 ,(vj)n1

Ra − β − γ

α β

γ

δ

Ha,b,c+1,t−1,(ui)m1 ,(vj)
n−1
1

Figure 9: Ra with two of α, β, γ, δ removed and forced lozenges shaded.
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× P (a, b+ n− 1, c+m+ 1)∏m
i=1(a+ ui)ui

∏n−1
j=1 (a+ vj)vj

· (a+ b+ n)m
(a+ c+m+ 1)n−1

(by Lemma 8) ≡a P (a, b+ n, c+m)∏m−1
i=1 (a+ ui)ui

∏n
j=1(a+ vj)vj

· (a+ b+ n+ 1)c+m−1
(a+ c+m)b+n

· (a+ c+m)n
(a+ b+ n+ 1)m−1

× P (a, b+ n, c+m)∏m
i=1(a+ ui)ui

∏n−1
j=1 (a+ vj)vj

· (a+ c+m+ 1)b+n−1
(a+ b+ n)c+m

· (a+ b+ n)m
(a+ c+m+ 1)n−1

=
P (a, b+ n, c+m)∏m−1

i=1 (a+ ui)ui

∏n
j=1(a+ vj)vj

· P (a, b+ n, c+m)∏m
i=1(a+ ui)ui

∏n−1
j=1 (a+ vj)vj

,

which is exactly the product from third line from (14). This is the last case in the
inductive step, so relation (12) holds in general.

So given Ha,b,c,t,(ui)m1 ,(vj)n1
a tileable dented hexagon, there exists some k independent

of a so that
M(Ha,b,c,t,(ui)m1 ,(vj)n1

) = k · fb,c,(ui)m1 ,(vj)n1
(a).

Then

M(Ha,b,c,t,(ui)m1 ,(vj)n1
)

M(H0,b,c,t,(ui)m1 ,(vj)n1
)

=
k · fb,c,(ui)m1 ,(vj)n1

(a)

k · fb,c,(ui)m1 ,(vj)n1
(0)

=
fb,c,(ui)m1 ,(vj)n1

(a)

fb,c,(ui)m1 ,(vj)n1
(0)

=
P (a, b+ n, c+m)∏m

i=1(a+ ui)ui

∏n
j=1(a+ vj)vj

·
∏m

i=1(0 + ui)ui

∏n
j=1(0 + vj)vj

P (0, b+ n, c+m)

=
P (a, b+ n, c+m)∏m

i=1(a+ ui)ui

∏n
j=1(a+ vj)vj

·
m∏
i=1

(ui)ui

n∏
j=1

(vj)vj .

Theorem 6 follows by multiplying through by M(H0,b,c,t,(ui)m1 ,(vj)n1
).

6 Hexagons with Two Large Dents

When the dents lying along each side of a dented hexagon are all next to each other, as
in Ha,b,c,t,(u+i)mi=1,(v+j)nj=1

, the region has forced lozenges that form large triangular dents.
Figure 10 depicts this forcing, and the region that results if the forced lozenges and dents
are removed entirely.

The original goal of this paper was finding a general tiling function for hexagons
with two large dents, and indeed Theorem 6 simplifies to a ratio of tilings of semiregular
hexagons when the dents lying along each side are all adjacent:
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u

m

b+ n− u

v

n

c+m− v

(a) (b)

Figure 10: (a) H5,4,2,5,(4+i)21,(3+j)31
; (b) the region with forced lozenges removed.

Corollary 11. A balanced dented hexagon Ha,b,c,t,(u+i)mi=1,(v+j)nj=1
is tileable if and only if

u > n or v > m, in which case

M
(
Ha,b,c,t,(u+i)mi=1,(v+j)nj=1

)
= M

(
H0,b,c,t,(u+i)mi=1,(v+j)nj=1

)
× P (a, b+ n, c+m)P (u, b+ n− u,m)P (v, c+m− v, n)

P (a+ u, b+ n− u,m)P (a+ v, c+m− v, n)
.

This generalizes a specific case of a result by Lai who studied the problem when the
southern borders of the dents are level (see Theorem 3.1 from [18], with q = 1). We give an
expression of that result below in the language of this paper; it follows from Corollary 11.

Corollary 12. Given a balanced dented hexagon Ha,b,c,m+n,(u+i)mi=1,(v+j)nj=1
with u + m =

v + n, let D := u− n. If D < 0 the region has no tilings. Otherwise,

M
(
Ha,b,c,t,(u+i)mi=1,(v+j)nj=1

)
=
P (a, b+ n, c+m)P (u, b−D,m)P (v, c−D,n)

P (a+ u, b−D,m)P (a+ v, c−D,n)

× P (c−D,n+m, b)P (D,n,m)

P (c−D + n,m,D)
· P (D,m, b−D).

Proof of Corollary 11. It is straightforward to check for arbitrary values that

m > v, n > u ⇐⇒ v < u+m 6 v + n, and m+ (u+m− v) > u+m
OR u < v + n 6 u+m, and n+ (v + n− u) > v + n.

(20)

We shall show the second set of expressions hold if and only if the dented hexagon
Ha,b,c,t,(u+i)m1 ,(v+j)n1

has no tilings.
Suppose that u + m 6 v + n (meaning the southern border of the eastern dent is

weakly north of the southern border of the western dent) and the region has no tilings.
Then (µN − N) is maximized at N = u + m: so µu+m > u + m. If v > u + m then
µu+m = m 6 u + m, giving a contradiction. So it must be that v 6 u + m. This implies
µu+m = m+(u+m−v) > u+m, so that the first line on the right side of (20) holds. The
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n

c−D

m

b−D

c

n+m

b

(a)

c−D
n

D

m

b−D

c

n+m

b

(b)

Figure 11: (a) H0,6,4,5,(4+i)31,(5+j)21
with forced lozenges; (b) the region interpreted as a

hexagon with one dent (HD,m,b−D shaded red).

argument works in reverse: if v < u+m 6 v+n and (u+m)−v > u then µu+m > u+m;
so these three inequalities are equivalent to the eastern dent being weakly north of the
western dent and the region having no tilings.

The inequalities u < v + n 6 u+m and n+ (v + n− u) > v + n are equivalent to the
western dent being weakly north of the eastern dent and the region having no tilings.

The formula given follows immediately from Theorem 6.

Proof of Corollary 12. The region H0,b,c,m+n,(u+i)mi=1,(v+j)nj=1
has forced lozenges that when

removed give a region congruent to Hc−D,n+m,b−D,D,(n+i)Di=1,~∅
, as depicted in figure 11.

The region H0,n+m,b−D,D,(n+i)Di=1,~∅
also has forced lozenges, that when removed give a

semiregular hexagon HD,m,b−D. The result then follows by applying Corollary 11 to both
Ha,b,c,t,(u+i)mi=1,(v+j)nj=1

and Hc−D,n+m,b−D,D,(n+i)Di=1,~∅
.

7 Final Remarks

The method of proof used for Corollary 12 is applicable whenever the tiling function of
H0,b,c,t,~u,~v is simple to express. For example, let H = H0,b,c,t,(u+i)m1 ,(v+j)n1

be a region with
vn = 1, as depicted in Figure 12 (a).

Observe that the blue split-line in the figure partitions the region into two unbalanced
hexagons Hn,b,0,1 and Hm−1,b+n−u,c−1,1. It can be seen by modifying the proof of the Region
Splitting Lemma that if R is a balanced region with a partition into regions P , Q, so that
triangles in P which are adjacent to triangles in Q are all of the same orientation, and
this orientation is in excess within P by some amount, say d, then all tilings of R include
exactly d lozenges covering one triangle from P and one triangle from Q.

It follows that all tilings of the entire region must include exactly one lozenge which
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n

1

m

b+ n− u

c

m+ n

b

(a) (b)

Figure 12: (a) H0,b,c,~u,~v with vn = 1 and a split-line; (b) R3 with forced lozenges shaded
grey.

crosses the split-line. Let Si be the set of tilings of the region so that the split-line-crossing
lozenge’s northern border is i units north of H’s southern side. Let Ri be the region
obtained by removing that lozenge from H and observe that Si has a natural bijection
with the tilings of Ri. Furthermore, Lemma 1 applies to each region Ri with respect to
the blue split-line, and partitions Ri into two regions with known tiling functions:

M(Ri) = M(H1,n,b+1−i) M(Hm−1,b+n−u,c−1,1,(i),~∅)

=
P (m− 1, b+ n− u, c)(b+ n− u)!

n!(c− 1)!(b+m+ n− u− 1)!

× (b+ 2− i)n(b+ n+ 2− u− i)c−1(i)m−1

M(Ha,b,c,t,(u+i)m1 ,(v+j)n1
) =

P (a, b+ n, c+m)P (u, b+ n− u,m)(v + 1)n
P (a+ u, b+ n− u,m)(a+ v + 1)n

×
b+n+1−u∑

i=1

M(Ri)

A similar calculation could be made when 1 6 vn 6 m, indexing over the positions of
|vn| distinct lozenges which cross the split-line.

We can apply this method to a different family of dented hexagons, with v arbitrary,
u < b+ 1, and n = 1, employing a split-line which cuts southwest from the eastern dent,
as depicted in Figure 13.

Again, each tiling of this region has exactly one lozenge which crosses the split-line. If
Ri is obtained by removing the lozenge in the ith position from the southwest end of the
split-line, then tilings of H0,b,c,m+1,(u+i)m1 ,(v+1) are in bijection with the union of the tilings

of {Ri}c+m−v+1
i=1 :

M(Ri) = M(H1,u−1,c+m+1−v−i) M(Hb−u,c,m,1,(i),~∅)
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Figure 13: (a) H0,b,c,m+1,~u,~v with n = 1 and a split-line; (b) R3 with forced lozenges shaded
grey.

=
P (b− u, c,m+ 1)c!

(u− 1)!(b− u+ c)!m!
× (c+m− v − i+ 2)u−1(c− i+ 2)m(i)b−u

Ha,b,c,m+1,(u+i)m1 ,(v+1) =
P (a, b+ 1, c+m)P (u, b+ 1− u,m)(v + 1)a

P (a+ u, b+ 1− u,m)(c+m+ 1)a
×

c+m−v+1∑
i=1

M(Ri).

We note some dead ends. We have shown that the tiling function for the dented
hexagon Ha,b,c,t,~u,~v may be given as a polynomial of entirely linear factors (of a when
the other parameters are fixed). The same is not true for obvious other parameters of
the region, such as c or b. Similarly when dents lie along more than two sides of the
hexagon, or along short sides of the hexagon, the tiling function of the region could not
be interpreted as a polynomial of linear factors over any obvious single parameter of the
region.
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