The average distance and the diameter of dense random regular graphs

Nobutaka Shimizu
Department of Mathematical Informatics
The University of Tokyo
Tokyo, Japan

nobutaka.shimizu@mist.i.u-tokyo.ac.jp

Submitted: May 1, 2019; Accepted: Sep 3, 2020; Published: Sep 18, 2020
© The author. Released under the CC BY-ND license (International 4.0).

Abstract

Let \(AD(G_{n,d}) \) be the average distance of \(G_{n,d} \), a random \(n \)-vertex \(d \)-regular graph. For \(d = (\beta + o(1))n^\alpha \) with two arbitrary constants \(\alpha \in (0,1) \) and \(\beta > 0 \), we prove that \(|AD(G_{n,d}) - \mu| < \epsilon \) holds with high probability for any constant \(\epsilon > 0 \), where \(\mu \) is equal to \(\alpha^{-1} + \exp(-\beta^{1/\alpha}) \) if \(\alpha^{-1} \in \mathbb{N} \) and to \(\lceil \alpha^{-1} \rceil + 1 \) otherwise.

Consequently, we show that the diameter of the \(G_{n,d} \) is equal to \(\lceil \alpha^{-1} \rceil + 1 \) with high probability.

Mathematics Subject Classifications: 05C80, 05C12

1 Introduction

The study of the diameter of regular graphs is well motivated in graph theory. A central question is how to construct an \(n \)-vertex \(d \)-regular graph with the minimum possible diameter, which has an application to high-performance computing [12, 17, 26]. Let \(D'(n, d) \) denote the Moore bound, a well-known lower bound of the minimum possible diameter among all \(n \)-vertex \(d \)-regular graphs [26] (we will present the bound in Equation (3)). Let \(\text{diam}(G) \) denote the diameter of a graph \(G \). We define \(\text{diam}(G) = \infty \) if \(G \) is not connected. In this paper, we show that the diameter \(\text{diam}(G_{n,d}) \) of a random \(d \)-regular graph \(G_{n,d} \) of \(d = (\beta + o(1))n^\alpha \) with two arbitrary constants \(\alpha \in (0,1) \) and \(\beta > 0 \) satisfies

\[
\lim_{n \to \infty} (\text{diam}(G_{n,d}) - D'(n, d)) = \begin{cases}
0 & \text{if either } \alpha^{-1} \notin \mathbb{N} \text{ or } (\alpha^{-1} \in \mathbb{N} \text{ and } \beta < 1), \\
1 & \text{if } \alpha^{-1} \in \mathbb{N} \text{ and } \beta > 1
\end{cases}
\]

with probability \(1 - o(1) \).
Also, we study the average distance \(AD(G_{n,d}) \) of a random regular graph. The average distance \(AD(G) \) of a connected graph \(G \) is

\[
AD(G) = \left(\frac{n}{2} \right)^{-1} \sum_{\{u,v\} \in \binom{V}{2}} \text{dist}(u,v),
\]

where \(\text{dist}(u,v) \) is the shortest \(uv \)-path length. If \(G \) is not connected, we define \(AD(G) = \infty \).

For a graph property \(P \), we say that an \(n \)-vertex random graph \(G_n \) satisfies \(P \) with high probability (w.h.p.) if \(\lim_{n \to \infty} \Pr[G_n \text{ satisfies } P] = 1 \). In this paper, we prove the following results.

Theorem 1. For two constants \(\alpha \in (0,1) \) and \(\beta > 0 \), let \(d = (\beta + o(1))n^{\alpha} \) be an integer. For every constant \(\epsilon > 0 \), it holds w.h.p. that

\[
|AD(G_{n,d}) - \mu| < \epsilon,
\]

where

\[
\mu = \begin{cases}
\alpha^{-1} + \exp(-\beta^{1/\alpha}) & \text{if } \alpha^{-1} \in \mathbb{N}, \\
\lceil \alpha^{-1} \rceil & \text{otherwise.}
\end{cases}
\]

Theorem 2. For two constants \(\alpha \in (0,1) \) and \(\beta > 0 \), let \(d = (\beta + o(1))n^{\alpha} \) be an integer. It holds w.h.p. that

\[
diam(G_{n,d}) = \lfloor \alpha^{-1} \rfloor + 1.
\]

The study of \(G_{n,d} \) originated from the configuration model introduced by Bollobas [3]. Independently, Bender and Canfield [1] considered a similar model. The configuration model usually enables us to study \(G_{n,d} \) for a constant \(d \). The case of \(d = d(n) \gg 1 \) is much less understood, though there is a well-known successful approach called the switching method, introduced by McKay [24]. See [33] for a detailed survey on \(G_{n,d} \). However, results shown by the switching method usually require the condition that \(d \ll n^{\gamma} \) where \(\gamma \ll 1 \) is some reasonable constant. Therefore, \(G_{n,d} \) of \(d = (\beta + o(1))n^{\alpha} \) with arbitrary constant \(\alpha \) seems to be far from these methods.

Another recent remarkable approach for the study of \(G_{n,d} \) is to compare \(G_{n,d} \) with an Erdős-Rényi graph \(G(n,p) \) of \(p = \frac{d}{n} \). Recall that \(G(n,p) \) is an \(n \)-vertex graph where every two distinct vertices \(u \) and \(v \) are joined by an edge with probability \(p \) independent from any other edges. Since each degree of \(G(n,p) \) is concentrated on \(np \), we may expect that \(G(n,p) \) and \(G_{n,d} \) share several structural properties if \(d = (1 + o(1))np \). For \(\log n \ll d \ll n^{1/3}/(\log n)^2 \), Kim and Vu [20] presented a coupling of \(G_{n,d} \) and \(G_n \) of \(p = (1 - o(1))\frac{d}{n} \) such that \(G(n,p) \subseteq G_{n,d} \) holds w.h.p. Dudek et al. [11, 14] improved this result by presenting a coupling having the same property for \(\log n \ll d \ll n \). Their result is

\[1\] In the conference version of this paper [29], we proved Theorem 2.
called the embedding theorem. The embedding theorem enables us to bound \(\text{diam}(G_{n,d}) \) and \(\text{AD}(G_{n,d}) \) from above by \(\text{diam}(G(n,p)) \) and \(\text{AD}(G(n,p)) \), respectively. Very recently, Gao, Isaev, and McKay [15] proved that there is a coupling of \(G(n,p) \) and \(G_{n,d} \) satisfying \(G(n,p) \supseteq G_{n,d} \) if \(p \geq \frac{C \text{dlog} n}{n} \) for some constant \(C \), \(d = \omega(\text{log} n) \) and \(d = o(n) \). We can immediately obtain Theorem 2 by combining the coupling of [15] and known results concerning the diameter of \(G(n,p) \). However, due to the \(O(\text{log} n) \) factor in the condition \(p \geq \frac{C \text{dlog} n}{n} \), Theorem 1 does not follow from [15] immediately.

To study \(\text{diam}(G(n,d)) \) and \(\text{AD}(G(n,d)) \), we shall look at \(\text{diam}(G(n,p)) \) and \(\text{AD}(G(n,p)) \) of \(p = \frac{d}{n} \). It is well known that \(G(n,p) \) of \(p = (\beta + o(1))n^{-1+\alpha} \) has diameter \(\lfloor \alpha^{-1} \rfloor + 1 \) [6, 4, 14].

As for the average distance, we obtain a concentration result of \(\text{AD}(G(n,p)) \), which might be of independent interest.

Theorem 3. For two constants \(\alpha \in (0, 1) \) and \(\beta > 0 \), let \(p = \beta n^{-1+\alpha} \) and

\[
\mu = \begin{cases}
\alpha^{-1} + \exp(-\beta^{1/\alpha}) & \text{if } \alpha^{-1} \in \mathbb{N}, \\
\lceil \alpha^{-1} \rceil & \text{otherwise}.
\end{cases}
\]

Then, there exist absolute constants \(C_1, C_2 > 0 \) such that

\[
|\text{AD}(G(n,p)) - \mu| \leq C_1 n^{-C_2}
\]

holds w.h.p.

1.1 Related results and trivial bounds

Diameter of \(G(n,p) \). There is a long line of the diameter of \(G(n,p) \) [22, 4, 8, 13, 28]. For dense \(G(n,p) \), Bollobas [4] proved the following result.

Theorem 4 (Theorem 6 of [4]). Fix a positive constant \(c \). Let \(D = D(n) \geq 2 \) be a positive integer and \(p = p(n) \in [0, 1] \) be a real number satisfying

\[
p^D n^{D-1} = \log(n^2/c).
\]

Suppose that \(np = \omega(\text{log} n) \). Then, \(G(n,p) \) satisfies

\[
\lim_{n \to \infty} \Pr[\text{diam}(G(n,p)) = k] = \begin{cases}
\exp(-c/2) & \text{if } k = D, \\
1 - \exp(-c/2) & \text{if } k = D + 1, \\
0 & \text{otherwise}.
\end{cases}
\]

Corollary 5. Suppose that \(p = (\beta + o(1))n^{-1+\alpha} \), where \(\alpha \in (0, 1) \) and \(\beta > 0 \) are any constants. Then, \(\text{diam}(G(n,p)) = \lfloor \alpha^{-1} \rfloor + 1 \) holds w.h.p.

It should be noted that Theorem 5 also follows from the main result of Klee and Larman [22].

The diameter of \(G(n,p) \) of small \(p \) has gathered special attention [5, 28, 8]. In this line of work, there is a convention that the diameter of a disconnected graph is the...
maximum among all diameters of its connected components. Bollobás [5] proved that $\text{diam}(G(n, p)) \in A$ holds w.h.p. if $np - \log n = \omega(1)$, where $A = A(n) \subseteq \mathbb{N}$ satisfies $|A| \leq 4$. Chung and Lu [8] studied $\text{diam}(G(n, p))$ with $1 < np \leq c \log n$ where c is some constant. For example, they proved that $\text{diam}(G(n, p)) = (1 + o(1)) \frac{\log n}{\log np}$ holds w.h.p. if $\omega(1) = np < \log n$. Riordan and Wormald [28] strengthened the results of [8], providing the tight estimate for $\text{diam}(G(n, p))$ for $1 + o(1) \leq np = O(1)$. For smaller p, Luczak [23] investigated $\text{diam}(G(n, p))$ with $np < 1$.

Average distance of $G(n, p)$. The average distance of random graphs with a power law degree sequence has gathered a great deal of attention in network analysis [18, 27, 2, 32, 9, 31]. Focusing on $G(n, p)$ with $np = \omega(\log n)$, one may observe that $\text{AD}(G(n, p)) \approx \text{diam}(G(n, p))$. More precisely, it is easy to see that $\text{AD}(G(n, p)) \leq \text{diam}(G(n, p)) = (1 + o(1)) \frac{\log n}{\log np}$ and $\text{AD}(G(n, p)) \geq (1 - o(1)) \frac{\log n}{\log np}$ hold by considering the maximum degree of $G(n, p)$.

Katzav et al. [18] presented analytical results on $\text{AD}(G(n, p))$ for dense $G(n, p)$ that coincide with Theorem 3. However, to the best of our knowledge, there are no known results with rigorous proofs for $\text{AD}(G(n, p))$ with $np = n^\Omega(1)$.

Diameter of $G_{n,d}$. The diameter of regular graphs has gathered special attention in graph theory [12, 17, 26] and has an application in designing efficient network topologies. Note that for every vertex v, there are at most $d(d-1)^k$ vertices having distance k from v. Thus, for every n-vertex d-regular graph G of diameter D with $d \geq 3$, we have

$$D \geq \min \left\{ D \in \mathbb{N} : n \leq 1 + \sum_{i=1}^{D} d(d-1)^{i-1} \right\}$$

$$= \left\lfloor \log_{d-1} n + \log_{d-1} \left(1 - \frac{2}{d} \left(1 - \frac{1}{n} \right) \right) \right\rfloor$$

$$= \frac{\log n}{\log(d-1)} - O(1).$$

We denote by $D' = D'(n, d)$ this lower bound Equation (3), which is known as the Moore bound [26].

For random regular graphs $G_{n,d}$, Bollobás and de la Vega [7] proved that

$$\text{diam}(G_{n,d}) = D'(n, d) \pm O \left(\frac{\log \log n}{\log(d-1)} \right)$$

holds w.h.p. if the degree $d \geq 3$ is a constant. If $\log n \ll d \ll n^{o(1)}$, the embedding theorem of Dudek et al. [11, 14] and the lower bound Equation (3) together imply that

$$\text{diam}(G_{n,d}) = (1 + o(1)) \frac{\log n}{\log d} = (1 + o(1))D'(n, d)$$

holds w.h.p.
Suppose that \(d = (\beta + o(1))n^{\alpha} \), where \(\alpha \in (0, 1) \) and \(\beta > 0 \) are constants. From the embedding theorem, we have \(\text{diam}(G_{n,d}) \leq \lfloor \alpha^{-1} \rfloor + 1 \) holds w.h.p., as we will confirm in Section 2. On the other hand, by substituting \(d = (\beta + o(1))n^{\alpha} \) to Equation (3), we obtain

\[
\lim_{n \to \infty} D' = \begin{cases}
[\alpha^{-1}] + 1 & \text{if } \alpha^{-1} \not\in \mathbb{N} \text{ or } (\alpha^{-1} \in \mathbb{N} \land \beta < 1), \\
\alpha^{-1} & \text{if } \alpha^{-1} \in \mathbb{N} \land \beta > 1, \\
\alpha^{-1} - \beta^{1/\alpha} + 1 & \text{if } \alpha^{-1} \in \mathbb{N} \land \beta < 1, \\
\text{depends on the term } o(1) & \text{otherwise.}
\end{cases}
\] (4)

By combining Theorem 2 and eq. (4), we obtain Equation (1). As mentioned earlier, Theorem 1 immediately follows from the result of Gao, Isaev, and McKay [15]. In this paper, we prove Theorem 2 by combining the upper bound from the embedding theorem [11] and Theorem 1 (note that \(\text{diam}(G) \geq \lceil AD(G) \rceil \)).

Average distance of \(G_{n,d} \). Let \(N_k \) be the number of vertex pairs of distance \(k \). We use the same argument as for Equation (3) to obtain a lower bound of \(AD(G) \) for any \(d \)-regular graph with \(d \geq 3 \). Suppose \(\text{diam}(G) = D' \) and thus \(N_1 + \cdots + N_{D'} = \binom{n}{2} \). Moreover, for every \(k = 1, \ldots, D' - 1 \), we have \(N_k \leq d(d - 1)^{k-1} \). Therefore, we obtain

\[
AD(G) = \binom{n}{2}^{-1} (N_1 + 2N_2 + \cdots + D'N_{D'}) \\
= D' - \binom{n}{2}^{-1} ((D' - 1)N_1 + (D' - 2)N_2 + \cdots + N_{D'-1}) \\
\geq D' - \binom{n}{2}^{-1} \sum_{k=1}^{D'-1} (D' - k)d(d - 1)^{k-1} \\
= D' - \frac{d(d - 1)^{D'}}{(n-1)(d-2)^2} + \frac{dD'}{(n-1)(d-2)} + \frac{d}{(n-1)(d-2)^2} \\
= \log_{d-1} n - O(1).
\] (5)

Let \(AD' = AD(n,d) \) denote the lower bound Equation (5). Then, we have

\[
\frac{\log n}{\log(d-1)} - O(1) \leq AD(G_{n,d}) \leq \text{diam}(G_{n,d}).
\]

This implies that

\[
AD(G_{n,d}) = (1 + o(1)) \frac{\log n}{\log(d-1)}
\]

holds w.h.p. if \(d \geq 3 \) is constant or \(\log n \ll d \leq n^{o(1)} \).

Suppose that \(d = (\beta + o(1))n^{\alpha} \), where \(\alpha \in (0, 1) \) and \(\beta > 0 \) are constants. From the lower bound Equation (5), we have

\[
\lim_{n \to \infty} AD' = \begin{cases}
[\alpha^{-1}] + 1 & \text{if } \alpha^{-1} \not\in \mathbb{N}, \\
\alpha^{-1} & \text{if } \alpha^{-1} \in \mathbb{N} \land \beta > 1, \\
\alpha^{-1} - \beta^{1/\alpha} + 1 & \text{if } \alpha^{-1} \in \mathbb{N} \land \beta < 1, \\
\text{depends on the term } o(1) & \text{otherwise.}
\end{cases}
\] (6)
1.2 Definitions and notation

For two positive integers k and m with $k \leq m$, we denote by $(m)_k$ the falling factorial $m(m-1) \cdots (m-k+1)$. For a finite set X and a positive integer $k \leq |X|$, we use

$$\binom{X}{k} := \{\{x_1, \ldots, x_k\} \subseteq X : |\{x_1, \ldots, x_k\}| = k\},$$

$$\binom{X}{k} := \left\{(x_1, \ldots, x_k) : \{x_1, \ldots, x_k\} \in \binom{X}{k}\right\}.$$

For a graph G, we denote by $V(G)$ and $E(G)$, respectively, the vertex set and the edge set of G. Note that $E(G) \subseteq \binom{V(G)}{2}$ is a set of unordered vertex pairs. Throughout the paper, the number of vertices of a graph is denoted by n, and the vertex set is denoted by $V = \{1, \ldots, n\}$.

We simply write $H \subseteq G$ if H is contained in G, that is, $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ hold. Two graphs $G \cup H$ and $G \cap H$ are defined by

$$G \cup H = (V(G) \cup V(H), E(G) \cup E(H)),$$

$$G \cap H = (V(G) \cap V(H), E(G) \cap E(H)).$$

It should be noted that G and H are labelled.

A path is defined to be a graph $P = (\{v_0, \ldots, v_\ell\}, \{\{v_0, v_1\}, \ldots, \{v_{\ell-1}, v_\ell\}\})$ for distinct vertices v_0, \ldots, v_ℓ. The vertices of degree one in a path are called endpoints. We call a path of endpoints s and t an st-path. The length of a path is the number of edges. For a graph G and its two distinct vertices s and t, the distance $\text{dist}_G(s, t)$ is the minimum length among all st-paths contained in G. We define $\text{dist}_G(s, t) = \infty$ if G does not contain any st-paths. For a graph $G = (V, E)$ of n vertices, the average distance $\text{AD}(G)$ of G is

$$\text{AD}(G) = \left(\frac{n}{2}\right)^{-1} \sum_{\{s,t\} \in \binom{V}{2}} \text{dist}_G(s, t).$$

The diameter $\text{diam}(G)$ of G is

$$\text{diam}(G) = \max_{s \neq t} \text{dist}_G(s, t).$$

Note that $\text{diam}(G) = \text{AD}(G) = \infty$ if G is not connected. We use $\text{dist}(s, t)$ rather than $\text{dist}_G(s, t)$ if the graph G is clear from the context.

For an event Z on a graph G (say, $\text{dist}_G(1, 2) \geq \ell$), we use

$$\mathbb{1}_Z(G) = \begin{cases} 1 & \text{if } G \text{ satisfies an event } Z, \\ 0 & \text{otherwise} \end{cases}$$

as the indicator function.
1.3 Tools

Lemma 6 (The Chernoff bound; Theorem 10.1 and 10.5 of [10]). Let X_1, X_2, \ldots, X_n be independent binary random variables satisfying that $\Pr[X_i = 1] = p_i$ and let $X = \sum_{i=1}^n X_i$ be the sum. Then, for any $\epsilon \geq 0$,

\[
\Pr[X \geq (1 + \epsilon) \mathbb{E}[X]] \leq \exp \left(-\frac{\min\{\epsilon, \epsilon^2\} \mathbb{E}[X]}{3}\right)
\]

and

\[
\Pr[X \leq (1 - \epsilon) \mathbb{E}[X]] \leq \exp \left(-\frac{\epsilon^2 \mathbb{E}[X]}{2}\right).
\]

Lemma 7 (Multivariate version of Brun’s sieve; Lemma 2.8 of [33]). Let $S_n^{(1)}, \ldots, S_n^{(k)}$ be random variables defined on the same space Ω_n such that each $S_n^{(i)}$ can be written as the sum of binary random variables. Suppose that there exist positive constants $\lambda_1, \ldots, \lambda_k$ satisfying

\[
\lim_{n \to \infty} \mathbb{E} \left[\prod_{i=1}^k (S_n^{(i)})_{r_i} \right] = \prod_{i=1}^k \lambda_i^{r_i}
\]

for every fixed integers $r_1, \ldots, r_k \geq 0$.

Then, for any constants $j_1, \ldots, j_k \geq 0$, it holds that

\[
\lim_{n \to \infty} \Pr \left[\bigwedge_{i=1}^k [S_n^{(i)} = j_i] \right] = \prod_{i=1}^k \exp(-\lambda_i) \frac{\lambda_i^{j_i}}{j_i!}.
\]

Lemma 8 (Lemma 2.1 of [19]). Suppose that $1 \ll d \ll n$. For any fixed graph H, it holds that

\[
\Pr[H \subseteq G_{n,d}] = (1 + o(1)) \left(\frac{d}{n}\right)^{|E(H)|}.
\]

Let $G[n, m]$ be a graph selected uniformly at random from the set of all graphs of n vertices with exactly m edges.

Lemma 9 (The embedding theorem; Theorem 10.10 of [14]). There is a constant $C > 0$ that satisfies the following. For any real $\gamma = \gamma(n)$, integer $d = d(n)$ satisfying

\[
C \left(\left(\frac{d}{n} + \frac{\log n}{d} \right)^{1/3} \right) \leq \gamma < 1,
\]

and $m = \lfloor (1 - \gamma)nd/2 \rfloor$, there exists a joint distribution π of $G[n, m]$ and $G_{n,d}$ such that

\[
\lim_{n \to \infty} \Pr_{\pi}[G[n, m] \subseteq G_{n,d}] = 1
\]

holds.

In other words, for $\log n \ll d \ll n$, we can choose $m = (1 - o(1))nd/2$ and couple $G[n, m]$ and $G_{n,d}$ such that $G[n, m] \subseteq G_{n,d}$ holds w.h.p.
2 Upper bounds of $\text{AD}(G_{n,d})$ and $\text{diam}(G_{n,d})$

In this section we obtain upper bounds of $\text{AD}(G_{n,d})$ and $\text{diam}(G_{n,d})$ using Theorem 9. As noted in [11], in Theorem 9, one can replace $G[n,m]$ by $G(n,p)$ of $p = (1 - 2\gamma)d/(n - 1)$. This yields the following result.

Corollary 10. For $d = d(n)$ satisfying $\log n \ll d \ll n$, there exists $p = (1 - o(1))\frac{\alpha}{n}$ such that $\text{AD}(G_{n,d}) \leq \text{AD}(G(n,p))$ and $\text{diam}(G_{n,d}) \leq \text{diam}(G(n,p))$ hold w.h.p.

For $d = (\beta+o(1))n^\alpha$, take γ of Theorem 9 satisfying $\gamma = o(1)$, and let $p = (1-2\gamma)\frac{\alpha}{n-1} = (\beta + o(1))n^{1+\alpha}$. Then, from Theorems 3 and 10, it holds w.h.p. that

$$ \text{AD}(G_{n,d}) \leq \text{AD}(G(n,p)) \leq \mu + o(1). \quad (8) $$

Similarly, from Theorems 5 and 10, a random regular graph $G_{n,d}$ w.h.p. satisfies

$$ \text{diam}(G_{n,d}) \leq \text{diam}(G(n,p)) \leq \lfloor \alpha^{-1} \rfloor + 1. \quad (9) $$

3 Lower bounds of $\text{AD}(G_{n,d})$ and $\text{diam}(G_{n,d})$

If $\alpha^{-1} \notin \mathbb{N}$, the lower bound Equation (6) and the upper bound Equation (8) yield that

$$ \text{AD}(G_{n,d}) = \lfloor \alpha^{-1} \rfloor + 1 - o(1) $$

holds w.h.p. Now we focus on the case where $\alpha^{-1} \in \mathbb{N}$. This section is devoted to prove the following.

Lemma 11. Let $d = (\beta+o(1))n^\alpha$, where $\alpha \in (0,1)$ and $\beta > 0$ are any constants satisfying $\alpha^{-1} \in \mathbb{N}$. For any constant $\epsilon > 0$,

$$ \lim_{n \to \infty} \Pr[\text{AD}(G_{n,d}) \leq \mu - \epsilon] = 0, $$

where $\mu = \alpha^{-1} + \exp(-\beta^{1/\alpha})$.

Remark. By combining Equation (8) and theorem 11, we complete the proof of Theorem 1. Moreover, Theorem 11 implies

$$ \text{diam}(G_{n,d}) \geq \lfloor \text{AD}(G_{n,d}) \rfloor = \lfloor \alpha^{-1} \rfloor + 1 $$

holds w.h.p., which completes the proof of Theorem 2.

Proof of Theorem 11. Note that

$$ \text{AD}(G_{n,d}) = \left(\frac{n}{2}\right)^{-1} \sum_{\{s,t\} \in V_n^2} \text{dist}(s,t) $$

where $V_n = \{1, 2, \ldots, n\}$.
\[
\sum_{\ell=1}^{\infty} \binom{n}{2}^{-1} \sum_{\{s,t\} \in \binom{V}{2}} 1_{\text{dist}(s,t) \geq \ell} \\
\geq \sum_{\ell=1}^{\alpha - 1 + 1} \binom{n}{2}^{-1} \sum_{\{s,t\} \in \binom{V}{2}} 1_{\text{dist}(s,t) \geq \ell}.
\]

For \(\ell \in \{1, \ldots, \alpha - 1 + 1\} \), let \(p_\ell = p_\ell(G_{n,d}) = \binom{n}{2}^{-1} \sum_{\{s,t\} \in \binom{V}{2}} 1_{\text{dist}(s,t) \geq \ell} \). We evaluate \(p_\ell \) using the following result.

Lemma 12. Consider \(G_{n,d} \) of \(d = (\beta + o(1))n^\alpha \). Fix two constants \(\alpha \in (0, 1) \) and \(\beta > 0 \) satisfying \(\alpha^{-1} \in \mathbb{N} \). For any constant \(k \in \mathbb{N} \), fix \(2k \) distinct vertices \(s_1, \ldots, s_k, t_1, \ldots, t_k \). For any fixed \(\ell_1, \ldots, \ell_k \in \{1, \ldots, \alpha - 1 + 1\} \), it holds that

\[
\lim_{n \to \infty} \Pr \left[\bigwedge_{i=1}^{k} \left[\text{dist}(s_i, t_i) \geq \ell_i \right] \right] = \exp(-M \beta^{1/\alpha})
\]

where \(M = |\{i \in \{1, \ldots, k\} : \ell_i = \alpha^{-1} + 1\}| \).

We will prove Theorem 12 in Section 3.1. For \(\ell \in \{1, \ldots, \alpha - 1 + 1\} \), let

\[
\mu_\ell = \begin{cases}
1 & \text{if } 1 \leq \ell \leq \alpha^{-1}, \\
\exp(-\beta^{1/\alpha}) & \text{if } \ell = \alpha^{-1} + 1.
\end{cases}
\]

From Theorem 12, we have

\[
E[p_\ell] = \binom{n}{2}^{-1} \sum_{\{s,t\} \in \binom{V}{2}} \Pr[\text{dist}(s,t) \geq \ell] \\
= \Pr[\text{dist}(1,2) \geq \ell] = \mu + o(1)
\]

and

\[
E[p_\ell^2] = \binom{n}{2}^{-2} \sum_{\{s,t\},\{s',t'\} \in \binom{V}{2}} \Pr[\text{dist}(s,t) \geq \ell \land \text{dist}(s',t') \geq \ell] \\
= \binom{n}{2}^{-2} \left(O(n^3) + \sum_{\{s,t\},\{s',t'\} \in \binom{V}{2} : \{s,t\} \cap \{s',t'\} = \emptyset} \Pr[\text{dist}(s,t) \geq \ell \land \text{dist}(s',t') \geq \ell] \right) \\
= \Pr[\text{dist}(1,2) \geq \ell \land \text{dist}(3,4) \geq \ell] + o(1) = \mu^2 + o(1).
\]

From the Chebyshev inequality, for every constant \(\epsilon > 0 \), we have

\[
\Pr[|p_\ell - E[p_\ell]| \geq \epsilon] \leq \frac{\Var[p_\ell]}{\epsilon^2} = o(1).
\]
Thus we obtain

\[\Pr \left[\left| \left(\sum_{\ell=1}^{\alpha^{-1}+1} p_{\ell} \right) - \mu \right| > \epsilon \right] \leq \sum_{\ell=1}^{\alpha^{-1}+1} \Pr \left[|p_{\ell} - \mu_{\ell}| > \epsilon/((\alpha^{-1} + 1) \right] = o(1). \]

Therefore, it holds w.h.p. that

\[\text{AD}(G_{n,d}) \geq \sum_{\ell=1}^{\alpha^{-1}+1} p_{\ell} \geq \mu - o(1), \]

which completes the proof of Theorem 11.

3.1 Distances of fixed vertex pairs of $G_{n,d}$

This part is devoted to prove Theorem 12. We start with establishing the following result.

Lemma 13. Consider $G_{n,d}$ of $d = (\beta + o(1))n^\alpha$ for constants $\alpha \in (0,1)$ and $\beta > 0$. For two fixed distinct vertices s and t, it holds w.h.p. that $\text{dist}(s, t) \in \{\lceil \alpha^{-1} \rceil, \lceil \alpha^{-1} \rceil + 1\}$.

Proof. For two fixed vertices s, t of $G_{n,d}$ and an integer ℓ, we denote by P the set of paths of length ℓ connecting s and t in a complete graph. Let $X_\ell = X_\ell(G_{n,d})$ be the number of paths $P \in P$ contained in $G_{n,d}$, that is,

\[X_\ell = |\{P \in P : P \subseteq G_{n,d}\}|. \tag{10} \]

Fix an integer ℓ satisfying $\ell \alpha < 1$ (or equivalently, $\ell \leq \lfloor \alpha^{-1} \rfloor - 1$). Then, from Theorem 8, we have

\[\mathbb{E}(X_\ell) = \sum_{P \in P} \Pr[P \subseteq G_{n,d}] = (1 + o(1))n^{\ell-1} \left(\frac{d}{n} \right)^\ell = o(1). \]

From the Markov’s inequality, we obtain

\[\Pr[\text{dist}(s, t) \leq \ell] \leq \Pr[X_1 + \cdots + X_\ell > 0] \leq \sum_{i=1}^\ell \mathbb{E}(X_i) = o(1). \]

In other words, $\text{dist}(s, t) \geq \ell + 1 \geq \lfloor \alpha^{-1} \rfloor$ holds w.h.p.

On the other hand, from Equation (9), we have $\text{dist}(s, t) \leq \text{diam}(G_{n,d}) \leq \lfloor \alpha^{-1} \rfloor + 1$. This completes the proof of Theorem 13.

\[\square \]
Proof of Theorem 12. Fix an integer \(k > 0 \) and \(2k \) distinct vertices \(s_1, \ldots, s_k, t_1, \ldots, t_k \) of \(G_{n,d} \), where \(d = (\beta + o(1))n^{\alpha} \). From Theorem 13, it holds w.h.p. that \(\text{dist}(s,t) \in \{\alpha^{-1}, \alpha^{-1} + 1\} \).

Suppose that \(\ell_1 \leq \alpha^{-1} \) and thus \(\text{dist}(s_1, t_1) \geq \ell_1 \) holds w.h.p. Then we have

\[
\Pr \left[\bigwedge_{i=2}^{k} [\text{dist}(s_i, t_i) \geq \ell_i] \right] - \Pr[\text{dist}(s_1, t_1) < \ell_1] \leq \Pr \left[\bigwedge_{i=1}^{k} [\text{dist}(s_i, t_i) \geq \ell_i] \right]
\]

\[
\leq \Pr \left[\bigwedge_{i=2}^{k} [\text{dist}(s_i, t_i) \geq \ell_i] \right]
\]

and thus

\[
\Pr \left[\bigwedge_{i=1}^{k} [\text{dist}(s_i, t_i) \geq \ell_i] \right] = \Pr \left[\bigwedge_{i=2}^{k} [\text{dist}(s_i, t_i) \geq \ell_i] \right] - o(1).
\]

Hence, we may assume that \(\ell_i = \alpha^{-1} + 1 \) for all \(i = 1, \ldots, k \) (i.e., \(M = k \) in Theorem 12).

Let \(P^{(i)} \) denote the set of \(s_it_i \)-paths of length \(\alpha^{-1} \) contained in the complete graph \(K_n \). Define \(X^{(i)} \) as the number of paths of \(P^{(i)} \) contained in \(G_{n,d} \), that is,

\[
X^{(i)} = |\{P \in P^{(i)} : P \subseteq G(n,p)\}|.
\]

Then, we have

\[
\Pr \left[\bigwedge_{i=1}^{k} [\text{dist}(s_i, t_i) \geq \alpha^{-1} + 1] \right] = \Pr \left[\bigwedge_{i=1}^{k} [\text{dist}(s_i, t_i) \geq \alpha^{-1} + 1] \land \bigwedge_{i=1}^{k} [X^{(i)} = 0] \right]
\]

\[
= \Pr \left[\bigwedge_{i=1}^{k} [X^{(i)} = 0] \right] - o(1).
\]

We evaluate Equation (11) using the following result, which will be shown in Section 3.2.

Lemma 14. Consider \(G_{n,d} \) of \(d = (\beta + o(1))n^{\alpha} \), where \(\alpha \in (0,1) \) and \(\beta > 0 \) are any constants satisfying \(\alpha^{-1} \in \mathbb{N} \). Fix \(2k \) distinct vertices \(s_1, \ldots, s_k, t_1, \ldots, t_k \), where \(k \) is any constant. For \(i = 1, \ldots, k \), let \(X^{(i)} \) denote the number of \(s_it_i \)-paths of length \(\alpha^{-1} \in \mathbb{N} \) contained in \(G(n,p) \). Fix arbitrary nonnegative integers \(r_1, \ldots, r_k \). Then, it holds that

\[
\mathbb{E} \left[\prod_{i=1}^{k} (X^{(i)})^{r_i} \right] = (\beta^{1/\alpha})^R + o(1),
\]

where \(R = r_1 + \cdots + r_k \).

From Theorem 14 and the Poisson approximation theorem (Theorem 7), we have

\[
\Pr \left[\bigwedge_{i=1}^{k} [X^{(i)} = 0] \right] = \exp(-k\beta^{1/\alpha}) + o(1).
\]

(12)
By combining Equations (11) and (12), we have

$$\Pr \left[\bigwedge_{i=1}^{k} \{ \text{dist}(s_i, t_i) \geq \alpha^{-1} + 1 \} \right] = \exp(-k\beta^{1/\alpha}) - o(1).$$

This completes the proof of Theorem 12 and thus Theorem 11.

3.2 Proof of Theorem 14

We first prove the following result and then show Theorem 14.

Lemma 15. Fix an integer $\ell \geq 1$ and consider $G(n, p)$ satisfying $(np)^\ell = \Omega(n)$. Fix $2k$ distinct vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$, where k is arbitrary constant. For $i = 1, \ldots, k$, let $X^{(i)}$ denote the number of $s_i t_i$-paths of length $\ell \in \mathbb{N}$ contained in $G(n, p)$.

Then, for any fixed nonnegative integers r_1, \ldots, r_k,

$$\mathbb{E} \left[\prod_{i=1}^{k} \left(X^{(i)} \right)^{r_i} \right] = n^{R_{(1)}} p^{R_{(2)}} \left(1 + O \left(\frac{1}{np} \right) \right),$$

where $R = r_1 + \cdots + r_k$.

Corollary 16. Consider $G(n, p)$ of $p = (\beta + o(1))n^{-1+\alpha}$, where $\alpha \in (0, 1)$ and $\beta > 0$ are any constants satisfying $\alpha^{-1} \in \mathbb{N}$. Fix arbitrary nonnegative integers r_1, \ldots, r_k. Then, it holds that

$$\mathbb{E} \left[\prod_{i=1}^{k} \left(X^{(i)} \right)^{r_i} \right] = (\beta^{1/\alpha})^R + o(1),$$

where $R = r_1 + \cdots + r_k$.

Proof of Theorem 15. For a positive constant k, fix $2k$ distinct vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$. For every $i \in \{1, \ldots, k\}$, let $\mathcal{P}^{(i)}$ denote the set of all $s_i t_i$-paths of length ℓ contained in the complete graph. We denote by $X^{(i)}$ the number of paths of $\mathcal{P}^{(i)}$ contained in $G(n, p)$.

Fix nonnegative integers k, r_1, \ldots, r_k. We may assume that $r_i > 0$ for every $i = 1, \ldots, k$. Let $\mathcal{A} = (\mathcal{P}^{(1)})_{r_1} \times \cdots \times (\mathcal{P}^{(k)})_{r_k}$. Each element $A \in \mathcal{A}$ is a tuple

$$A = (P_1^{(1)}, \ldots, P_{r_1}^{(1)}, \ldots, (P_1^{(k)}, \ldots, P_{r_k}^{(k)})),$$

where each $P_j^{(i)} \in \mathcal{P}_i$ is an $s_i t_i$-path of length ℓ and $P_j^{(i)} \neq P_j^{(i)}$ holds for every i and $j \neq j'$. For notational convention, we write $A = (P_1, \ldots, P_R) \in \mathcal{A}$. Since $r_k > 0$, it holds that $P_R \in \mathcal{P}^{(k)}$.

For a tuple $A = (P_1, \ldots, P_t)$ of t paths, let $E(A) = \bigcup_{i=1}^{t} E(P_i)$ and $V(A) = \bigcup_{i=1}^{t} V(P_i)$ (we will use induction on R and hence we assume $t \leq R$ here). For $\mathcal{S} \subseteq \mathcal{A}$, we consider

$$\Gamma_\mathcal{S} = \sum_{A \in \mathcal{S}} p_{E(A)}^{t^E(A)}.$$

Proof of Theorem 14. Fix an integer $\ell \geq 1$ and consider $G(n, p)$ satisfying $(np)^\ell = \Omega(n)$. Fix $2k$ distinct vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$, where k is arbitrary constant. For $i = 1, \ldots, k$, let $X^{(i)}$ denote the number of $s_i t_i$-paths of length $\ell \in \mathbb{N}$ contained in $G(n, p)$.

Then, for any fixed nonnegative integers r_1, \ldots, r_k,

$$\mathbb{E} \left[\prod_{i=1}^{k} \left(X^{(i)} \right)^{r_i} \right] = n^{R_{(1)}} p^{R_{(2)}} \left(1 + O \left(\frac{1}{np} \right) \right),$$

where $R = r_1 + \cdots + r_k$.

Corollary 16. Consider $G(n, p)$ of $p = (\beta + o(1))n^{-1+\alpha}$, where $\alpha \in (0, 1)$ and $\beta > 0$ are any constants satisfying $\alpha^{-1} \in \mathbb{N}$. Fix arbitrary nonnegative integers r_1, \ldots, r_k. Then, it holds that

$$\mathbb{E} \left[\prod_{i=1}^{k} \left(X^{(i)} \right)^{r_i} \right] = (\beta^{1/\alpha})^R + o(1),$$

where $R = r_1 + \cdots + r_k$.

Proof of Theorem 15. For a positive constant k, fix $2k$ distinct vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$. For every $i \in \{1, \ldots, k\}$, let $\mathcal{P}^{(i)}$ denote the set of all $s_i t_i$-paths of length ℓ contained in the complete graph. We denote by $X^{(i)}$ the number of paths of $\mathcal{P}^{(i)}$ contained in $G(n, p)$.

Fix nonnegative integers k, r_1, \ldots, r_k. We may assume that $r_i > 0$ for every $i = 1, \ldots, k$. Let $\mathcal{A} = (\mathcal{P}^{(1)})_{r_1} \times \cdots \times (\mathcal{P}^{(k)})_{r_k}$. Each element $A \in \mathcal{A}$ is a tuple

$$A = (P^{(1)}_1, \ldots, P^{(1)}_{r_1}, \ldots, (P^{(k)}_1, \ldots, P^{(k)}_{r_k})),$$

where each $P_j^{(i)} \in \mathcal{P}_i$ is an $s_i t_i$-path of length ℓ and $P_j^{(i)} \neq P_j^{(i)}$ holds for every i and $j \neq j'$. For notational convention, we write $A = (P_1, \ldots, P_R) \in \mathcal{A}$. Since $r_k > 0$, it holds that $P_R \in \mathcal{P}^{(k)}$.

For a tuple $A = (P_1, \ldots, P_t)$ of t paths, let $E(A) = \bigcup_{i=1}^{t} E(P_i)$ and $V(A) = \bigcup_{i=1}^{t} V(P_i)$ (we will use induction on R and hence we assume $t \leq R$ here). For $\mathcal{S} \subseteq \mathcal{A}$, we consider

$$\Gamma_\mathcal{S} = \sum_{A \in \mathcal{S}} p_{E(A)}^{t^E(A)}.$$
Note that $\mathbf{E}\left[\prod_{i=1}^{k}\left(X^{(i)}_{r_i}\right)\right] = \sum_{A \in \mathcal{A}} \mathbf{Pr}[E(A) \subseteq E(G(n,p))] = \Gamma_A$. We claim
\begin{equation}
n^{R(\ell-1)}p^{R\ell}\left(1 - O\left(\frac{1}{n}\right)\right) \leq \Gamma_A \leq n^{R(\ell-1)}p^{R\ell}\left(1 + O\left(\frac{1}{np}\right)\right),
\end{equation}
which completes the proof of Theorem 15.

Figure 1: A tuple $A \in \mathcal{A} \setminus \mathcal{F}$. Figure 2: A tuple $A \in \mathcal{F}$.

For any $A \in \mathcal{A}$, it holds that $|E(A)| \leq R\ell$ and the equality holds if and only if any two distinct paths P_i, P_j of A shares no edges (see Figure 1). Let
\begin{align*}
\mathcal{F} &= \{A \in \mathcal{A} : |E(A)| < R\ell\} \\
&= \{(P_1, \ldots, P_{R\ell}) \in \mathcal{A} : \exists i \neq j, E(P_i) \cap E(P_j) \neq \emptyset\}.
\end{align*}
Figure 2 illustrates an example. Then, Γ_A can be decomposed into
\begin{equation}
\Gamma_A = \Gamma_{\mathcal{F}} + \Gamma_{\mathcal{A} \setminus \mathcal{F}}.
\end{equation}
The second term $\Gamma_{\mathcal{A} \setminus \mathcal{F}}$ satisfies
\begin{align*}
\Gamma_{\mathcal{A} \setminus \mathcal{F}} &= p^{R\ell} |\{A \in \mathcal{A} : |E(A)| = R\ell\}| \\
&\geq p^{R\ell} |\{A \in \mathcal{A} : |E(A)| = R\ell \text{ and } |V(A)| = R(\ell - 1) + 2k\}| \\
&= (n - 2k)R(\ell - 1)p^{R\ell} \\
&\geq n^{R(\ell-1)}p^{R\ell}\left(1 - O\left(\frac{1}{n}\right)\right).
\end{align*}
This implies the lower bound $\Gamma_A \geq \Gamma_{\mathcal{A} \setminus \mathcal{F}} \geq n^{R(\ell-1)}p^{R\ell}\left(1 - O\left(\frac{1}{n}\right)\right)$.

Now it suffices to bound Γ_A from above. Observe that $\Gamma_{\mathcal{A} \setminus \mathcal{F}}$ satisfies
\begin{equation}
\Gamma_{\mathcal{A} \setminus \mathcal{F}} = p^{R\ell} |\{A \in \mathcal{A} : |E(A)| = R\ell\}| \leq n^{R(\ell-1)}p^{R\ell}.
\end{equation}
We show that this term is dominating in Γ_A. Theorem 15 immediately follows from Equations (15) and (16) and the following result:

\begin{thebibliography}{10}
\end{thebibliography}
Lemma 17. Suppose that \((np)^\ell = \Omega(n)\). Define \(\mathcal{F}\) as Equation (14). It holds that

\[
\Gamma_{\mathcal{F}} = O\left(\frac{n^{R(\ell-1)}p^{R\ell}}{np}\right).
\]

Proof. We use induction on \(R\). For the base case of \(R = 1\), we have \(\mathcal{F} = \emptyset\) and thus

\[
\Gamma_{\mathcal{A}} \leq n^{\ell-1}p^{\ell},
\]

\[
\Gamma_{\mathcal{F}} = 0.
\]

Suppose that \(R \geq 2\) and that Theorem 17 holds for \(R - 1\). Note that Theorem 15 also holds for \(R - 1\) since Theorem 17 implies Theorem 15. Let

\[
\mathcal{A}' = (\mathcal{P}^{(1)})_{r_1} \times \cdots \times (\mathcal{P}^{(k-1)})_{r_{k-1}}.
\]

Then, each element \(A = (P_1, \ldots, P_R) \in \mathcal{A}\) can be decomposed into \(A' = (P_1, \ldots, P_{R-1}) \in \mathcal{A}'\) and \(P_R \in \mathcal{P}^{(k)}\). Note that the edge set \(E(A')\) for \(A' \in \mathcal{A}'\) are defined in the same way as \(E(A)\) and it holds that \(|E(A')| \leq (R - 1)\ell\). Let

\[
\mathcal{F}' = \{A' \in \mathcal{A}' : |E(A')| < (R - 1)\ell\}.
\]

By the induction assumption on \(\mathcal{F}'\) and \(\mathcal{A}'\), we have

\[
\Gamma_{\mathcal{A}'} \leq n^{(R-1)(\ell-1)p^{(R-1)}\ell} \left(1 + C_1 \frac{1}{np}\right),
\]

\[
\Gamma_{\mathcal{F}'} \leq C_2 \left(1 + \frac{1}{np}\right).
\]

for some constants \(C_1, C_2 > 0\). For \(A = (P_1, \ldots, P_R) \in \mathcal{F}\), let \(A' = (P_1, \ldots, P_{R-1}) \in \mathcal{A}'\). Since \(A \in \mathcal{F}\), either

(i) \(E(P_R) \cap E(P_i) \neq \emptyset\) for some \(1 \leq i < R\), or

(ii) \(E(P_R) \cap E(A') = \emptyset\) and \(E(P_i) \cap E(P_j) \neq \emptyset\) for some \(1 \leq i < j < R\) (thus \(A' \in \mathcal{F}'\)) holds. Therefore, we have

\[
\Gamma_{\mathcal{F}} = \sum_{A \in \mathcal{F}} p^{\{|E(A)|\}}
\]

\[
\leq \sum_{A' \in \mathcal{A}'} \sum_{P_R \in \mathcal{P}^{(k)} : E(A) \cap E(P_R) \neq \emptyset} p^{\{|E(A')\cup E(P_R)|\}} + \sum_{A' \in \mathcal{A}'} \sum_{P_R \in \mathcal{P}^{(k)} : E(P_R) \cap E(A') = \emptyset} p^{\{|E(A')\cup E(P_R)|\}}.
\]

From the induction assumption, the second term satisfies

\[
\sum_{A' \in \mathcal{A}'} \sum_{P_R \in \mathcal{P}^{(k)} : E(P_R) \cap E(A') = \emptyset} p^{\{|E(A')\cup E(P_R)|\}} = \sum_{A' \in \mathcal{A}'} p^{\{|E(A')|\}} \sum_{P_R \in \mathcal{P}^{(k)} : E(P_R) \cap E(A') = \emptyset} p^{\{|E(P_R)|\}}
\]

\[
\leq \Gamma_{\mathcal{F}'} \cdot n^{\ell-1}p^{\ell}.
\]

\[\text{THE ELECTRONIC JOURNAL OF COMBINATORICS 27(3) (2020), \#P3.62}\]
The first term can be rewritten as
\[
\sum_{A' \in A'} \sum_{P_R \in \mathcal{P}^{(k)}: E(A') \cap E(P_R) \neq \emptyset} p^{E(A') \cup E(P_R)} = \sum_{A' \in A'} \sum_{P_R \in \mathcal{P}^{(k)}: E(A') \cap E(P_R) \neq \emptyset} p^{E(A')} \sum_{P_R \in \mathcal{P}^{(k)}: E(A) \cap E(P_R) \neq \emptyset} p^{E(P_R) \setminus E(A')}.
\]

Fix \(A' = (P_1, \ldots, P_{R-1}) \in A'\). Let \(S = \{s_1, \ldots, s_k, t_1, \ldots, t_k\}\) be the endpoints of the paths and let \(V_i = S \cup V(P_1) \cup \cdots \cup V(P_{R-1})\). To bound the number of \(P_R\) satisfying the condition (ii), we consider two cases: \(E(P_R) \not\subseteq E(A')\) and \(E(P_R) \subseteq E(A')\).

Case I. \(E(P_R) \not\subseteq E(A')\). The edge set \(E(P_R) \cap E(A')\) forms a forest. Since \(E(P_R) \not\subseteq E(A')\), this forest is not connected and thus we have \(|V(P_R) \cap V_1| - |E(P_R) \cap E(A')| \geq 2\). This yields
\[
|V(P_R) \setminus V_1| = |V(P_R)| - |V(P_R) \cap V_1| \
\leq \ell - |E(P_R) \cap E(A')| - 1.
\]

Let \(|E(P_R) \cap E(A')| = t < \ell\). Then, \(P_R\) consists of two type of vertices: at most \(\ell - t - 1\) from \(V \setminus V_1\) and the others from \(V_1\). Therefore, there are at most \(n^{\ell-t-1} |V_1|^t \leq C' n^{\ell-t-1}\) candidates for the path \(P_R\) satisfying \(|E(P_R) \cap E(A')| = t < \ell\), where \(C = (R - 1)(\ell + 1)\) (recall that two endpoints of \(P_R\) are fixed and thus they are not taken into account).

Case II. \(E(P_R) \subseteq E(A')\). We claim \(A' \in \mathcal{F}'\). If not, it holds that \(E(P_i) \cap E(P_j) = \emptyset\) for any \(i < j < R\). Hence, \(E(P_R) \subseteq E(A')\) implies \(P_R = P_i\) for some \(i < R\). This contradicts to the definition of \(\mathcal{A}\) (\(P_i \neq P_j\) for any \(i < j \leq R\)). Moreover, the number of \(P_R \in \mathcal{P}^{(k)}\) satisfying \(E(P_R) \subseteq E(A')\) is at most \(|V_1|^{\ell-1} \leq C_R^{\ell-1}\). Therefore, we have
\[
\sum_{A' \in A'} \sum_{P_R \in \mathcal{P}^{(k)}: E(A') \cap E(P_R) \neq \emptyset} p^{E(A') \cup E(P_R)} \
\leq \sum_{A' \in A'} \sum_{t=1}^{\ell-1} \sum_{P_R \in \mathcal{P}^{(k)}: |E(A') \cap E(P_R)| = t} p^{E(P_R) \setminus E(A')} + \sum_{A' \in \mathcal{F}'} p^{E(A')} C_R^{\ell-1} \\
\leq \sum_{A' \in A'} \sum_{t=1}^{\ell-1} C'^{t} n^{\ell-t-1} p^{t} + C_R^{\ell-1} \Gamma_{\mathcal{F}'} \\
\leq \Gamma_{\mathcal{A}'} \cdot \frac{C'n^{\ell-1}p^{\ell}}{np} \left(1 + \frac{1.01C'}{np}\right) + C_R^{\ell-1} \Gamma_{\mathcal{F}'}.
\]

From Equations (17) to (19) and the induction assumption, we have
\[
\Gamma_{\mathcal{F}} \leq \Gamma_{\mathcal{F}'} \cdot n^{\ell-1} p^{\ell} + \Gamma_{\mathcal{A}'} \cdot \frac{C'n^{\ell-1}p^{\ell}}{np} \left(1 + \frac{1.01C'}{np}\right) + C_R^{\ell-1} \Gamma_{\mathcal{F}'} \\
\leq O\left(\frac{n^{R(\ell-1)} p^{R\ell}}{np}\right).
\]
This completes the proof of Theorem 17 and thus Theorem 15 (Here, we have used the assumption that \((np)^{\ell} = \Omega(n)\)).

Proof of Theorem 14. Let \(d = (1 + o(1))np = (\beta + o(1))n^\alpha\). From Theorem 8, we have \(\Pr[H \subseteq G(n, p)] = (1 + o(1)) \Pr[H \subseteq G(n, d)]\) for any fixed graph \(H\). Let \(R = r_1 + \cdots + r_k\) and \(A = (\mathcal{P}^{(1)})_{r_1} \times \cdots \times (\mathcal{P}^{(k)})_{r_k}\). We write each element \(A \in A\) as a tuple \(A = (P_1, \ldots, P_R)\) of \(R\) paths. Then, from Theorem 16, we have

\[
\mathbb{E}_{G_{n,d}} \left[\prod_{i=1}^{k} \left(X^{(i)} \right)_{r_i} \right] = \sum_{(P_1, \ldots, P_R) \in A} \Pr[E(P_1 \cup \cdots \cup P_R) \subseteq G_{n,d}]
= (1 + o(1)) \sum_{(P_1, \ldots, P_R)} \Pr[E(P_1 \cup \cdots \cup P_R) \subseteq G(n, p)]
= (1 + o(1)) \mathbb{E}_{G(n,p)} \left[\prod_{i=1}^{k} \left(X^{(i)} \right)_{r_i} \right]
= (\beta + o(1))^{1/\alpha}.
\]

4 Concentration of \(\text{AD}(G(n, p))\)

We prove Theorem 3. We use \(\text{AD} = \text{AD}(G(n, p))\) and \(\text{diam} = \text{diam}(G(n, p))\) as random variables. Let \(D = \lceil \mu \rceil = \lfloor \alpha^2 - 1 \rfloor + 1\). From Theorem 5, we have

\[
\Pr[|\text{AD} - \mu| > \epsilon] \leq \Pr[|\text{AD} - \mu| > \epsilon | \text{diam} = D] \Pr[\text{diam} = D] + \Pr[\text{diam} \neq D] \\
\leq \Pr[|\text{AD} - \mu| > \epsilon | \text{diam} = D] + o(1)
\]

for any \(\epsilon = \epsilon(n) > 0\). Therefore, we may put the condition that \(\text{diam} = D\).

For \(i = 1, \ldots, D\), let

\[
N_i = \left\{ \{s, t\} \in \left(\frac{V}{2} \right) : \text{dist}(s, t) = i \right\}.
\]

We will prove the following result in Section 4.1:

Lemma 18. Let \(C > 0\) be a sufficiently large constant and \(\epsilon = \epsilon(n) := \sqrt{\frac{\log n}{np}}\). Then, \(|N_i - M_i| \leq C\epsilon M_i\) holds w.h.p. for all \(i = 1, \ldots, D - 1\), where

\[
M_i = \begin{cases} \frac{(np)^i}{n} \binom{\frac{n}{2}}{i} & \text{if } i < \alpha^2, \\ \left(1 - \exp(-\beta^{1/\alpha})\right)^{\frac{n}{2}} & \text{if } i = \alpha^2 \in \mathbb{N}. \end{cases}
\]
An upper bound of AD. Conditioned on $diam = D$, it immediately holds that $AD \leq diam \leq D$. Thus, if $\alpha^{-1} \not\in \mathbb{N}$, we have

$$AD \leq D = \mu$$

with probability $1 - \exp(-n^{\Omega(n)})$.

Now we focus on the case where $\alpha^{-1} \in \mathbb{N}$. Let $\epsilon = C\sqrt{\frac{\log n}{np}}$ for sufficiently large constant $C > 0$. Conditioned on $diam = D$, Theorem 18 implies

$$N_D = \binom{n}{2} - N_1 - \cdots - N_{D-1} \leq (1 + O(\epsilon)) \exp(-\beta^{1/\alpha})\binom{n}{2}.$$

Therefore, conditioned on $diam = D$, we have

$$\binom{n}{2} \cdot AD = \sum_{i=1}^{D} iN_i \leq DN_D + (D - 1)\left(\binom{n}{2} - N_D\right) = N_D + (D - 1)\binom{n}{2} \leq (1 + O(\epsilon))\mu\binom{n}{2}.$$

In other words, $AD \leq \mu + O(\epsilon)$ holds w.h.p.

A lower bound of AD. Conditioned on $diam = D$, we have $N_1 + \cdots + N_D = \binom{n}{2}$ and thus

$$\binom{n}{2} \cdot AD = \sum_{i=1}^{D} iN_i = N_1 + 2N_2 + \cdots + (D - 1)N_{D-1} + D\left(\binom{n}{2} - N_1 - \cdots - N_{D-1}\right) \geq (1 - O(\epsilon))\mu\binom{n}{2}.$$

In the last inequality, we used Theorem 18. This completes the proof of Theorem 3.
4.1 Proof of Theorem 18

The proof of Theorem 18 is a slight modification of the proof of Theorem 7.1 of [14].

Consider $G(n, p)$ of $p = (\beta + o(1))n^{-1+\alpha}$. Let $D = [\alpha^{-1}] + 1$. We consider the breadth first search process on $G(n, p)$ from a fixed vertex. Fix a vertex v. For $k \geq 0$, let $N_k(v) = \{w \in V : \text{dist}(v, w) = k\}$.

Note that $N_0(v) = \{v\}$. For sufficiently large constant $C > 0$ and $\epsilon := \sqrt{\frac{\log n}{np}}$, let \mathcal{F}_k be the event of $G(n, p)$ that

$$\left| N_i(v) \right| - \frac{2M_i}{n} \leq \frac{CeM_i}{n} \text{ for all } i = 1, \ldots, k,$$

where M_i is given in Theorem 18. Note that, if we are given $N_0(v), \ldots, N_{k-1}(v)$, the random variable $|N_k(v)|$ is distributed as a binomial random variable, that is,

$$|N_k(v)| \sim \text{Bin} \left(n - \sum_{i=0}^{k-1} |N_i(v)|, 1 - (1 - p)^{\left| N_{k-1}(v) \right|} \right).$$

Consider $\mathbb{E}[|N_k(v)| | \mathcal{F}_{k-1}]$. For every $k = 1, \ldots, D - 1$, conditioned on \mathcal{F}_{k-1}, we have

$$n \geq n - \sum_{i=0}^{k-1} |N_i(v)| \geq (1 - O(\epsilon))n.$$

Here, recall that $(np)^{D-1} = O(n)$. Using the inequality $e^{-\frac{x^2}{2}} \leq 1 - x \leq e^{-x}$ for every $x \in [0, 1)$ (c.f., Lemma 21.1 of [14]), we obtain

$$1 - (1 - p)^{\left| N_{k-1}(v) \right|} = \begin{cases} (1 \pm O(\epsilon))p(np)^{k-1} & \text{if } k = 1, \ldots, D - 2, \\ (1 \pm O(\epsilon))\exp(-\beta^{1/\alpha}) & \text{if } k = D - 1. \end{cases}$$

Therefore, we have

$$\mathbb{E}[|N_k(v)| | \mathcal{F}_{k-1}] = \begin{cases} (1 \pm O(\epsilon))(np)^k & \text{if } k = 1, \ldots, D - 2, \\ (1 \pm O(\epsilon))\exp(-\beta^{1/\alpha})n & \text{if } k = D - 1. \end{cases}$$

$$= (1 \pm O(\epsilon))\frac{2M_k}{n}.$$

From the Chernoff bound (Theorem 6), we have

$$\Pr[\mathcal{F}_k | \mathcal{F}_{k-1}] \geq 1 - \exp \left(-\Theta(\epsilon^2(np)^k) \right) \geq 1 - O(n^{-2})$$

if the constant C is sufficiently large (recall that C is the constant in the definition of \mathcal{F}_k). Therefore, \mathcal{F}_{D-1} holds with probability $1 - O(n^{-2})$ for sufficiently large C. Taking the union bound, it holds w.h.p. that $|N_i(v)| = (1 \pm O(\epsilon))\frac{2M_i}{n}$ for all v. Consequently, we have $N_i = \frac{1}{2} \sum_{v \in V} |N_i(v)| = (1 \pm O(\epsilon))M_i$, which completes the proof of Theorem 18.
Acknowledgements

The author would like to thank the anonymous referees for their careful work and useful comments.

References

