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Abstract

Let AD(Gn,d) be the average distance of Gn,d, a random n-vertex d-regular
graph. For d = (β + o(1))nα with two arbitrary constants α ∈ (0, 1) and β > 0,
we prove that |AD(Gn,d) − µ| < ϵ holds with high probability for any constant
ϵ > 0, where µ is equal to α−1 + exp(−β1/α) if α−1 ∈ N and to ⌈α−1⌉ otherwise.
Consequently, we show that the diameter of the Gn,d is equal to ⌊α−1⌋+1 with high
probability.

Mathematics Subject Classifications: 05C80, 05C12

1 Introduction

The study of the diameter of regular graphs is well motivated in graph theory. A central
question is how to construct an n-vertex d-regular graph with the minimum possible di-
ameter, which has an application to high-performance computing [12, 17, 26]. Let D′(n, d)
denote the Moore bound, a well-known lower bound of the minimum possible diameter
among all n-vertex d-regular graphs [26] (we will present the bound in Equation (3)).
Let diam(G) denote the diameter of a graph G. We define diam(G) = ∞ if G is not
connected. In this paper, we show that the diameter diam(Gn,d) of a random d-regular
graph Gn,d of d = (β + o(1))nα with two arbitrary constants α ∈ (0, 1) and β > 0 satisfies

lim
n→∞

(diam(Gn,d) −D′(n, d)) =

{
0 if either α−1 ̸∈ N or (α−1 ∈ N and β < 1),

1 if α−1 ∈ N and β > 1
(1)

with probability 1 − o(1).
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Also, we study the average distance AD(Gn,d) of a random regular graph. The average
distance AD(G) of a connected graph G is

AD(G) =

(
n

2

)−1 ∑
{u,v}∈(V

2)

dist(u, v),

where dist(u, v) is the shortest uv-path length. If G is not connected, we define AD(G) =
∞.

For a graph property P , we say that an n-vertex random graph Gn satisfies P with
high probability (w.h.p.) if limn→∞ Pr[Gn satisfies P ] = 1. In this paper, we prove the
following results 1.

Theorem 1. For two constants α ∈ (0, 1) and β > 0, let d = (β + o(1))nα be an integer.
For every constant ϵ > 0, it holds w.h.p. that

|AD(Gn,d) − µ| < ϵ,

where

µ =

{
α−1 + exp(−β1/α) if α−1 ∈ N,
⌈α−1⌉ otherwise.

(2)

Theorem 2. For two constants α ∈ (0, 1) and β > 0, let d = (β + o(1))nα be an integer.
It holds w.h.p. that

diam(Gn,d) = ⌊α−1⌋ + 1.

The study of Gn,d originated from the configuration model introduced by Bollobas [3].
Independently, Bender and Canfield [1] considered a similar model. The configuration
model usually enables us to study Gn,d for a constant d. The case of d = d(n) ≫ 1 is much
less understood, though there is a well-known successful approach called the switching
method, introduced by McKay [24]. See [33] for a detailed survey on Gn,d. However,
results shown by the switching method usually require the condition that d ≪ nγ where
γ ⩽ 1 is some reasonable constant. Therefore, Gn,d of d = (β + o(1))nα with arbitrary
constant α seems to be far from these methods.

Another recent remarkable approach for the study of Gn,d is to compare Gn,d with an
Erdős-Rényi graph G(n, p) of p = d

n
. Recall that G(n, p) is an n-vertex graph where every

two distinct vertices u and v are joined by an edge with probability p independent from
any other edges. Since each degree of G(n, p) is concentrated on np, we may expect that
G(n, p) and Gn,d share several structural properties if d = (1 + o(1))np. For log n ≪ d ≪
n1/3/(log n)2, Kim and Vu [20] presented a coupling of Gn,d and Gn,d of p = (1 − o(1)) d

n

such that G(n, p) ⊆ Gn,d holds w.h.p. Dudek et al. [11, 14] improved this result by
presenting a coupling having the same property for log n ≪ d ≪ n. Their result is

1In the conference version of this paper [29], we proved Theorem 2.
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called the embedding theorem. The embedding theorem enables us to bound diam(Gn,d)
and AD(Gn,d) from above by diam(G(n, p)) and AD(G(n, p)), respectively. Very recently,
Gao, Isaev, and McKay [15] proved that there is a coupling of G(n, p) and Gn,d satisfying
G(n, p) ⊇ Gn,d if p ⩾ Cd logn

n
for some constant C, d = ω(log n) and d = o(n). We

can immediately obtain Theorem 2 by combining the coupling of [15] and known results
cencerning the diameter of G(n, p). However, due to the O(log n) factor in the condition
p ⩾ Cd logn

n
, Theorem 1 does not follow from [15] immediately.

To study diam(Gn,d) and AD(Gn,d), we shall look at diam(G(n, p)) and AD(G(n, p)) of
p = d

n
. It is well known that G(n, p) of p = (β+o(1))n−1+α has diameter ⌊α−1⌋+1 [6, 4, 14].

As for the average distance, we obtain a concentration result of AD(G(n, p)), which might
be of independent interest.

Theorem 3. For two constants α ∈ (0, 1) and β > 0, let p = βn−1+α and

µ =

{
α−1 + exp(−β1/α) if α−1 ∈ N,
⌈α−1⌉ otherwise.

Then, there exist absolute constants C1, C2 > 0 such that

|AD(G(n, p)) − µ| ⩽ C1n
−C2

holds w.h.p.

1.1 Related results and trivial bounds

Diameter of G(n, p). There is a long line of the diameter of G(n, p) [22, 4, 8, 13, 28].
For dense G(n, p), Bollobas [4] proved the following result.

Theorem 4 (Theorem 6 of [4]). Fix a positive constant c. Let D = D(n) ⩾ 2 be a positive
integer and p = p(n) ∈ [0, 1] be a real number satisfying

pDnD−1 = log(n2/c).

Suppose that np = ω(log n). Then, G(n, p) satisfies

lim
n→∞

Pr[diam(G(n, p)) = k] =


exp(−c/2) if k = D,

1 − exp(−c/2) if k = D + 1,

0 otherwise.

Corollary 5. Suppose that p = (β + o(1))n−1+α, where α ∈ (0, 1) and β > 0 are any
constants. Then, diam(G(n, p)) = ⌊α−1⌋ + 1 holds w.h.p.

It should be noted that Corollary 5 also follows from the main result of Klee and
Larman [22].

The diameter of G(n, p) of small p has gathered special attention [5, 28, 8]. In this
line of work, there is a convention that the diameter of a disconnected graph is the
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maximum among all diameters of its connected components. Bollobás [5] proved that
diam(G(n, p)) ∈ A holds w.h.p. if np − log n = ω(1), where A = A(n) ⊆ N satisfies
|A| ⩽ 4. Chung and Lu [8] studied diam(G(n, p)) with 1 < np ⩽ c log n where c is some
constant. For example, they proved that diam(G(n, p)) = (1 + o(1)) logn

lognp
holds w.h.p. if

ω(1) = np < log n. Riordan and Wormald [28] strengthened the results of [8], providing
the tight estimate for diam(G(n, p)) for 1 + o(1) ⩽ np = O(1). For smaller p,  Luczak [23]
investigated diam(G(n, p)) with np < 1.

Average distance of G(n, p). The average distance of random graphs with a power
law degree sequence has gathered a great deal of attention in network analysis [18, 27, 2,
32, 9, 31]. Focusing on G(n, p) with np = ω(log n), one may observe that AD(G(n, p)) ≈
diam(G(n, p)). More precisely, it is easy to see that AD(G(n, p)) ⩽ diam(G(n, p)) =
(1 + o(1)) logn

lognp
and AD(G(n, p)) ⩾ (1 − o(1)) logn

lognp
hold by considering the maximum

degree of G(n, p)).
Katzav et al. [18] presented analytical results on AD(G(n, p)) for dense G(n, p) that

coincide with Theorem 3. However, to the best of our knowledge, there are no known
results with rigorous proofs for AD(G(n, p)) with np = nΩ(1).

Diameter of Gn,d. The diameter of regular graphs has gathered special attention in
graph theory [12, 17, 26] and has an application in designing efficient network topologies.
Note that for every vertex v, there are at most d(d− 1)k vertices having distance k from
v. Thus, for every n-vertex d-regular graph G of diameter D with d ⩾ 3, we have

D ⩾ min

{
D ∈ N : n ⩽ 1 +

D∑
i=1

d(d− 1)i−1

}

=

⌈
logd−1 n + logd−1

(
1 − 2

d

(
1 − 1

n

))⌉
(3)

=
log n

log(d− 1)
−O(1).

We denote by D′ = D′(n, d) this lower bound Equation (3), which is known as the Moore
bound [26].

For random regular graphs Gn,d, Bollobás and de la Vega [7] proved that

diam(Gn,d) = D′(n, d) ±O

(
log log n

log(d− 1)

)
holds w.h.p. if the degree d ⩾ 3 is a constant. If log n ≪ d ⩽ no(1), the embedding
theorem of Dudek et al. [11, 14] and the lower bound Equation (3) together imply that

diam(Gn,d) = (1 + o(1))
log n

log d
= (1 + o(1))D′(n, d)

holds w.h.p.
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Suppose that d = (β + o(1))nα, where α ∈ (0, 1) and β > 0 are constants. From the
embedding theorem, we have diam(Gn,d) ⩽ ⌊α−1⌋ + 1 holds w.h.p., as we will confirm
in Section 2. On the other hand, by substituting d = (β + o(1))nα to Equation (3), we
obtain

lim
n→∞

D′ =


⌊α−1⌋ + 1 if α−1 ̸∈ N or (α−1 ∈ N ∧ β < 1),

α−1 if α−1 ∈ N ∧ β > 1,

depends on the term o(1) if α−1 ∈ N ∧ β = 1.

(4)

By combining Theorem 2 and eq. (4), we obtain Equation (1). As mentioned earlier,
Theorem 1 immediately follows from the result of Gao, Isaev, and McKay [15]. In this pa-
per, we prove Theorem 2 by combining the upper bound from the embedding theorem [11]
and Theorem 1 (note that diam(G) ⩾ ⌈AD(G)⌉).

Average distance of Gn,d. Let Nk be the number of vertex pairs of distance k. We
use the same argument as for Equation (3) to obtain a lower bound of AD(G) for any
d-regular graph with d ⩾ 3. Suppose diam(G) = D′ and thus N1 + · · · + ND′ =

(
n
2

)
.

Moreover, for every k = 1, . . . , D′ − 1, we have Nk ⩽ d(d− 1)k−1. Therefore, we obtain

AD(G) =

(
n

2

)−1

(N1 + 2N2 + · · · + D′ND′)

= D′ −
(
n

2

)−1

((D′ − 1)N1 + (D′ − 2)N2 + · · · + ND′−1)

⩾ D′ −
(
n

2

)−1 D′−1∑
k=1

(D′ − k)d(d− 1)k−1

= D′ − d(d− 1)D
′

(n− 1)(d− 2)2
+

dD′

(n− 1)(d− 2)
+

d

(n− 1)(d− 2)2
(5)

= logd−1 n−O(1).

Let AD′ = AD(n, d) denote the lower bound Equation (5). Then, we have

log n

log(d− 1)
−O(1) ⩽ AD(Gn,d) ⩽ diam(Gn,d).

This implies that

AD(Gn,d) = (1 + o(1))
log n

log(d− 1)

holds w.h.p. if d ⩾ 3 is constant or log n ≪ d ⩽ no(1).
Suppose that d = (β + o(1))nα, where α ∈ (0, 1) and β > 0 are constants. From the

lower bound Equation (5), we have

lim
n→∞

AD′ =


⌊α−1⌋ + 1 if α−1 ̸∈ N,
α−1 if α−1 ∈ N and β > 1,

α−1 − β1/α + 1 if α−1 ∈ N and β < 1,

depends on the term o(1) otherwise.

(6)

the electronic journal of combinatorics 27(3) (2020), #P3.62 5



1.2 Definitions and notation

For two positive integers k and m with k ⩽ m, we denote by (m)k the falling factorial
m(m− 1) · · · (m− k + 1). For a finite set X and a positive integer k ⩽ |X|, we use(

X

k

)
:= {{x1, . . . , xk} ⊆ X : |{x1, . . . , xk}| = k},

(X)k :=

{
(x1, . . . , xk) : {x1, . . . , xk} ∈

(
X

k

)}
.

For a graph G, we denote by V (G) and E(G), respectively, the vertex set and the edge
set of G. Note that E(G) ⊆

(
V (G)
2

)
is a set of unordered vertex pairs. Throughout the

paper, the number of vertices of a graph is denoted by n, and the vertex set is denoted
by V = {1, . . . , n}.

We simply write H ⊆ G if H is contained in G, that is, V (H) ⊆ V (G) and E(H) ⊆
E(G) hold. Two graphs G ∪H and G ∩H are defined by

G ∪H = (V (G) ∪ V (H), E(G) ∪ E(H)),

G ∩H = (V (G) ∩ V (H), E(G) ∩ E(H)).

It should be noted that G and H are labelled.
A path is defined to be a graph P = ({v0, . . . , vℓ}, {{v0, v1}, . . . , {vℓ−1, vℓ}}) for distinct

vertices v0, . . . , vℓ. The vertices of degree one in a path are called endpoints. We call a
path of endpoints s and t an st-path. The length of a path is the number of edges. For
a graph G and its two distinct vertices s and t, the distance distG(s, t) is the minimum
length among all st-paths contained in G. We define distG(s, t) = ∞ if G does not contain
any st-paths. For a graph G = (V,E) of n vertices, the average distance AD(G) of G is

AD(G) =

(
n

2

)−1 ∑
{s,t}∈(V

2)

distG(s, t).

The diameter diam(G) of G is

diam(G) = max
s ̸=t

distG(s, t).

Note that diam(G) = AD(G) = ∞ if G is not connected. We use dist(s, t) rather than
distG(s, t) if the graph G is clear from the context.

For an event Z on a graph G (say, distG(1, 2) ⩾ ℓ), we use

1[Z](G) =

{
1 if G satisfies an event Z,

0 otherwise

as the indicator function.
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1.3 Tools

Lemma 6 (The Chernoff bound; Theorem 10.1 and 10.5 of [10]). Let X1, X2, . . . , Xn be
independent binary random variables satisfying that Pr[Xi = 1] = pi and let X =

∑n
i=1 Xi

be the sum. Then, for any ϵ ⩾ 0,

Pr[X ⩾ (1 + ϵ)E[X]] ⩽ exp

(
−min{ϵ, ϵ2}E[X]

3

)
and

Pr[X ⩽ (1 − ϵ)E[X]] ⩽ exp

(
−ϵ2E[X]

2

)
.

Lemma 7 (Multivariate version of Brun’s sieve; Lemma 2.8 of [33]). Let S
(1)
n , . . . , S

(k)
n

be random variables defined on the same space Ωn such that each S
(i)
n can be written as

the sum of binary random variables. Suppose that there exist positive constants λ1, . . . , λk

satisfying

lim
n→∞

E

[
k∏

i=1

(S(i)
n )ri

]
=

k∏
i=1

λri
i

for every fixed integers r1, . . . , rk ⩾ 0.
Then, for any constants j1, . . . , jk ⩾ 0, it holds that

lim
n→∞

Pr

[
k∧

i=1

[S(i)
n = ji]

]
=

k∏
i=1

exp(−λi)
λji

ji!
.

Lemma 8 (Lemma 2.1 of [19]). Suppose that 1 ≪ d ≪ n. For any fixed graph H, it holds
that

Pr[H ⊆ Gn,d] = (1 + o(1))

(
d

n

)|E(H)|

.

Let G[n,m] be a graph selected uniformly at random from the set of all graphs of n
vertices with exactly m edges.

Lemma 9 (The embedding theorem; Theorem 10.10 of [14]). There is a constant C > 0
that satisfies the following. For any real γ = γ(n), integer d = d(n) satisfying

C

((
d

n
+

log n

d

)1/3
)

⩽ γ < 1, (7)

and m = ⌊(1 − γ)nd/2⌋, there exists a joint distribution π of G[n,m] and Gn,d such that

lim
n→∞

Pr
π

[G[n,m] ⊆ Gn,d] = 1

holds.

In other words, for log n ≪ d ≪ n, we can choose m = (1 − o(1))nd/2 and couple
G[n,m] and Gn,d such that G[n,m] ⊆ Gn,d holds w.h.p.
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2 Upper bounds of AD(Gn,d) and diam(Gn,d)

In this section we obtain upper bounds of AD(Gn,d) and diam(Gn,d) using Lemma 9. As
noted in [11], in Lemma 9, one can replace G[n,m] by G(n, p) of p = (1 − 2γ)d/(n− 1).
This yields the following result.

Corollary 10. For d = d(n) satisfying log n ≪ d ≪ n, there exists p = (1 − o(1)) d
n
such

that AD(Gn,d) ⩽ AD(G(n, p)) and diam(Gn,d) ⩽ diam(G(n, p)) hold w.h.p.

For d = (β+o(1))nα, take γ of Lemma 9 satisfying γ = o(1), and let p = (1−2γ) d
n−1

=
(β + o(1))n−1+α. Then, from Theorem 3 and corollary 10, it holds w.h.p. that

AD(Gn,d) ⩽ AD(G(n, p)) ⩽ µ + o(1). (8)

Similarly, from Corollaries 5 and 10, a random regular graph Gn,d w.h.p. satisfies

diam(Gn,d) ⩽ diam(G(n, p)) ⩽ ⌊α−1⌋ + 1. (9)

3 Lower bounds of AD(Gn,d) and diam(Gn,d)

If α−1 ̸∈ N, the lower bound Equation (6) and the upper bound Equation (8) yield that

AD(Gn,d) = ⌊α−1⌋ + 1 − o(1)

holds w.h.p. Now we focus on the case where α−1 ∈ N. This section is devoted to prove
the following.

Lemma 11. Let d = (β+o(1))nα, where α ∈ (0, 1) and β > 0 are any constants satisfying
α−1 ∈ N. For any constant ϵ > 0,

lim
n→∞

Pr[AD(Gn,d) ⩽ µ− ϵ] = 0,

where µ = α−1 + exp(−β1/α).

Remark. By combining Equation (8) and lemma 11, we complete the proof of Theo-
rem 1. Moreover, Lemma 11 implies

diam(Gn,d) ⩾ ⌈AD(Gn,d)⌉ = ⌊α−1⌋ + 1

holds w.h.p., which completes the proof of Theorem 2.

Proof of Lemma 11. Note that

AD(Gn,d) =

(
n

2

)−1 ∑
{s,t}∈(V

2)

dist(s, t)
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=
∞∑
ℓ=1

(
n

2

)−1 ∑
{s,t}∈(V

2)

1[dist(s,t)⩾ℓ]

⩾
α−1+1∑
ℓ=1

(
n

2

)−1 ∑
{s,t}∈(V

2)

1[dist(s,t)⩾ℓ].

For ℓ ∈ {1, . . . , α−1 + 1}, let pℓ = pℓ(Gn,d) =
(
n
2

)−1∑
{s,t}∈(V

2)
1[dist(s,t)⩾ℓ]. We evaluate pℓ

using the following result.

Lemma 12. Consider Gn,d of d = (β + o(1))nα. Fix two constants α ∈ (0, 1) and β > 0
satisfying α−1 ∈ N. For any constant k ∈ N, fix 2k distinct vertices s1, . . . , sk, t1, . . . , tk.
For any fixed ℓ1, . . . , ℓk ∈ {1, . . . , α−1 + 1}, it holds that

lim
n→∞

Pr

[
k∧

i=1

[dist(si, ti) ⩾ ℓi]

]
= exp(−Mβ1/α)

where M = |{i ∈ {1, . . . , k} : ℓi = α−1 + 1}|.

We will prove Lemma 12 in Section 3.1. For ℓ ∈ {1, . . . , α−1 + 1}, let

µℓ =

{
1 if 1 ⩽ ℓ ⩽ α−1,

exp(−β1/α) if ℓ = α−1 + 1.

From Lemma 12, we have

E[pℓ] =

(
n

2

)−1 ∑
{s,t}∈(V

2)

Pr[dist(s, t) ⩾ ℓ]

= Pr[dist(1, 2) ⩾ ℓ] = µ + o(1)

and

E[p2ℓ ] =

(
n

2

)−2 ∑
{s,t},{s′,t′}∈(V

2)

Pr[dist(s, t) ⩾ ℓ ∧ dist(s′, t′) ⩾ ℓ]

=

(
n

2

)−2

O(n3) +
∑

{s,t},{s′,t′}∈(V
2):

{s,t}∩{s′,t′}=∅

Pr[dist(s, t) ⩾ ℓ ∧ dist(s′, t′) ⩾ ℓ]


= Pr[dist(1, 2) ⩾ ℓ ∧ dist(3, 4) ⩾ ℓ] + o(1) = µ2 + o(1).

From the Chebyshev inequality, for every constant ϵ > 0, we have

Pr[|pℓ − E[pℓ]| ⩾ ϵ] ⩽
Var[pℓ]

ϵ2
= o(1).
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Thus we obtain

Pr

[∣∣∣∣∣
(

α−1+1∑
ℓ=1

pℓ

)
− µ

∣∣∣∣∣ > ϵ

]
⩽

α−1+1∑
ℓ=1

Pr
[
|pℓ − µℓ| > ϵ/(α−1 + 1)

]
= o(1).

Therefore, it holds w.h.p. that

AD(Gn,d) ⩾
α−1+1∑
ℓ=1

pℓ ⩾ µ− o(1),

which completes the proof of Lemma 11.

3.1 Distances of fixed vertex pairs of Gn,d

This part is devoted to prove Lemma 12. We start with establishing the following result.

Lemma 13. Consider Gn,d of d = (β + o(1))nα for constants α ∈ (0, 1) and β > 0. For
two fixed distinct vertices s and t, it holds w.h.p. that dist(s, t) ∈ {⌈α−1⌉, ⌊α−1⌋ + 1}.

Proof. For two fixed vertices s, t of Gn,d and an integer ℓ, we denote by P the set of paths
of length ℓ connecting s and t in a complete graph. Let Xℓ = Xℓ(Gn,d) be the number of
paths P ∈ P contained in Gn,d, that is,

Xℓ = |{P ∈ P : P ⊆ Gn,d}|. (10)

Fix an integer ℓ satisfying ℓα < 1 (or equivalently, ℓ ⩽ ⌈α−1⌉ − 1). Then, from
Lemma 8, we have

E(Xℓ) =
∑
P∈P

Pr[P ⊆ Gn,d]

= (1 + o(1))nℓ−1

(
d

n

)ℓ

= o(1).

From the Markov’s inequality, we obtain

Pr[dist(s, t) ⩽ ℓ] ⩽ Pr[X1 + · · · + Xℓ > 0]

⩽
ℓ∑

i=1

E(Xi)

= o(1).

In other words, dist(s, t) ⩾ ℓ + 1 ⩾ ⌈α−1⌉ holds w.h.p.
On the other hand, from Equation (9), we have dist(s, t) ⩽ diam(Gn,d) ⩽ ⌊α−1⌋ + 1.

This completes the proof of Lemma 13.
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Proof of Lemma 12. Fix an integer k > 0 and 2k distinct vertices s1, . . . , sk, t1, . . . , tk
of Gn,d, where d = (β + o(1))nα. From Lemma 13, it holds w.h.p. that dist(s, t) ∈
{α−1, α−1 + 1}.

Suppose that ℓ1 ⩽ α−1 and thus dist(s1, t1) ⩾ ℓ1 holds w.h.p. Then we have

Pr

[
k∧

i=2

[dist(si, ti) ⩾ ℓi]

]
−Pr[dist(s1, t1) < ℓ1] ⩽ Pr

[
k∧

i=1

[dist(si, ti) ⩾ ℓi]

]

⩽ Pr

[
k∧

i=2

[dist(si, ti) ⩾ ℓi]

]
and thus

Pr

[
k∧

i=1

[dist(si, ti) ⩾ ℓi]

]
= Pr

[
k∧

i=2

[dist(si, ti) ⩾ ℓi]

]
− o(1).

Hence, we may assume that ℓi = α−1 + 1 for all i = 1, . . . , k (i.e., M = k in Lemma 12).
Let P(i) denote the set of siti-paths of length α−1 contained in the complete graph

Kn. Define X(i) as the number of paths of P(i) contained in Gn,d, that is,

X(i) = |{P ∈ P(i) : P ⊆ G(n, p)|.

Then, we have

Pr

[
k∧

i=1

[dist(si, ti) ⩾ α−1 + 1]

]
= Pr

[
k∧

i=1

[dist(si, ti) ⩾ α−1] ∧
k∧

i=1

[X(i) = 0]

]

= Pr

[
k∧

i=1

[X(i) = 0]

]
− o(1). (11)

We evaluate Equation (11) using the following result, which will be shown in Sec-
tion 3.2.

Lemma 14. Consider Gn,d of d = (β + o(1))nα, where α ∈ (0, 1) and β > 0 are any
constants satisfying α−1 ∈ N. Fix 2k distinct vertices s1, . . . , sk, t1, . . . , tk, where k is any
constant. For i = 1, . . . , k, let X(i) denote the number of siti-paths of length α−1 ∈ N

contained in G(n, p). Fix arbitrary nonnegative integers r1, . . . , rk. Then, it holds that

E

[
k∏

i=1

(X(i))ri

]
= (β1/α)R + o(1),

where R = r1 + · · · + rk.

From Lemma 14 and the Poisson approximation theorem (Lemma 7), we have

Pr

[
k∧

i=1

[X(i) = 0]

]
= exp(−kβ1/α) + o(1). (12)
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By combining Equations (11) and (12), we have

Pr

[
k∧

i=1

[dist(si, ti) ⩾ α−1 + 1]

]
= exp(−kβ1/α) − o(1).

This completes the proof of Lemma 12 and thus Lemma 11.

3.2 Proof of Lemma 14

We first prove the following result and then show Lemma 14.

Lemma 15. Fix an integer ℓ ⩾ 1 and consider G(n, p) satisfying (np)ℓ = Ω(n). Fix 2k
distinct vertices s1, . . . , sk, t1, . . . , tk, where k is arbitrary constant. For i = 1, . . . , k, let
X(i) denote the number of siti-paths of length ℓ ∈ N contained in G(n, p).

Then, for any fixed nonnegative integers r1, . . . , rk,

E

[
k∏

i=1

(
X(i)

)
ri

]
= nR(ℓ−1)pRℓ

(
1 ±O

(
1

np

))
,

where R = r1 + · · · + rk.

Corollary 16. Consider G(n, p) of p = (β + o(1))n−1+α, where α ∈ (0, 1) and β > 0 are
any constants satisfying α−1 ∈ N. Fix arbitrary nonnegative integers r1, . . . , rk. Then, it
holds that

E

[
k∏

i=1

(X(i))ri

]
= (β1/α)R + o(1),

where R = r1 + · · · + rk.

Proof of Lemma 15. For a positive constant k, fix 2k distinct vertices s1, . . . , sk, t1, . . . , tk.
For every i ∈ {1, . . . , k}, let P(i) denote the set of all siti-paths of length ℓ contained in
the complete graph. We denote by X(i) the number of paths of P(i) contained in G(n, p).

Fix nonnegative integers k, r1, . . . , rk. We may assume that ri > 0 for every i =
1, . . . , k. Let A = (P(1))r1 × · · · × (P(k))rk . Each element A ∈ A is a tuple

A = ((P
(1)
1 , . . . , P (1)

r1
), . . . , (P

(k)
1 , . . . , P (k)

rk
)),

where each P
(i)
j ∈ Pi is an siti-path of length ℓ and P

(i)
j ̸= P

(i)
j′ holds for every i and

j ̸= j′. For notational convention, we write A = (P1, . . . , PR) ∈ A. Since rk > 0, it holds
that PR ∈ P(k).

For a tuple A = (P1, . . . , Pt) of t paths, let E(A) =
⋃t

i=1E(Pi) and V (A) =
⋃t

i=1 V (Pi)
(we will use induction on R and hence we assume t ⩽ R here). For S ⊆ A, we consider

ΓS =
∑
A∈S

p|E(A)|.
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Note that E
[∏k

i=1

(
X(i)

)
ri

]
=
∑

A∈APr[E(A) ⊆ E(G(n, p))] = ΓA. We claim

nR(ℓ−1)pRℓ

(
1 −O

(
1

n

))
⩽ ΓA ⩽ nR(ℓ−1)pRℓ

(
1 + O

(
1

np

))
, (13)

which completes the proof of Lemma 15.

r1

r3
s3 t3

r2
s2 t2

s1 t1

Figure 1: A tuple A ∈ A \ F . Figure 2: A tuple A ∈ F .

For any A ∈ A, it holds that |E(A)| ⩽ Rℓ and the equality holds if and only if any
two distinct paths Pi, Pj of A shares no edges (see Figure 1). Let

F = {A ∈ A : |E(A)| < Rℓ}
= {(P1, . . . , PR) ∈ A : ∃i ̸= j, E(Pi) ∩ E(Pj) ̸= ∅}. (14)

Figure 2 illustrates an example. Then, ΓA can be decomposed into

ΓA = ΓF + ΓA\F . (15)

The second term ΓA\F satisfies

ΓA\F = pRℓ |{A ∈ A : |E(A)| = Rℓ}|
⩾ pRℓ |{A ∈ A : |E(A)| = Rℓ and |V (A)| = R(ℓ− 1) + 2k}|
= (n− 2k)R(ℓ−1)p

Rℓ

⩾ nR(ℓ−1)pRℓ

(
1 −O

(
1

n

))
.

This implies the lower bound ΓA ⩾ ΓA\F ⩾ nR(ℓ−1)pRℓ
(
1 −O

(
1
n

))
.

Now it suffices to bound ΓA from above. Observe that ΓA\F satisfies

ΓA\F = pRℓ |{A ∈ A : |E(A)| = Rℓ}| ⩽ nR(ℓ−1)pRℓ. (16)

We show that this term is dominating in ΓA. Lemma 15 immediately follows from Equa-
tions (15) and (16) and the following result:
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Lemma 17. Suppose that (np)ℓ = Ω(n). Define F as Equation (14). It holds that

ΓF = O

(
nR(ℓ−1)pRℓ

np

)
.

Proof. We use induction on R. For the base case of R = 1, we have F = ∅ and thus

ΓA ⩽ nℓ−1pℓ,

ΓF = 0.

Suppose that R ⩾ 2 and that Lemma 17 holds for R − 1. Note that Lemma 15 also
holds for R− 1 since Lemma 17 implies Lemma 15. Let

A′ = (P(1))r1 × · · · × (P(k−1))rk−1.

Then, each element A = (P1, . . . , PR) ∈ A can be decomposed into A′ = (P1, . . . , PR−1) ∈
A′ and PR ∈ P(k). Note that the edge set E(A′) for A′ ∈ A′ are defined in the same way
as E(A) and it holds that |E(A′)| ⩽ (R− 1)ℓ. Let

F ′ = {A′ ∈ A′ : |E(A′)| < (R− 1)ℓ}.

By the induction assumption on F ′ and A′, we have

ΓA′ ⩽ n(R−1)(ℓ−1)p(R−1)ℓ

(
1 +

C1

np

)
, ΓF ′ ⩽ C2

(
n(R−1)(ℓ−1)p(R−1)ℓ

np

)
for some constants C1, C2 > 0. For A = (P1, . . . , PR) ∈ F , let A′ = (P1, . . . , PR−1) ∈ A′.
Since A ∈ F , either

(i) E(PR) ∩ E(Pi) ̸= ∅ for some 1 ⩽ i < R, or

(ii) E(PR) ∩E(A′) = ∅ and E(Pi) ∩E(Pj) ̸= ∅ for some 1 ⩽ i < j < R (thus A′ ∈ F ′)

holds. Therefore, we have

ΓF =
∑
A∈F

p|E(A)|

⩽
∑
A′∈A′

∑
PR∈P(k):

E(A)∩E(PR) ̸=∅

p|E(A′)∪E(PR)| +
∑
A′∈F ′

∑
PR∈P(k):

E(PR)∩E(A′)=∅

p|E(A′)∪E(PR)|. (17)

From the induction assumption, the second term satisfies∑
A′∈F ′

∑
PR∈P(k):

E(PR)∩E(A′)=∅

p|E(A′)∪E(PR)| =
∑
A′∈F ′

p|E(A′)|
∑

PR∈P(k):
E(PR)∩E(A′)=∅

p|E(PR)|

⩽ ΓF ′ · nℓ−1pℓ. (18)
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The first term can be rewritten as∑
A′∈A′

∑
PR∈P(k):

E(A′)∩E(PR) ̸=∅

p|E(A′)∪E(PR)| =
∑
A′∈A′

p|E(A′)|
∑

PR∈P(k):
E(A)∩E(PR )̸=∅

p|E(PR)\E(A′)|.

Fix A′ = (P1, . . . , PR−1) ∈ A′. Let S = {s1, . . . , sk, t1, . . . , tk} be the endpoints of the
paths and let V1 = S ∪ V (P1)∪ · · · ∪ V (PR−1). To bound the number of PR satisfying the
condition (ii), we consider two cases: E(PR) ̸⊆ E(A′) and E(PR) ⊆ E(A′).

Case I. E(PR) ̸⊆ E(A′). The edge set E(PR) ∩E(A′) forms a forest. Since E(PR) ̸⊆
E(A′), this forest is not connected and thus we have |V (PR)∩ V1| − |E(PR)∩E(A′)| ⩾ 2.
This yields

|V (PR) \ V1| = |V (PR)| − |V (PR) ∩ V1|
⩽ ℓ− |E(PR) ∩ E(A′)| − 1.

Let |E(PR) ∩E(A′)| = t < ℓ. Then, PR consists of two type of vertices: at most ℓ− t− 1
from V \ V1 and the others from V1. Therefore, there are at most nℓ−t−1|V1|t ⩽ Ctnℓ−t−1

candidates for the path PR satisfying |E(PR) ∩E(A′)| = t < ℓ, where C = (R− 1)(ℓ + 1)
(recall that two endpoints of PR are fixed and thus they are not taken into account).

Case II. E(PR) ⊆ E(A′). We claim A′ ∈ F ′. If not, it holds that E(Pi)∩E(Pj) = ∅
for any i < j < R. Hence, E(PR) ⊆ E(A′) implies PR = Pi for some i < R. This
contradicts to the definition of A (Pi ̸= Pj for any i < j ⩽ R). Moreover, the number of
PR ∈ P(k) satisfying E(PR) ⊆ E(A′) is at most |V1|ℓ−1 ⩽ CR(ℓ−1). Therefore, we have∑

A′∈A′

∑
PR∈P(k):

E(A′)∩E(PR )̸=∅

p|E(A′)∪E(PR)|

⩽
∑
A′∈A′

p|E(A′)|

 ℓ−1∑
t=1

∑
PR∈P(k):

|E(A)∩E(PR)|=t

p|E(PR)\E(A′)|

+
∑
A′∈F ′

p|E(A′)|CR(ℓ−1)

⩽
∑
A′∈A′

p|E(A′)| ·
ℓ−1∑
t=1

Ctnℓ−t−1pℓ−t + CR(ℓ−1)ΓF ′

⩽ ΓA′ · Cnℓ−1pℓ

np

(
1 +

1.01C

np

)
+ CR(ℓ−1)ΓF ′ . (19)

From Equations (17) to (19) and the induction assumption, we have

ΓF ⩽ ΓF ′ · nℓ−1pℓ + ΓA′ · Cnℓ−1pℓ

np

(
1 +

1.01C

np

)
+ CR(ℓ−1)ΓF ′

⩽ O

(
nR(ℓ−1)pRℓ

np

)
.
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This completes the proof of Lemma 17 and thus Lemma 15 (Here, we have used the
assumption that (np)ℓ = Ω(n)).

Proof of Lemma 14. Let d = (1 + o(1))np = (β + o(1))nα. From Lemma 8, we have
Pr[H ⊆ G(n, p)] = (1 + o(1))Pr[H ⊆ Gn,d] for any fixed graph H. Let R = r1 + · · · + rk
and A = (P(1))r1×· · ·×(P(k))rk . We write each element A ∈ A as a tuple A = (P1, . . . , PR)
of R paths. Then, from Corollary 16, we have

E
Gn,d

[
k∏

i=1

(
X(i)

)
ri

]
=

∑
(P1,...,PR)∈A

Pr[E(P1 ∪ · · ·PR) ⊆ Gn,d]

= (1 + o(1))
∑

(P1,...,PR)

Pr[E(P1 ∪ · · ·PR) ⊆ G(n, p)]

= (1 + o(1)) E
G(n,p)

[
k∏

i=1

(
X(i)

)
ri

]
= (β + o(1))1/α.

4 Concentration of AD(G(n, p))

We prove Theorem 3. We use AD = AD(G(n, p)) and diam = diam(G(n, p)) as random
variables. Let D = ⌈µ⌉ = ⌊α−1⌋ + 1. From Corollary 5, we have

Pr [|AD − µ| > ϵ] ⩽ Pr [|AD − µ| > ϵ | diam = D]Pr[diam = D] + Pr[diam ̸= D]

⩽ Pr [|AD − µ| > ϵ | diam = D] + o(1)

for any ϵ = ϵ(n) > 0. Therefore, we may put the condition that diam = D.
For i = 1, . . . , D, let

Ni =

∣∣∣∣{{s, t} ∈
(
V

2

)
: dist(s, t) = i

}∣∣∣∣ .
We will prove the following result in Section 4.1:

Lemma 18. Let C > 0 be a sufficiently large constant and ϵ = ϵ(n) :=
√

logn
np

. Then,

|Ni −Mi| ⩽ CϵMi holds w.h.p. for all i = 1, . . . , D − 1, where

Mi =

{
(np)i

n

(
n
2

)
if i < α−1,

(1 − exp(−β1/α))
(
n
2

)
if i = α−1 ∈ N.

the electronic journal of combinatorics 27(3) (2020), #P3.62 16



An upper bound of AD. Conditioned on diam = D, it immediately holds that AD ⩽
diam ⩽ D. Thus, if α−1 ̸∈ N, we have

AD ⩽ D = µ

with probability 1 − exp(−nΩ(n)).

Now we focus on the case where α−1 ∈ N. Let ϵ = C
√

logn
np

for sufficiently large

constant C > 0. Conditioned on diam = D, Lemma 18 implies

ND =

(
n

2

)
−N1 − . . .−ND−1

⩽ (1 + O(ϵ)) exp(−β1/α)

(
n

2

)
.

Therefore, conditioned on diam = D, we have(
n

2

)
· AD =

D∑
i=1

iNi

⩽ DND + (D − 1)

((
n

2

)
−ND

)
= ND + (D − 1)

(
n

2

)
⩽ (1 + O(ϵ))µ

(
n

2

)
.

In other words, AD ⩽ µ + O(ϵ) holds w.h.p.

A lower bound of AD. Conditioned on diam = D, we have N1 + · · · + ND =
(
n
2

)
and

thus (
n

2

)
· AD =

D∑
i=1

iNi

= N1 + 2N2 + · · · + (D − 1)ND−1 + D

((
n

2

)
−N1 − · · · −ND−1

)
= D

(
n

2

)
− (D − 1)N1 − (D − 2)N2 − · · · −ND−1

⩾ (1 −O(ϵ))µ

(
n

2

)
.

In the last inequality, we used Lemma 18. This completes the proof of Theorem 3.
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4.1 Proof of Lemma 18

The proof of Lemma 18 is a slight modification of the proof of Theorem 7.1 of [14].
Consider G(n, p) of p = (β+o(1))n−1+α. Let D = ⌊α−1⌋+1. We consider the breadth

first search process on G(n, p) from a fixed vertex. Fix a vertex v. For k ⩾ 0, let

Nk(v) = {w ∈ V : dist(v, w) = k}.

Note that N0(v) = {v}. For sufficiently large constant C > 0 and ϵ :=
√

logn
np

, let Fk be

the event of G(n, p) that∣∣∣∣|Ni(v)| − 2Mi

n

∣∣∣∣ ⩽ CϵMi

n
for all i = 1, . . . , k,

where Mi is given in Lemma 18. Note that F0 must hold. The degree of v is denoted by
deg(v). We denote by Bin(m, q) the binomial distributed random variable with m trials
and success probability q. Note that, if we are given N0(v), . . . , Nk−1(v), the random
variable |Nk(v)| is distributed as a binomial random variable, that is,

|Nk(v)| ∼ Bin

(
n−

k−1∑
i=0

|Ni(v)|, 1 − (1 − p)|Nk−1(v)|

)
.

Consider E[|Nk(v)| | Fk−1]. For every k = 1, . . . , D − 1, conditioned on Fk−1, we have

n ⩾ n−
k−1∑
i=0

|Ni(v)| ⩾ (1 −O(ϵ))n

Here, recall that (np)D−1 = O(n). Using the inequality e−
x

1−x ⩽ 1 − x ⩽ e−x for every
x ∈ [0, 1) (c.f., Lemma 21.1 of [14]), we obtain

1 − (1 − p)|Nk−1(v)| =

{
(1 ±O(ϵ))p(np)k−1 if k = 1, . . . , D − 2,

(1 ±O(ϵ)) exp(−β1/α) if k = D − 1.

Therefore, we have

E [|Nk(v)| | Fk−1] =

{
(1 ±O(ϵ))(np)k if k = 1, . . . , D − 2,

(1 ±O(ϵ)) exp(−β1/α)n if k = D − 1

= (1 ±O(ϵ))
2Mk

n
.

From the Chernoff bound (Lemma 6), we have

Pr[Fk | Fk−1] ⩾ 1 − exp
(
−Θ

(
ϵ2(np)k

))
⩾ 1 −O(n−2)

if the constant C is sufficiently large (recall that C is the constant in the definition of
Fk). Therefore, FD−1 holds with probability 1 − O(n−2) for sufficiently large C. Taking
the union bound, it holds w.h.p. that |Ni(v)| = (1±O(ϵ))2Mi

n
for all v. Consequently, we

have Ni = 1
2

∑
v∈V |Ni(v)| = (1 ±O(ϵ))Mi, which completes the proof of Lemma 18.
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