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Abstract

We define a zeta function of a graph by using the time evolution matrix of a
general coined quantum walk on it, and give a determinant expression for the zeta
function of a finite graph. Furthermore, we present a determinant expression for
the zeta function of an (inifinite) periodic graph.

Mathematics Subject Classifications: 60F05, 05C50, 15A15, 05C25

1 Introduction

Starting from p-adic Selberg zeta functions, Thara [12] introduced the Thara zeta functions
of graphs. Ihara [12] showed that the reciprocal of the Ihara zeta function of a regular
graph is an explicit polynomial. Serre [17] pointed out that the Ihara zeta function is
the zeta function of a regular graph. A zeta function of a regular graph G associated
to a unitary representation of the fundamental group of G was developed by Sunada
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[18, 19]. Hashimoto [10] treated multivariable zeta functions of bipartite graphs. Bass
[1] generalized Thara’s result on the Ihara zeta function of a regular graph to an irregular
graph, and showed that its reciprocal is a polynomial.

The Thara zeta function of a finite graph was extended to an infinite graph in [1, 3,
6, 7, 8, 9], and its determinant expressions were presented. Bass [1] defined the zeta
function for a pair of a tree X and a countable group I" which acts discretely on X with
quotient being a graph of finite groups. Clair and Mokhtari-Sharghi [3] extended Thara
zeta functions to infinite graphs on which a group I' acts isomorphically and with finite
quotient. In [6], Grigorchuk and Zuk defined zeta functions of infinite discrete groups,
and of some class of infinite periodic graphs. Guido, Isola and Lapidus [7] defined the
Ihara zeta function of a periodic simple graph. Furthermore, Guido, Isola and Lapidus
[8] presented a determinant expression for the Thara zeta function of a periodic graph.

The time evolution matrix of a discrete-time quantum walk in a graph is closely related
to the Thara zeta function of a graph. A discrete-time quantum walk is a quantum analog
of the classical random walk on a graph whose state vector is governed by a matrix called
the time evolution matrix. Ren et al. [16] gave a relationship between the discrete-time
quantum walk and the Thara zeta function of a graph. Konno and Sato [13] obtained a
formula of the characteristic polynomial of the Grover matrix by using the determinant
expression for the second weighted zeta function of a graph.

In this paper, we define a zeta function of a periodic graph by using the time evolution
matrix of a general coined quantum walk on it, and present its determinant expression.
The proof is an analogue of Bass’ method [1].

In Section 2, we state a review for the Thara zeta function of a finite graph and infinite
graphs, i.e., a periodic simple graph, a periodic graph. In Section 3, we state about the
Grover walk on a graph as a discrete-time quantum walk on a graph. In Section 4, we
define a zeta function of a finite graph G by using the time evolution matrix of a general
coined quantum walk on G, and present its determinant expression. Furthermore, we
give an explicit formula for the characteristic polynomial of the time evolution matrix of
a general coined quantum walk on GG, and so present its spectrum. In Section 5, we state
the definition of a periodic graph. In Section 6, we review a determinant for bounded
operators acting on an infinite dimensional Hilbert space and belonging to a von Neumann
algebra with a finite trace. In Section 7, we present a determinant expression for the above
zeta function of a periodic graph.

2 The Ihara zeta function of a graph

All graphs in this paper are assumed to be simple. Let G be a connected graph with
vertex set V(G) and edge set F(G), and let R(G) = {(u,v), (v,u) | wv € E(G)} be the
set of oriented edges (or arcs) (u,v), (v, u) directed oppositely for each edge uv of G. For
e = (u,v) € R(G), u = o(e) and v = t(e) are called the origin and the terminal of e,
respectively. Furthermore, let e™! = (v, u) be the inverse of ¢ = (u,v).

A path P of length n in G is a sequence P = (e, - - - ,e,) of n arcs such that e; € R(G),

t(e;) = o(eir1)(1 <i<n—1). If e, = (v;i_1,v;), 1 < i < n, then we also denote P by
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(vo, V1, ,v,). Set | P |=n, o(P) = o(e;) and t(P) = t(e,). Also, P is called an
(o(P),t(P))-path. A (v, w)-path is called a v-closed path if v = w. The inverse of a closed
path C = (e1,--- ,e,) is the closed path C~t = (e; 1, .- el!).

We say that a path P = (e1,- - - ,€,) has a backtracking if e;)'; = e, for some i(1 < i <
n—1). A path without backtracking is called proper. Let B" be the closed path obtained
by going r times around a closed path B. Such a closed path is called a multiple of B.
Multiples of a closed path without backtracking may have a backtracking. Such a closed

path is said to have a tail. If its length is n, then the closed path can be written as

(ela"' 76k7f1af27”' afn—Zkvelzlf" 761_1)7

where (fi, fo, -+, fu_2r) is a closed path. A closed path is called reduced if C' has no
backtracking nor tail. Furthermore, a closed path C' is primitive if it is not a multiple of
a strictly shorter closed path.

We introduce an equivalence relation between closed paths. Two closed paths C) =
(e1,-+ ,en) and Cy = (f1, -, fm) are called equivalent if there exists an integer k such
that f; = ej4 for all j, where the subscripts are read modulo n. The inverse of C' is not
equivalent to C'if | C'|> 3. Let [C] be the equivalence class which contains a closed path
C. Also, [C] is called a cycle.

Let P be the set of primitive, reduced cycles of G. Also, primitive, reduced cycles are
called prime cycles. Note that each equivalence class of primitive, reduced closed paths
of a graph G passing through a vertex v of G corresponds to a unique conjugacy class of
the fundamental group m(G,v) of G at v.

The Ihara zeta function of a graph G is a function of a complex variable u with |u|
sufficiently small, defined by

2(G.u) = Za(w) = [[ (1 —ul),

[CleP

where [C] runs over all prime cycles of G.

Let G be a connected graph with n vertices vy, --- ,v,. The adjacency matric A =
A(G) = (ayj) is the square matrix such that a;; = 1 if v; and v; are adjacent, and a;; =0
otherwise. The degree of a vertex v; of G is defined by degv; = degqv; =| {v; | viv; €
E(G)} |. If deg v = k(constant) for each v € V(G), then G is called k-regular.

Theorem 1 (Bass). Let G be a connected graph. Then the reciprocal of the Ihara zeta
function of G is given by

Z(G,u)™t = (1 —u?)"tdet(I — uA(G) + u*(D - 1)),

where 1 is the Betti number of G, and D = (d;;) is the diagonal matriz with d;; = degv;
and d;j = 0,1 # 7, (V(G) = {v1,- -+ ,vn}).

Let G = (V(G), E(G)) be a countable simple graph, and let I' be a countable discrete
subgroup of automorphisms of G, which acts freely on GG, and with finite quotient G//T.
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The graph G is called a periodic graph. Then the Thara zeta function of a periodic simple
graph is defined as follows:

Zar(u) = H (1— ulc\)—l/lF[C]\’
[Clre[PIr

where I'j¢) is the stabilizer of [C] in I', and [C]r runs over all I-equivalence classes of
prime cycles in G.

Guido, Isola and Lapidus [7] presented a determinant expression for the Ihara zeta
function of a periodic simple graph.

Theorem 2 (Guido, Isola and Lapidus). For a periodic simple graph G,
Zar(u) = (1 —u®)~" ™™ det p(I — uA(G) + (D — T)u®) 7!,

where detr is a determinant for bounded operators belonging to a von Neumann algebra
with a finite trace.

Guido, Isola and Lapidus [8] presented a determinant expression for the Ihara zeta
function of a periodic graph G and a countable discrete subgroup I' of aoutomorphisms
of G which acts discretely without inversions, and with bounded covolume.

Theorem 3 (Guido, Isola and Lapidus). For a periodic graph G,
Zor(u) ™t =(1- u2)x(2)(G) det p(A(w)),

where x?(G) is the L?-Euler characteristic of (G,T) (see [2]), and A(u) = T — uA +
u?(D —1).

3 The Grover walk on a graph

Let G be a connected graph with n vertices and m edges, V(G) = {vy,...,v,} and
R(G) = {e1,...,em,er', ..., et} Set d; = d,;, = degv; for i = 1,...,n. The Grover
matriz U = U(G) = (Uey)e,fer(q) of G is defined by

2/dt(f)(: 2/do(e)) if t(f) = 0(6) and f 7é 6717
Uef: 2/dt(f)—1 iffzefl,
0 otherwise.

The discrete-time quantum walk with the matrix U as a time evolution matrix is called
the Grover walk on G.

Let G be a connected graph with n vertices and m edges. Then the n x n matrix
T(G) = (Tuv)uwev(c) s given as follows:

T — { é/(deg cqu) if (u,v) € R(G),

otherwise.

Note that the matrix T(G) is the transition matrix of the simple random walk on G.
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Theorem 4 (Konno and Sato). Let G be a connected graph with n vertices vy, ..., v, and
m edges. Then the characteristic polynomaial for the Grover matriz U of G is given by

det(\L — U) = (A% — 1)™ " det((A? + 1)L, — 2AT(G))

(A2=1)" " det((A2+1)D—2)XA(G))
doy - don,

From this Theorem, the spectra of the Grover matrix on a graph is obtained by means
of those of T(G) (see [4]). Let Spec(F) be the spectra of a square matrix F.

Corollary 5 (Emms, Hancock, Severini and Wilson). Let G be a connected graph with n
vertices and m edges. The Grover matriz U has 2n eigenvalues of the form

A=A Eiy/1— A2,

where At is an eigenvalue of the matriz T(G). The remaining 2(m —n) eigenvalues of U
are +1 with equal multiplicities.

4 Spectra for the time evolution matrix of a general coined
quantum walk on a graph

We consider a generalization of a coined quantum walk on a graph. We replace the coin
operator C of a coined quantum walk with unitary matrix with two spectra which are
distinct from =+1.
For a given connected graph G with n vertices and m edges, let d : (*(V(G)) —
(*(R(@G)) such that
dd* =1,

and let S = (Sef)e,rer(q) be the 2m x 2m matrix defined by

eop 1
Sef:{l if f=e"",

0 otherwise.

Furthermore, let

C = ad*d + b1y, — d*d)

and U = SC(see [11]). Note that ¢ = dim ker(a — C). A discrete-time quantum walk on
G with U as a time evolution matrix is called a general coined quantum walk on G. Then
we define a zeta function of G by using U as follows:

(G, u) = det(Ioy, — uU) ™ = det(Iyn — uS(ad*d + b(Io, — d*d))) .

Now, we have the following result.
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Theorem 6. Let G be a connected graph n vertices and m edges, U = SC the time
evolution matriz of a general coined quantum walk on G. Suppose that o(C) = {a,b}.
Set ¢ = dim ker(a — C). Then, for the unitary matrizc U = SC, we have

C(G,u) = (1 —b*u?)™ 9det((1 — abu®)I, — cudSd*),c = a — b.
Proof. At first, we have
(G, u) = det(Iyy, — uU) = det(Iy,, — uSC)

= det(Iy,, — uS(ad*d + b(1y,, — d*d)))
= det(Iy, — uS((a — b)d*d + bl,,)))
= det(Iy, — buS — cuSd*d)

= det(Iy, — cuSd*d(Iy,, — buS)™!) det (I, — buS).
But, if A and B are an m x n matrix and an n X m matrix, respectively, then we have
det(I,, — AB) = det(I, — BA).
Thus, we have
det(Iz,, — uU) = det(Iy, — uSC) = det(I,, — cud(Iz,, — buS) 'Sd*) det(Iy,, — buS).

But, we have
det(Iy,, — buS) = (1 — b*u*)™.

Furthermore, we have

(Lo — buS) ™ (I + uS).

T 12

Therefore, it follows that

det (I, — uU)

2,.2\m cu *

= (1 — b2u®)™ det (I, — d(I,,, + buS)Sd*)

cu
1 —b%u?
= (1 = b*u?)™ " det((1 — b*u?)I, — cudSd* — bcu*dS*d*)
= (1 — b*u*)™ " det((1 — b*u?)I, — cudSd* — beu’l,,)

= (1 —b*u*)™ " det((1 — abu®)I, — cudSd*). O
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Corollary 7. Let G be a connected with n vertices and m edges. Then, for the unitary
matrix U = SC, we have

det(Aly, — uU) = (A\* — b*)™ 9 det((\? — ab)I, — cAdSd*),
where ¢ = dim ker(1 — C).
Proof. Let u=1/\. Then, by Theorem 6, we have
det(Ioy — 1/AU) = (1 — b2/A2)™ 7 det((1 — ab/A?)L, — ¢/AdSd"),

and so,
det( My, — U) = (A2 — b)) T det((\* — ab)l, — cAdSd"). O

By Corollary 7, the following result holds.

Corollary 8. Let G be a connected with n vertices and m edges. Then, the spectra of the
unitary matriz U = SC are given as follows:

1. 2q eigenvalues:

?

+ \/c2u? + 4ab
=4 CZM e , 1 € Spec(dSd”)

2. The rest eigenvalues are b with the same multiplicity m — q.
Proof. By Corollary 7, we have
det(\y,, — U)
= (A=) ] cspecrasar) (A* — cu — ab).
Solving A\? — 2u\ + 1 = 0, we obtain

)= cp £ +/u? + 4ab
— 5 ,

The result follows. O

5 Periodic graphs

Let G = (V(G), E(G)) be a simple graph. Assume that G is countable (V(G) and E(G)
are countable), and with bounded degree, i.e., d = sup,cy (g degv < oco. Let I' be a
countable discrete subgroup of automorphisms of GG, which acts

1. without inversions: y(e) # e~ ! for any v € ', e € R(G),

2. discretely: I, = {y € I" | yv = v} is finite for any v € V(G),
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3. with bounded covolume: vol(G/T) :== 37 .- 7 T < 00, where Fy C V(G) contains
exactly one representative for each equivalence class in V(G/I).

Then G is called a periodic graph with a countable discrete subgroup I' of Aut G. Note
that the third condition is equivalent to the following condition:

vol(R Z]F|

ec€F1

where a subset F; of R(G) contains exactly one representative for each equivalence class
in R(G/T).

Let (2(V(G)) be the Hilbert space of functions f : V(G) — C such that || f ||:=
> vevia | ()] 2 < 0o. We define the left regular representation Ay of ' on £?(V(G)) as
follows:

Mo f)(@) = f(y7'), v €T, feB(V(G)), v € V(G).

We state the definition of a von Neumann algebra. Let H be a separable complex
Hilbert space, and let B(H) denote the C*-algebra of bounded linear operators on H. For
a subset M C B(H), the commutant of M is M' = {T € B(H) | ST = TS,VS € M}.
Then a von Neumann algebra is a subalgebra A < B(H) such that A” = A. It is known
that a determinant is defined for a suitable class of operators in a von Neumann algebra
with a finite trace (see [5, 7]).

For the Hilbert space £(V(G)), we consider a von Neumann algebra. Let B(¢*(V(G)))
be the C*-algebra of bounded linear operators on £2(V(G)). A bounded linear operator
A of B(*(V(Q))) acts on £2(V(G)) by

= > Al,w)f(w), veV(G), felP(V(G)).

weV(GQ)

Then the von Neumann algebra Ny(G,T) of bounded operators on ¢?(V(G)) commuting
with the action of I' is defined as follows:

No(G,T) = {Xo() | v €TY ={T € B(*(V(G))) | Xo(7)T = TAo(7),Vy €T}

The von Neumann algebra Ny(G,T') inherits a trace by

TI'F Z

TEFo

T . Ae No(G,T).

Let the adjacency matrix A = A(G) of G be defined by
AN = D flw), fel(V(G))
(v,w)ER(G)
By [14, 15], we have

| A||<d= sup deggv < oo,
veV(Q)
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and so A € Ny(G,T).
Similarly to £2(V(G)), we consider the Hilbert space £*( R(G)) of functions f : R(G) —
C such that [| w [[:= 3" crq) | wle) | 2 < 0o. We define the left regular representation \;

of T on 2(R(G)) as follows:
(M(yw)(e) =w(y7'e), v €T, w e L(R(G)), e € R(G).

Then the von Neumann algebra N7(G,T') = {A\(y) | ¥ € T'} of bounded operators on
(*(R(G@)) commuting with the action of I, inherits a trace by

Trr(A) = ) Fl Aleye), A€ N(G,T).

ecF ‘ € ’

6 An analytic determinant for von Neumann algebras with a
finite trace

In an excellent paper [5], Fuglede and Kadison defined a positive-valued determinant for
a von Neumann algebra with trivial center and finite trace 7. For an invertible operator
A with polar decomposition A = UH, the Fuglede-Kadison determinant of A is defined
by
Det(A) = exporologH,
where log H may be defined via functional calculus.
Guido, Isola and Lapidus [7] extended the Fuglede-Kadison determinant to a deter-

minant which is an analytic function. Let (A, 7) be a von Neumann algebra with a finite
trace 7. Then, for A € A, let

det ;(A) = expoTolog A,

where

log(A) = QL log A(A — A)~1dA,

™ JA

and A is the boundary of a connected, simply connected region €2 containing the spectrum
0(A) of A. Then the following lemma holds (see Lemma 5.1 of [7]).

Lemma 9 (Guido, Isola and Lapidus). Let A, Q,T" be as above, and ¢, two branches of
the logarithm such that both domains contain 2. Then

expoT o ¢(A) = expor o P(A).

Next, we consider a determinant on some subset of A. Let (A, 7) be a von Neumann
algebra with a finite trace, and Ay = {A € A |0 ¢ conv ¢(A)}, where conv o(A) is the
convex hull of 0(A). For any A € A, we set

det ,(A) = exporo (2L / log A(A — A)~td)),
A

™
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where A is the boundary of a connected, simply connected region {2 containing the spec-
trum conv o(A), and log is a branch of the logarithm whose domain contains 2. Then the
above determinant is well-defined and analytic on Ay (see Corollary 5.3 of [7]). Further-
more, Guido, Isola and Lapidus of [7, 8] showed that det , has the following properties.

Proposition 10 (Guido, Isola and Lapidus). Let (A, T) be a von Neumann algebra with
a finite trace, A € Ay. Then

1. det .(zA) = 27U det . (A) for any z € C\ {0}.
2. If A is normal, and A = UH is its polar decomposition,

det .(A) = det . (U) det . (H).

3. If A is positive, det ,(A) = Det(A), where Det(A) is the Fuglede-Kadison determi-
nant of A.

Proposition 11 (Guido, Isola and Lapidus). Let (A, 1) be a von Neumann algebra with
a finite trace. Then

1. For A, B € A and sufficiently small u € C,

det . ((I +uA)(I +uB)) = det (I +uA)det (I +uB).

2. If A € A has a bounded inverse, and T € Ay, then

det ,(ATA™") = det (7).

3. If

Y ATR AT
T= |: 0 T :| S Matg(.A),

with Ty; € A such that o(Ty;) C B1(1):={2€C||z—1|<1} fori=1,2, then

det T(T) = det T(Tll) det T(TQQ).

Corollary 12 (Guido, Isola and Lapidus). Let " be a discrete group, mi,me unitary
representations of I', 71, 7o finite traces on w1 (") and wo(T"), respectively. Let m = m1@m,,

Tu T } e n(T), with o(Ty;) C Bi(1) :={z € C||z—1|< 1}

T=T1+T2 andT:[ 0 T

fori=1,2, then
det (T') = det ., (T11) det -, (T2).
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7 A zeta function with respect to a general coined quantum
walk of an infinite periodic graph

We define a zeta function with respect to a general coined quantum walk of an infinite
periodic graph.

Let G be a periodic graph with a countable discrete subgroup I' of Aut G. Moreover,
let

I, = IdZQ(V(G))le = Idﬁ(R(G))-
Then, let d : 2(V(G)) — (*(R(G)) such that

dd* =1Iy.

Furthermore, let
C =ad*d + b(Ir — d*d)

and U = SC, where S is the operator on £*( R(G)) such that
(Sw)(e) =w(e™), w e FA(R(G)), e € R(G).
Now, we consider the following determinant:
det p(B) = exp oTrr o log B

for B € N1(G,T). Then a zeta function with respect to a general coined quantum walk
of G is defined as follows:

C(G, F, u) = det F(IR - UJIJ)_1 = det F(IR — US(CLd*d + b(IR - d*d)))_l,

where u € C are sufficiently small so that the infinite product converges.
Then we have the following result.

Theorem 13. Let G be a periodic graph with a countable discrete subgroup I' of Aut G.
Then )
(G, T, u) = (1 — b*u®)Tr @) =31 (8) det (1 — abu?)Iy — cudSd*),

where Trr(Ir) = > 7, |rle| and Trr(Ly) = > o7 ﬁ(see [2]).

Proof. The argument is an analogue of the method of Bass [1].

Let G be a periodic graph with a countable discrete subgroup I' of Aut G.

Now we consider the direct sum of the unitary representations Ay and A;: A(vy) :=
Mo(7) @ Ai(y) € B(A(V(G)) ® %(R(GQ))). Then the von Neumann algebra A(T')" := {S €
B(2(V(Q)) ® (R(G))) | SA(y) = A(7)S,~v € T'} consists of operators

Soo  So1
S —
{ S10 S } ’
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where S;;\; () = Xi(7)Si,v € T',i,j = 0,1, so that S;; € A; = N;(G,T),i =0,1. Thus,
A(T")" inherits a trace given by

TI'F SOO SOI = TI'F(SO()) + TI"F(SH).
S Sit
We introduce two operators as follows:

I (1—-0v*u*)Iy —cd — beudS Mo | v cd+beudS
= 0 I M= s (1 - a1, |

where ¢ = a — b. Then we have

LM — [ (1 - v*u®)Iy — cudSd* — beu?dS?d* 0
_ uSd” (1— b2u?)Ig
[ (1= abu®)Ty — cudSd* 0
N uSd* (1—-0udIp |-
Furthermore, we have
ML — (1 — b2u2)IV 0
| u(l = b*u?)Sd* —cuSd*d — beu?Sd*dS + (1 — b*u?)Ip

(1 — b2’u2)IV 0
| u(l - b*u?)Sd* (I — u(cSd*d + bS))(Iz 4+ ubS) |

Here, note that S? = I.
For | t |, | u | sufficiently small, we have

o(Aw)),o((1 = b*HIy), o((1 — B*HIR), o((Ig — u(cSd*d + bS)) (1 + ubS))

€EB(l)={z€C||z—-1|<1}.

Similar to the proof of Proposition 3.8 in [8], ¢(LM) and o(ML) are contained in B;(1).
Thus, L and M are invertible, with bounded inverse, for | ¢ |, | u | sufficiently small.
By 1 of Proposition 10, 1 of Proposition 11 and Corollary 12, we have

det(LM) = detp((1 — b*u?)Iy — cudSd* — beu?dS?d*) det r((1 — b*u?)IR)
= (1 —0b%?)"r8) det p((1 — abu?)Iy — cudSd*)

and

detr(ML) = detp((1— b*u?)Iy)det r(Ig — u(cSd*d + bS)) det (I + ubS)

= (1 —0*u®)TrM) det p(Ig — u(cSA*d + bS)) det (I + ubS).
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Let an orientation of G be a choice of one oriented edge for each pair of edges in R(G),
which is called positively oriented. We denote by ETG the set of positively oriented
edges. Moreover, let E~G := {e¢7! | e € ETG}. An element of E~G is called a negatively
oriented. Note that R(G) = ETGU E~G.

The operator S maps (*(E*G) to (*(E~G). Then we obtain a representation p of
B(?(R(Q))) onto Mat,B(¢?(ETG)), under

p)= | § 5 [t =| 5 1]

By 1 and 3 of Proposition 11,

0 I I

det (I 4+ buS) = detr | . —bul} detf[bfa bul}

[ (1= 0

= detr « I

For | ¢ |,| u | sufficiently small, we have
ML = MLMM !,
and so, by 2 of Proposition 11,
det p(LM) = det r(ML).
Therefore, it follows that
(1 — b*u?)PrR) det p((1 — abu®)Ty — cudSd*)

= (1 — 222 T @+ Tr@v) qet (T — uS(ed*d + bIR)),

and so
det F(IR — USC) = det I‘(IR — uS(Cd*d + bIR))
= (1 — b2u2)2™r@R)-TrMv) det 1 ((1 — abu)Iy — cudSd*).
Hence the result follows by the definition of Trr. n
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