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Abstract

Bukh and Zhou conjectured that the expectation of the length of the longest
common subsequence of two i.i.d. random permutations of size n is greater than√
n. We prove in this paper that there exists a universal constant n0 such that their

conjecture is satisfied for any pair of i.i.d. conjugation invariant permutations of size
greater than n0. More generally, in the case where the laws of the two permutations
are not necessarily the same, we give a lower bound for the expectation. In partic-
ular, we prove that if one of the permutations is conjugation invariant and with a
good control of the expectation of the number of its cycles, the limiting fluctuations
of the length of the longest common subsequence are of Tracy-Widom type. This
result holds independently of the law of the second permutation.

Mathematics Subject Classifications: 60C05, 60B20, 60F05, 05A16, 05A05.

1 Introduction and statements of the main results

Let Sn be the symmetric group, namely the group of permutations of {1, . . . , n}. Given
σ ∈ Sn, (σ(i1), . . . , σ(ik)) is a subsequence of σ of length k if i1 < i2 < · · · < ik. We
denote by LCS(σ, ρ) the length of the longest common subsequence (LCS) of the two
permutations σ and ρ.

∗Mainly supported by the Labex CEMPI ANR-11-LABX-0007-01.
†Partially supported by a Leverhulme Trust Research Project Grant RPG-2020-103.
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Historically, the study of the LCS of random words preceded that of permutations.
For further details, one can see, for example, [19]. The study of the LCS of independent
random permutations was initiated by Houdré and Işlak who proved in [6], using the simple
argument that when at least one of the permutations is uniform, LCS(σn, ρn) behaves
like the length of the longest increasing subsequence of a uniform random permutation.
A direct consequence is that

E(LCS(σn, ρn)) >
√
n.

Bukh and Zhou conjectured in [2] that this bound holds true for i.i.d. random permuta-
tions of Sn. Recently, Houdré and Işlak showed in [7] that for i.i.d. random permutations
of Sn, the minimal expectation is not attained by the uniform permutation and that

E(LCS(σn, ρn)) > 3
√
n.

In the sequel, we consider two sequences of random permutations (σn)n>1 and (ρn)n>1

with joint distribution P and associated expectation E such that σn and ρn are independent
and supported on Sn. We obtain in this article asymptotic bounds in the case where the
law of at least one of the two permutations is conjugation invariant. We say that the
random permutation σn is conjugation invariant if for any σ̂ ∈ Sn, σ̂ ◦ σn ◦ σ̂−1 is equal
in distribution to σn.

We first study the case where both permutations are conjugation invariant. We give,
in Theorem 1, an asymptotic lower bound for the LCS of two independent random per-
mutations. Under a good control of the number of fixed points, we give a better bound
in Proposition 2. Finally, as an application of Proposition 2, we give an asymptotically
optimal lower bound for i.i.d. conjugation invariant random permutations in Corollary 3.

Theorem 1. Assume that for any n > 1, σn and ρn are independent and that they are
both conjugation invariant. Then

lim inf
n→∞

E(LCS(σn, ρn))√
n

> 2
√
θ ' 0.564,

where θ is the unique solution of G(2
√
x) = 2+x

12
,

G := [0, 2]→
[
0,

1

2

]
x 7→

∫ 1

−1

(
Ω(s)−

∣∣∣s+
x

2

∣∣∣− x

2

)
+

ds, (1)

and

Ω(s) :=

{
2
π
(s arcsin(s) +

√
1− s2) if |s| < 1

|s| if |s| > 1
. (2)

The function Ω appears as the Vershik-Kerov-Logan-Shepp limiting shape. For more
details, one can see (11) and Figure 2. We will prove this result in Section 5 by comparing
σ−1n ◦ ρn with the uniform distribution on Sn and the uniform distribution on the set of
involutions.
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Under a good control of the number of fixed points, we obtain a better bound.

Proposition 2. Assume that for any n > 1, σn and ρn are independent and that they are
both conjugation invariant.

- If
lim
n→∞

max(P(σn(1) = 1),P(ρn(1) = 1)) = 0, (3)

then

lim inf
n→∞

E(LCS(σn, ρn))√
n

> 2. (4)

- If for some 0 < α 6 2,

lim inf
n→∞

√
nP(σn(1) = 1)P(ρn(1) = 1) > α, (5)

then

lim inf
n→∞

E(LCS(σn, ρn))√
n

> α. (6)

Consequently, we obtain the following result for i.i.d. random permutations.

Corollary 3. Assume that for any n > 1, σn and ρn are two i.i.d. conjugation invariant
random permutations. Then

lim inf
n→∞

E(LCS(σn, ρn))√
n

> 2.

In particular, there exists n0 such that, for any n > n0, for any i.i.d. conjugation invariant
permutation σn and ρn on Sn, E(LCS(σn, ρn)) >

√
n.

We conjecture that we can get rid of (3) and (5); the conjugation invariance is sufficient
to obtain (4) which is equivalent to replace 2

√
θ by 2 in Theorem 1. We will prove

Proposition 2 and Corollary 3 in Section 4. The idea of the proof is to study the longest
increasing subsequence of σ−1n ◦ ρn: under a good control of the number of fixed points of
the two permutations, the number of cycles of σ−1n ◦ ρn is sufficiently small to compare it
with the uniform distribution.

When ρn is not conjugation invariant, we give in Theorem 4 an asymptotic lower bound
on E(LCS(σn,ρn))√

n
. Moreover, we prove in Proposition 5 that under a good control of the

number of cycles of σn, limn→∞
E(LCS(σn,ρn))√

n
= 2 and under a stronger control, we have

Tracy-Widom fluctuations for LCS(σn, ρn). These are stated next.
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Theorem 4. Assume that for any n > 1, σn and ρn are independent and σn is conjugation
invariant. Then

lim inf
n→∞

E(LCS(σn, ρn))√
n

> G−1
(

lim inf
n→∞

E(#(σn))

2n

)
,

where #(σ) is the number of cycles of σ and G is defined in (1). In particular, if

limn→∞ E
(

#(σn)
n

)
= 0, we have

lim inf
n→∞

E (LCS(σn, ρn))√
n

> 2.

With an additional control on the cycle structure, we have the following.

Proposition 5. Assume that for any n > 1, σn and ρn are independent and the law of
σn is conjugation invariant.

- If #(σn)

n
1
6

P→ 0, then for any s ∈ R,

lim
n→∞

P
(
LCS(σn, ρn)− 2

√
n

n
1
6

6 s

)
= F2(s),

where F2 is the cumulative distribution function of the Tracy-Widom distribution.

- If #(σn)√
n

P→ 0, then LCS(σn,ρn)√
n

P→ 2.

- If limn→∞ E
(

#(σn)√
n

)
= 0, then limn→∞

E(LCS(σn,ρn))√
n

= 2.

Note that in Theorem 4 and in Proposition 5, we do not have any assumption on the
distribution of ρn. The proofs in Section 5 are based on a coupling argument between σn
and a uniform permutation.

2 General tools related to the longest increasing subsequence

We will present in this section some control results related to the longest increasing
subsequences. Those controls will be the main tools to prove the results presented in
the previous section. Given σ ∈ Sn and 1 6 i1 < i2 < · · · < ik 6 n, the subsequence
(σ(i1), . . . , σ(ik)) is an increasing subsequence of σ if σ(i1) < · · · < σ(ik). We denote by
`(σ) the length of the longest increasing subsequence of σ. The study of the longest com-
mon subsequence is strongly related to the notion of the longest increasing subsequence.
More precisely, we have the following classical result. For any σ, ρ ∈ Sn,

LCS(σ, ρ) = LCS(σ−1 ◦ σ, σ−1 ◦ ρ) = LCS(Idn, σ
−1 ◦ ρ) = `(σ−1 ◦ ρ) = `(ρ−1 ◦ σ). (7)
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We will use in the remainder of this paper the Robinson–Schensted correspondence
[15, 17]. Given σ ∈ Sn, we denote by λ(σ) = {λi(σ)}i>1 the shape of the image of σ by
this correspondence. We will not include here a detailed description of the algorithm. For
further reading, we recommend [16, Chapter 3].

One key property of λ(σ) is the following. Let

I1(σ) : = {s ⊂ {1, . . . , n} : ∀i, j ∈ s, (i− j)(σ(i)− σ(j)) > 0}

and

Ik+1(σ) : = {s ∪ s′ : s ∈ Ik, s
′ ∈ I1}.

Greene [5] proved that for any permutation σ ∈ Sn,

max
s∈Ii(σ)

|s| =
i∑

k=1

λk(σ). In particular, `(σ) = max
s∈I1(σ)

|s| = λ1(σ). (8)

Let Lλ(σ) be the height function of λ(σ) rotated by 7π
4

and extended by the function
x 7→ |x| to obtain a function defined on R. For example, if λ(σ) = (7, 5, 2, 1, 1, 0), then
the associated function Lλ(σ) is represented by Figure 1. The image of the uniform per-

−7−6−5−4−3−2−1 1 2 3 4 5 6 7

1
2
33
4
5
6
7
8

Figure 1: L(7,5,2,1,1,0)

mutation by the Robinson-Schensted correspondence is known as the Plancherel measure.
Its typical shape was studied separately by y Logan and Shepp [13] and Vershik and
Kerov [20]. Stronger results have been proved in [21]. In 1993, Kerov studied the limiting
fluctuations but did not publish his results. One can see [8] for further details.

To prove our results, we will use the Markov operator T defined on Sn and associated

to the stochastic matrix
[

1Aσ (ρ)

card(Aσ)

]
σ,ρ∈Sn

where

Aσ =

{
{σ} if #(σ) = 1

{ρ ∈ Sn, σ
−1 ◦ ρ = (i1, i2) ◦ (i1, i3) · · · ◦ (i1, i#(σ)) and #(ρ) = 1} if #(σ) > 1

.
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We recall that #(σ) is the number of cycles of σ. T is then the Markov operator mapping
a permutation σ to a permutation uniformly chosen at random among the permutations
obtained by merging the cycles of σ using transpositions having all a common point.
Note that Aσ is not empty since any choice of one point in each cycle gives a possible
(i1, i2, . . . , i#(σ)) and a correspondent permutation ρ. We obtain then the following control.

Lemma 6. For any permutation σ ∈ Sn,almost surely,

max
i>1

∣∣∣∣∣
i∑

k=1

(λk(σ)− λk (T (σ)))

∣∣∣∣∣ 6 #(σ). (9)

In particular, almost surely,

|`(T (σ))− `(σ)| 6 #(σ). (10)

Moreover, for any conjugation invariant random permutation σn on Sn, the law of T (σn)
is the uniform distribution on permutations with a unique cycle.

Note that the uniform distribution on permutations with a unique cycle is also known
as the Ewens’ distribution with parameter 0. We denote it by Ew(0). An interesting
property of Ew(0) is the following. Assume that the distribution of σ̃n is Ew(0). Then
for all ε > 0,

lim
n→∞

P
(

sup
s∈R

∣∣∣∣ 1√
2n
Lλ(σ̃n)

(
s
√

2n
)
− Ω(s)

∣∣∣∣ < ε

)
= 1, (11)

where we recall that Ω is defined in (2). This is a particular case of [9, Theorem 1.8].
For the remainder of this paper, we will refer to this limiting shape as the Vershik-Kerov-
Logan-Shepp shape. See Figure 21. This convergence is closely related to the Wigner’s
semi-circular law. For further details, one can see [10, 12, 11, 18].

Proof of Lemma 6. Let σ ∈ Sn be a permutation. By definition of `(σ), there exist
i1 < i2 < · · · < i`(σ) such that σ(i1) < · · · < σ(i`(σ)). Let ρ = σ ◦ (j1, j2) ◦ (j1, j3) ◦ · · · ◦
(j1, j#(σ)) be a permutation with a unique cycle and i′1, i

′
2, . . . , i

′
m be the same sequence

as i1, i2, . . . , i`(σ) after removing j1, j2, . . . , j#(σ) if needed. We have `(σ) − #(σ) 6
m and σ(i′1) < · · · < σ(i′m). As for all i /∈ {j1, j2, . . . , j#(σ)}, ρ(i) = σ(i), so that
ρ(i′1) < · · · < ρ(i′m). Therefore, m 6 `(ρ) and `(σ) − `(ρ) 6 #(σ). We can obtain the
reverse inequality in (10) using the same techniques. Similarly, to prove (9), let l > 1

and
{
i1, i2, . . . , i∑l

k=1 λk(σ)

}
∈ Il(σ). The equality (8) guarantees the existence of such

integers. Let i′1, i
′
2, . . . , i

′
m be the same sequence as i1, i2, . . . , i∑l

k=1 λk(σ)
after removing j1,

j2, . . . , j#(σ) if needed. We have {i′1, i′2, . . . , i′m} ∈ Il(ρ) and we conclude as in the proof of

1This figure is generated by DPPy [4]
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Figure 2: Illustration of the Vershik-Kerov-Logan-Shepp convergence

(10). To prove the last part of this result, one can check that the law of T (σn) is clearly
conjugation invariant. Indeed, let σ, ρ ∈ Sn.

P(T (σn) = σ) = 1#(σ)=1

∑
σ̂∈Sn

1σ∈Aσ̂
P(σn = σ̂)

card(Aσ̂)

= 1#(σ)=1

∑
σ̂∈Sn

1ρ◦σ◦ρ−1∈Aρ◦σ̂◦ρ−1

P(ρ ◦ σn ◦ ρ−1 = ρ ◦ σ̂ ◦ ρ−1)
card(Aρ◦σ̂◦ρ−1)

= 1#(σ)=1

∑
σ̂∈Sn

1ρ◦σ◦ρ−1∈Aσ̂
P(ρ ◦ σn ◦ ρ−1 = σ̂)

card(Aσ̂)

= 1#(ρ◦σ◦ρ−1)=1

∑
σ̂∈Sn

1ρ◦σ◦ρ−1∈Aσ̂
P(σn = σ̂)

card(Aσ̂)

= P(T (σn) = ρ ◦ σ ◦ ρ−1).

Moreover, by construction, almost surely, #(T (σn)) = 1. Consequently, the law of T (σn)
is Ew(0).

For more details, one can see [9]. We used the same techniques of proof with a different
Markov operator. Here, the bound is better thanks to the use of the same point i1 to
merge cycles. The key control lemma will be the following.
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Lemma 7. For any permutation σ ∈ Sn, for any α > 0, almost surely,∣∣∣∣∣
∞∑
i=1

(λi(σ)− α
√
n)+ −

∞∑
i=1

(λi(T (σ))− α
√
n)+

∣∣∣∣∣ 6 #(σ), (12)

sup

{
k ∈ N,

∞∑
i=1

(λi(T (σ))− k)+ > #(σ)

}
6 `(σ), (13)

and

sup

{
k ∈ N,

∞∑
i=1

(λi(σ)− k)+ > #(σ)

}
6 `(T (σ)). (14)

Proof. We prove first that

∞∑
i=1

(λi(σ)− α
√
n)+ −

∞∑
i=1

(λi(T (σ))− α
√
n)+ 6 #(σ).

If λ1(σ) 6 α
√
n, the inequality is trivial as the right-hand side is non-negative and the

left-hand side is non-positive. Otherwise, let k := max{j > 1, λj(σ) > α
√
n}. We have

∞∑
i=1

(λi(σ)− α
√
n)+ =

k∑
i=1

(λi(σ)− α
√
n)+ +

∞∑
i=k+1

(λi(σn)− α
√
n)+ =

k∑
i=1

(λi(σ)− α
√
n),

and

∞∑
i=1

(λi(T (σ))− α
√
n)+ >

k∑
i=1

(λi(T (σ))− α
√
n)+ >

k∑
i=1

(λi(T (σ))− α
√
n).

Using (9), we obtain

∞∑
i=1

(λi(σ)− α
√
n)+ −

∞∑
i=1

(λi(T (σ))− α
√
n)+ 6

k∑
i=1

λi(σ)− λi(T (σ)) 6 #(σ).

The reverse inequality in (12) is obtained by exchanging the role of σ and T (σ). Finally,
Using the equivalence between {`(σ) > k} and {

∑∞
i=1(λi(σ) − k)+ > 0}, (13) and (14)

are a direct application of (12).

Lemma 7 implies the following asymptotic controls.

Lemma 8. Assume that the distribution of σ̃n is Ew(0) on Sn. Then for any 0 6 γ 6 2,
for any ε > 0,

P
(∑n

i=1(λi(σ̃n)− γ
√
n)+

n
> 2G(γ)− ε

)
→ 1. (15)

Consequently, for any α < 2, there exist β > 0 and nα > 0 such that for any n > nα, for
any conjugation invariant random permutation σn satisfying E(#σn) < nβ, we have

E(`(σn)) > α
√
n.
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Proof. This is a direct application of (11). One can see that
∑n
i=1(λi(σ)−γ

√
n)+

2n
is the area of

the region delimited by the curves of the functions x 7→ |x|, x 7→ γ+x and x 7→ Lλ(σ)(x
√
2n)√

2n
,

see Figure 3. By construction, this area is equal to∫ ∞
−∞

(
Lλ(σ)(s

√
2n)√

2n
−
∣∣∣s+

γ

2

∣∣∣− γ

2

)
+

ds.

By (11), ∫ 1

−1

(
Lλ(σ̃n)(s

√
2n)√

2n
−
∣∣∣s+

γ

2

∣∣∣− γ

2

)
+

ds
P→ G(γ).

We can conclude then that∑n
i=1(λi(σ̃n)− γ

√
n)+

n
= 2

∫ ∞
−∞

(
Lλ(σ̃n)(s

√
2n)√

2n
−
∣∣∣s+

γ

2

∣∣∣− γ

2

)
+

ds

> 2

∫ 1

−1

(
Lλ(σ̃n)(s

√
2n)√

2n
−
∣∣∣s+

γ

2

∣∣∣− γ

2

)
+

ds
P→ 2G(γ).

This yields (15).

1

0.5

0.25

0.75

Figure 3: λ = (7, 2, 2, 1, 1, 0) and γ = 1

Note that it is not difficult to prove that∑n
i=1(λi(σn)− γ

√
n)+

n

P→ 2G(γ).

We do not provide the proof of this last fact here as we only need (15) in the sequel.
Now Let α < γ < 2, ε > 0 and β > 0 such that 1 − β

G(γ)
− ε > α

γ
. Using (15), we

obtain the existence of nα such that for any n > nα,

P
(∑n

i=1(λi(T (σn))− γ
√
n)+

n
> G(γ)

)
> 1− ε.
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Since {`(σ) > k} is equivalent to {
∑∞

i=1(λi(σ)− k)+ > 0} and by Markov inequality, we
obtain

E(`(σn)) > γ
√
nP(`(σn) > γ

√
n)

> γ
√
nP
(∑n

i=1(λi(T (σn))− γ
√
n)+

n
> G(γ),

#(σn)

n
< G(γ)

)
> γ
√
n

(
1− β

G(γ)
− ε
)

> α
√
n.

3 Cycle structure of a product of two permutations

To prove Proposition 2 and Corollary 3, we distinguish two cases. For the first case, we
suppose that the number of fixed points is large enough. We use the fact that for a given
permutation, the length of the longest increasing subsequence is bigger than the number
of fixed points. For the second case, when the number of fixed points is controlled, we
prove in Lemma 12 that the number of cycles of (σn)−1◦ρn is sufficiently small to compare
its longest increasing subsequence with that of the uniform distribution. In both cases,
we can conclude by (7). To prove Lemma 12, we will introduce in this section some new
objects. To a couple of permutations, we will associate a couple of graphs.
We denote by Gn

k the set of oriented graphs with vertices {1, 2, . . . , n} and having exactly
k edges. We allow here loops but not multiple edges.

For example, G2
1 =

{
1 2

,
2 1

,
1 2

,
21

}
.

Given g ∈ Gn
k , we denote by Eg the set of its edges and by Ag := [1(i,j)∈Eg ]16i,j6n its

adjacency matrix. A connected component of g is called trivial if it does not have any
edge and a vertex i of g is called isolated if Eg does not contain any edge of the form
(i, j) or (j, i). We say that two oriented simple graphs g1 and g2 are isomorphic if one
can obtain g2 by changing the labels of the vertices of g1. In particular, if g1, g2 ∈ Gn

k

then g1, g2 are isomorphic if and only if there exists a permutation matrix σ such that
Ag1σ = σAg2 . Let g ∈ Gn

k , we denote by g̃ the graph obtained from g after removing
isolated vertices. Let R be the equivalence relation such that g1Rg2 if g̃1 and g̃2 are
isomorphic. We denote by Ĝk := ∪n>1Gn

k /R the set of equivalence classes of ∪n>1Gn
k for

the relation R.

For example,
21 R 1

and Ĝ1 =

 ,

.

Let n be a positive integer and σ, ρ ∈ Sn. Let km := cm(σ−1 ◦ ρ), (im1 = m, im2 , . . . , i
m
km

)
be the cycle of σ−1 ◦ ρ containing m and jml := ρ(iml ). In particular, im1 , i

m
2 , . . . , i

m
km

are
pairwise distinct and jm1 , j

m
2 , . . . , j

m
km

are pairwise distinct. We denote by Gm1 (σ, ρ) ∈ Gn
km

the graph such that EGm1 (σ,ρ) = {(im1 , jmkm)}
⋃(⋃km−1

l=1 {(iml+1, j
m
l )}

)
. We denote also by

Gm2 (σ, ρ) ∈ Gn
km

the graph such that EGm2 (σ,ρ) = ∪kml=1{(iml , jml )}. In particular, Gm1 (σ, ρ)
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and Gm2 (σ, ρ) have the same set of non-isolated vertices. For i ∈ {1, 2}, let Ĝmi (σ, ρ) be
the equivalence class of Gmi (σ, ρ).
For example, if

σ =

(
1 2 3 4 5
5 3 2 1 4

)
and ρ =

(
1 2 3 4 5
2 3 5 1 4

)
,

we obtain EG11(σ,ρ) = {(1, 5), (3, 2)}, EG12(σ,ρ) = {(1, 2), (3, 5)},

3

51

2 4G11(σ, ρ) = 3

21

5 4, G12(σ, ρ) = and

Ĝ11(σ, ρ) = Ĝ12(σ, ρ) = .

Finally, given g ∈ Gn
k , we denote by Sn,g := {σ ∈ Sn : ∀(i, j) ∈ Eg, σ(i) = j}. It is not

difficult to prove the two following results.

Lemma 9. If m1 ∈ {im2
l : 1 6 l 6 km2}, then Gm1

1 (σ, ρ) = Gm2
1 (σ, ρ) and Gm1

2 (σ, ρ) =
Gm2
2 (σ, ρ).

Proof. If m1 ∈ {im2
l : 1 6 l 6 km2}, then there exists 1 6 l 6 km1 such that

(σ−11 ◦ ρ)l(m1) = m2. Consequently, km1 = km2 ,

(im2
1 , im2

2 , . . . , im2
km2

) = (im1
l , im1

l+1, . . . , i
m1
km1

, im1
1 , . . . , im1

l−1)

and (jm2
1 , jm2

2 , . . . , jm2
km2

) = (jm1
l , jm1

l+1, . . . , j
m1
km1

, jm1
1 , . . . , jm1

l−1)

and we can check easily that Gm1
1 (σ, ρ) = Gm2

1 (σ, ρ) and Gm1
2 (σ, ρ) = Gm2

2 (σ, ρ).

To obtain a combinatorial control, we prove first the following result.

Proposition 10. Let g1, g2 ∈ Gn
k . Assume that there exists ρ ∈ Sn such that Ag2ρ = ρAg1.

If ρ has a fixed point on any non-trivial connected component of g1, then Sn,g1∩Sn,g2 = ∅
or Ag1 = Ag2.

Proof. Let ρ ∈ Sn be a permutation having a fixed point on any non-trivial connected
component of g1 such that Ag2ρ = ρAg1 . Assume that Ag1 6= Ag2 . There exists necessarily
(i, j) ∈ Eg1 such that ρ(i) = i and ρ(j) 6= j or ρ(j) = j and ρ(i) 6= i. This is true
because if we choose any connected component of g1 having a non fixed point of ρ, this
component contains by hypotheses at least one fixed point of ρ. Since this component
contains both fixed and non-fixed points of ρ, one can choose two adjacent points one
a fixed and the other a non-fixed point ρ. In the first case (ρ(i) = i and ρ(j) 6= j),
Sn,g1 ∩Sn,g2 ⊂ {σ ∈ Sn : σ(i) = j, σ(i) = ρ(j)} = ∅. In the second case, Sn,g1 ∩Sn,g2 ⊂
{σ ∈ Sn : σ(i) = j, σ(ρ(i)) = j} = ∅.

This yields the following.
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Corollary 11. For any graph g ∈ Gn
k having p non-trivial connected components and v

non-isolated vertices, for any conjugation invariant random permutation σn on Sn,

P(σn ∈ Sn,g) 6
(n− v)!

(n− p)!
.

Proof. If there exist i, j, l, with j 6= l such that {(i, j)∪ (i, l)} ⊂ Eg or {(j, i)∪ (l, i)} ⊂ Eg
then Sn,g = ∅. Therefore, if Sn,g 6= ∅, then non-trivial connected components of g having
w vertices are either cycles of length w or isomorphic to gw, where Agw = [1j=i+1]16i,j6w.

For example, g5 =
1 2 3 4 5

. Let g ∈ Gn
k such that Sn,g 6= ∅.

Fix p vertices x1, x2, . . . , xp each belonging to a different non-trivial connected components
of g. Let {x1, x2, . . . xp, . . . , xv} be the set of non-isolated vertices of g. Let

F = {(yi)p+16i6v; yi ∈ {1, . . . , n} \ {x1, . . . xp} pairwise distinct}.

Given y = (yi)p+16i6v ∈ F , we denote by gy ∈ Gn
k the graph isomorphic to g obtained by

fixing the labels of x1, x2, . . . , xp and by changing the labels of xi by yi for p+ 1 6 i 6 v.
Since non trivial connected components of g of length w are either cycles or isomorphic
to ḡw, if y 6= y′ ∈ F , then gy 6= gy′ and by Proposition 10, Sn,gy ∩ Sn,gy′

= ∅. Since
σn is conjugation invariant, we have P(σn ∈ Sn,gy) = P(σn ∈ Sn,gy′

) = P(σn ∈ Sn,g).
Therefore,

P(σn ∈ Sn,g) =

∑
y∈F P(σn ∈ Sn,gy)

card(F )
=

P(σn ∈ ∪y∈FSn,gy)

card(F )
6

1

card(F )
=

(n− v)!

(n− p)!
.

4 Proof of Proposition 2 and Corollary 3

The key lemma to prove Proposition 2 and Corollary 3 is the following.

Lemma 12. For any k > 2, there exists C,C ′ > 0 such that for any n > 1, for any
independent random permutations σn and ρn with conjugation invariant distributions,

P
(
c1
(
(σn)−1 ◦ ρn

)
= k
)
6
C

n
+ C ′(P(σn(1) = 1) + P(ρn(1) = 1)),

where cm(σ) is the length of the cycle of σ containing m.

Proof. Note that Ĝk is finite. Therefore, it is sufficient to prove that for any ĝ1, ĝ2 ∈ Ĝk

having the same number of vertices, there exist two constants Cĝ1,ĝ2 and C ′ĝ1,ĝ2 such that
for any integer n,

P((Ĝ11(σn, ρn), Ĝ12(σn, ρn)) = (ĝ1, ĝ2))) 6
Cĝ1,ĝ2
n

+ C ′ĝ1,ĝ2(P(σn(1) = 1) + P(ρn(1) = 1)).

Let ĝ1, ĝ2 ∈ Ĝk be two unlabeled graphs having respectively p1 and p2 connected com-
ponent and v 6 2k vertices. Let Bn

ĝ1,ĝ2
be the set of couples (g1, g2) ∈ (Gn

k)2 having the
same non-isolated vertices such that 1 is a non-isolated vertex of both graphs and, for
i ∈ {1, 2}, the equivalence class of gi is ĝi.
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- Suppose that ĝ1 and ĝ2 do not contain any loop i.e. no edges of type (i, i). Then
p1 6 v

2
and p2 6 v

2
. Consequently,

P((Ĝ11(σn, ρn), Ĝ12(σn, ρn)) = (ĝ1, ĝ2)))

=
∑

(g1,g2)∈Bnĝ1,ĝ2

P((G11(σn, ρn),G12(σn, ρn)) = (g1, g2))

6
∑

(g1,g2)∈Bnĝ1,ĝ2

P(σn ∈ Sn,g1 , ρn ∈ Sn,g2)

=
∑

(g1,g2)∈Bnĝ1,ĝ2

P(σn ∈ Sn,g1)P(ρn ∈ Sn,g2)

6
∑

(g1,g2)∈Bnĝ1,ĝ2

(n− v)!

(n− p1)!
(n− v)!

(n− p2)!

=card(Bn
ĝ1,ĝ2

)
(n− v)!

(n− p1)!
(n− v)!

(n− p2)!

6

(
n− 1

v − 1

)
v!2

(n− v)!

(n− p1)!
(n− v)!

(n− p2)!

6Cg1,g2n
v−1−(v−p1+v−p2) = Cg1,g2n

p1+p2−v−1 6
Cg1,g2
n

.

- Suppose that ĝ1 contains a loop. By Lemma 9, if Ĝm1 (σ, ρ) = ĝ1, then there exists j
a fixed point of σ such that kj = k and j ∈ {iml , 1 6 l 6 k}. Thus, almost surely,

n∑
i=1

1Ĝi1(σn,ρn)=ĝ1 6 k card({i ∈ fix(σn) : ki = k}) 6 k card(fix(σn)),

where fix(σ) is the set of fixed points of σ. Consequently, since σn is conjugation
invariant,

P
((
Ĝ11(σn, ρn), Ĝ12(σn, ρn)

)
= (ĝ1, ĝ2)

)
6 P

(
Ĝ11(σn, ρn) = ĝ1

)
=

∑n
i=1 P

(
Ĝi1(σn, ρn) = ĝ1

)
n

6 k
E(card(fix(σn)))

n
= kP(σn(1) = 1).

Similarly, if ĝ2 contains a loop, then

P
((
Ĝ11(σn, ρn), Ĝ12(σn, ρn)

)
= (ĝ1, ĝ2)

)
6 kP(ρn(1) = 1).
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We will now prove Proposition 2.

Proof of Proposition 2. Suppose that for any n > 1, σn and ρn are independent and that
they are both conjugation invariant.

- Assume that
lim inf
n→∞

√
nP(σn(1) = 1)P(ρn(1) = 1) > α.

In this case,

lim inf
n→∞

E(LCS(σn, ρn))√
n

> lim inf
n→∞

E(card(fix(σn ◦ ρ−1n )))√
n

> lim inf
n→∞

√
nP(σn(1) = 1)P(ρn(1) = 1) > α.

- Assume that
lim
n→∞

max(P(σn(1) = 1),P(ρn(1) = 1)) = 0. (16)

In this case,

P
(
σ−1n ◦ ρn(1) = 1

)
=

n∑
i=1

P(σn(1) = i)P(ρn(1) = i)

= P(σn(1) = 1)P(ρn(1) = 1)

+
(1− P(σn(1) = 1))(1− P(ρn(1) = 1))

n− 1

= o(1).

For any conjugation invariant random permutation σn on Sn

E(#(σn)) = E

(
n∑
i=1

1

ci(σn)

)
=

n∑
i=1

E
(

1

ci(σn)

)
= nE

(
1

c1(σn)

)
,

and for nβ := b 1
β
c+ 1, with the same β as in Lemma 8,

E(#(σn))

n
=
∞∑
k=1

1

k
P(c1(σn) = k)

6 P(c1(σn) = 1) +

nβ∑
k=2

P(c1(σn) = k) +
1

nβ + 1

∞∑
k=nβ+1

P(c1(σn) = k)

6 P(σn(1) = 1) +

nβ∑
k=2

P(c1(σn) = k) +
1

nβ + 1
.

the electronic journal of combinatorics 27(4) (2020), #P4.10 14



Consequently, under (16), by Lemma 12, we have

E(#(σn ◦ ρ−1n ))

n
6

1

nβ + 1
+ o(1) < β + o(1).

Hence, we obtain Proposition 2 thanks to Lemma 8.

Proof of Corollary 3. This is a direct application of Proposition 2. In fact, if

P(σn(1) = 1) >

√
2

4
√
n
,

then
lim inf
n→∞

√
nP(σn(1) = 1)P(ρn(1) = 1) > 2.

Otherwise,
lim
n→∞

max(P(σn(1) = 1),P(ρn(1) = 1)) = 0.

5 Proof of Theorem 1, Theorem 4 and Proposition 5.

By observing that if σn and ρn are independent random permutations with conjuga-
tion invariant distributions then σ−1n ◦ ρn is conjugation invariant, proving Theorem 1 is
equivalent to prove the following.

Theorem 13. For any sequence of conjugation invariant random permutations {σn}n>1,

lim inf
n→∞

E(`(σn))√
n

> 2
√
θ.

The argument will be by comparison with the uniform measure on Sn and the uniform
measure on the set of involutions. We will use the uniform permutation on Sn if we
have few cycles. Otherwise, we will use the uniform measure on the set of involutions
since it has approximately n

2
cycles with high probability. In this section, we denote by

S2
n := {σ ∈ Sn, σ ◦ σ = Idn} the set of involutions of Sn. If σn is distributed according

to the uniform distribution on S2
n, the distribution of λ(σn) on the set of Young diagrams

Yn is known as the Gelfand distribution. For our purpose we recall that [14, Theorem 1]
guarantees that

lim
n→∞

P
(

sup
s∈R

∣∣∣∣ 1√
2n
Lλ(σn)

(
s
√

2n
)
− Ω(s)

∣∣∣∣ < ε

)
= 1

and one can find the proof that

lim
n→∞

E(card(fix(σn)))√
n

= 1

in [3, Page 692, Proposition IX.19] which yields the following result.
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Lemma 14. If σn is conjugation invariant and supported on S2
n then

lim inf
n→∞

E(`(σn))√
n

> 2.

Idea of the proof. If E(card(fix(σn)))√
n

> 2 the result is trivial. Otherwise, the technique of
proof is identical to that of Lemma 8. Going back to Lemma 6, we replace Aσ by

A′σ := {ρ ∈ Sn;σ = ρ ◦ (i1, i2) ◦ · · · ◦ (icard(fix(σ))−1, icard(fix(σ))), fix(ρ) = ∅}

if n is even and by

A′σ := {ρ ∈ Sn;σ = ρ ◦ (i1, i2) ◦ · · · ◦ (icard(fix(σ))−2, icard(fix(σ))−1), card(fix(ρ)) = 1}

if n is odd. We denote by T ′ the Markov operator on S2
n associated to the stochastic

matrix
[

1A′σ
(ρ)

card(Aσ)

]
σ,ρ∈S2

n

. It means that we merge couples of fixed points to obtain the

uniform distribution on permutations having only cycles of length 2 when n is even and
having an additional fixed point when n is odd. Similarly to that we did in Lemma 6, for
any permutation σ, we have the following.

- Almost surely,
|`(T ′(σ))− `(σ)| 6 card(fix(σ)).

- More generally, almost surely,

max
i>1

∣∣∣∣∣
i∑

k=1

(λk(σ)− λk (T ′(σ)))

∣∣∣∣∣ 6 card(fix(σ)).

Moreover, if σn is conjugation invariant, the law of T ′(σn) does not depend on the law
of σn. Consequently, Lemma 14 follows using the same techniques as in the proof of
Lemma 8.

For our purpose, one can obtain then a lower asymptotic bound.

Proposition 15. Let {σn}n>1 be a sequence of random permutations each one being
conjugation invariant. Assume that there exists a sequence (βn)n>1 such that

lim
n→∞

βn = +∞,

and for any n > 1,
P(card(fix(σ2

n)) > βn) = 1.

Then

lim inf
n→∞

E (`(σn))√
βn

> 2.
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Proof. Giving A ⊂ N finite, we denote by SA (resp. S2
A) the set of permutations (resp.

involutions) of A. A random permutation σA supported on SA is called conjugation
invariant if for any σ ∈ SA, σ ◦ σA ◦ σ−1 is equal in distribution to σA.
Fix ε > 0. By Lemma 14, there exists n0 such that for any A ⊂ N with n0 < card(A) <
+∞, for any random permutation σ̂A supported on S2

A conjugation invariant,

E(`(σ̂A))√
card(A)

> 2− ε.

Let σn be a conjugation invariant random permutation and σ′n be the restriction of σn
on fix(σ2

n). In particular, almost surely `(σ′n) 6 `(σn). One can see that for any A ⊂
{1, . . . , n} such that P(fix(σ2

n) = A) > 0, for any σ̂1, σ̂2 ∈ SA,

P(σ′n = σ̂1|fix(σ2
n) = A) = P(σ′n = σ̂2 ◦ σ̂1 ◦ σ̂−12 |fix(σ2

n) = A). (17)

Consequently, if βn > n0,

E (`(σn))√
βn

=
∑
|A|>βn

P(fix(σ2n)=A)>0

E (`(σn)|fix(σ2
n) = A)√

βn
P(fix(σ2

n) = A)

>
∑
|A|>βn

P(fix(σ2n)=A)>0

(2− ε)

√
card(A)

βn
P(fix(σ2

n) = A)

>
∑
|A|>βn

P(fix(σ2n)=A)>0

(2− ε)P(fix(σ2
n) = A) = 2− ε.

This yields Proposition 15.

We will now prove Theorem 13.

Proof. In this proof, we use the following convention. Let A,B ⊂ Sn and f : Sn → R. If
P(σn ∈ A) = 0, we assign P(σn ∈ B|σn ∈ A) = 0 and E(f(σn)|σn ∈ A) = 0.

We have

E(`(σn)) = E
(
`(σn)

∣∣∣∣#(σn) 6
(2 + θ)n

6

)
P
(

#(σn) 6
(2 + θ)n

6

)
+ E

(
`(σn)

∣∣∣∣#(σn) >
(2 + θ)n

6

)
P
(

#(σn) >
(2 + θ)n

6

)
.

Since the condition on the number of cycles is conjugation invariant, it is sufficient to
prove Theorem 13 in the two particular cases.

- Assume that almost surely #(σn) 6 (2+θ)n
6

. By Lemma 7, for any 0 < γ < 2,

P
(
`(σn)√
n

> γ

)
> P

(∑n
i=1(λi(T (σn))− γ

√
n)+

n
>

2 + θ

6

)
.
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As T (σn) is distributed according to the Ew(0), by choosing γ = 2
√
θ − ε for some

ε > 0 in Lemma 8, we can conclude that the right-hand side goes to 1 as n goes to
infinity.

- Assume that almost surely #(σn) > (2+θ)n
6

. We can write,

E(`(σn)) = E
(
`(σn)

∣∣∣card(fix(σn)) > 2
√
nθ
)
P
(

card(fix(σn)) > 2
√
nθ
)

+ E
(
`(σn)

∣∣∣card(fix(σn)) < 2
√
nθ
)
P
(

card(fix(σn)) < 2
√
nθ
)
.

Clearly, if P
(

card(fix(σn)) > 2
√
nθ
)
> 0, then

E
(
`(σn)

∣∣∣card(fix(σn)) > 2
√
nθ
)
> 2
√
nθ.

One can check easily that for any σ ∈ Sn

card(fix(σ2)) > 6#(σ)− 3card(fix(σ))− 2n.

Consequently, under the condition card(fix(σn)) < 2
√
nθ, almost surely,

card(fix(σ2
n))) > θn− 6

√
θn.

We can then conclude by Proposition 15 that if P
(

card(fix(σn)) < 2
√
nθ
)
> 0,

then

lim inf
n→∞

E
(
`(σn)

∣∣∣card(fix(σn)) < 2
√
θn
)

√
nθ − 6

√
nθ

> 2.

Thus, if P (card(fix(σn)) < 2
√
nθ) > 0, then

lim inf
n→∞

E
(
`(σn)

∣∣∣card(fix(σn)) < 2
√
nθ
)

√
n

> 2
√
θ.

The proofs of Theorem 4 and Proposition 5 are based on the following observation.

Lemma 16. For any permutations σ, ρ, almost surely,

|LCS(σ, ρ)− LCS(T (σ), ρ)| 6 #(σ).

The proof is identical to that of Lemma 6. This guarantees the convergence when one
of the permutations follows the Ew(0) distribution.
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Lemma 17. Assume that the law of σ̃n is Ew(0) and σ̃n and ρn are independent. Then

lim
n→∞

P
(
LCS(σ̃n, ρn)− 2

√
n

n
1
6

6 s

)
= F2(s),

lim
n→∞

E (LCS(σ̃n, ρn))√
n

= 2 and
LCS(σ̃n, ρn)√

n

P−−−→
n→∞

2.

This result, with a similar proof, is a consequence of a corresponding result when σ̃n
is uniform in [6].

Proof. Note that if σn is distributed according the uniform distribution, one can see
that the independence between σn and ρn implies that σ−1n ◦ ρn follows also the uniform
distribution. In this case,

lim
n→∞

P
(
LCS(σn, ρn)− 2

√
n

n
1
6

6 s

)
= lim

n→∞
P
(
`(σn)− 2

√
n

n
1
6

6 s

)
= F2(s), (18)

lim
n→∞

E (LCS(σn, ρn))√
n

= lim
n→∞

E (`(σn))√
n

= 2, (19)

and
LCS(σn, ρn)√

n

d
=
`(σn)√
n

P−−−→
n→∞

2. (20)

The second equality of (18) is due to Baik, Deift and Johansson [1] and the second
equality of (19) and the convergence of (20) are due to Vershik and Kerov [20]. Hence,
one can conclude by Lemma 16 since E(#(σn)) = log(n) +O(1) and LCS(σ̃n, ρn) is equal
in distribution to LCS(T (σn), ρn).

Using again Lemma 16, Lemma 17 implies Proposition 5 since T (σn) is distributed
according to Ew(0). Finally we give a sketch of proof of Theorem 4.

Sketch of proof of Theorem 4. Using the same technique as in Lemma 8, we can prove
that for any ε > 0,

P
(
LCS(σn, ρn)√

n
> G−1

(
#(σn)

2n
+ ε

)
− ε
)
−−−→
n→∞

1.

Consequently,

lim inf
n→∞

E(LCS(σn, ρn))√
n

> E
(
G−1

(
lim inf
n→∞

#(σn)

2n

))
.

Since G−1 is convex, we can conclude using Jensen’s inequality.
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