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Abstract

We consider a random walk process on graphs introduced by Orenshtein and
Shinkar (2014). At any time, the random walk moves from its current position along
a previously unvisited edge chosen uniformly at random, if such an edge exists.
Otherwise, it walks along a previously visited edge chosen uniformly at random.
For the random r-regular graph, with r a constant odd integer, we show that this
random walk process has asymptotic vertex and edge cover times T_%nlogn and
ﬁnlog n, respectively, generalizing a result of Cooper, Frieze and the author
(2018) from r = 3 to any odd r > 3. The leading term of the asymptotic vertex
cover time is now known for all fixed r > 3, with Berenbrink, Cooper and Friedetzky
(2015) having shown that the vertex cover time is asymptotic to 5* when r > 4 is

even.
Mathematics Subject Classifications: 05C80, 05C81

1 Introduction

We consider a biased random walk on the random r-regular n-vertex graph G, for any
odd fixed r > 5, i.e. a graph chosen uniformly at random from the set of r-regular
graph on an even number n of vertices. This random walk was introduced by Orenshtein
and Shinkar [10]. In short, the walker walks from its current vertex along a previously
unvisited edge whenever possible, and otherwise along an already visited edge chosen
uniformly at random. See Section 2 for a precise definition. In [5] it is shown that with
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high probability, G5 is such that the expected vertex cover time C%(G3) and expected
edge cover time C%(G3) of the biased random walk satisfy!

3
Cv(G3) ~nlogn, Ch(Gs) ~ énlog n.

We generalize this result as follows.
Theorem 1. Suppose 3 < r = O(1) is odd, and let G, be chosen uniformly at random
from the set of r-regular graphs on n vertices. Then with high probability, G, is such that

CY(G,) ~ nlogn, C%(G,) ~

r
r—2 2(r — 2)

nlogn.

With this the asymptotic leading term of C¥%(G,) is known for all r > 3, with Beren-
brink, Cooper and Friedetzky [3] having previously shown that C%(G,.) ~ o+ for any even
r > 4. They also showed that for even r, C%(G,) = O(wn) for any w tending to infinity
with n, with the w factor owing to the w.h.p.? existence of cycles of length up to w.

Cooper and Frieze [6] considered the simple random walk on G,, showing that for
any r > 3, C3(G,) ~ =inlogn and C3(G,) ~ gg::;gnlog n, and we see that the biased
random walk speeds up the cover time by a factor of 1/(r — 1) for odd r. Cooper and
Frieze [7] also consider the non-backtracking random walk, i.e. the walk which at no
point reuses the edge used in the previous step, showing that C(G,) ~ nlogn and
C(G,) ~ tnlogn. Here, the biased random walk gains a factor of 1/(r — 2) for odd r.

Theorem 1 will follow from the following theorem. Let C%(G; s) (C%(G;t)) denote the
expected time taken for the biased random walk to visit s vertices (¢ edges). Note that
C?(G;+) is defined as an expectation over the space of random walks on the fixed graph
G, and that E (C?(G,;-)) takes the expectation of C’(G;-) when G is chosen uniformly
at random from the set of r-regular graphs.

Theorem 2. Suppose r = 3 is odd, and suppose G, is chosen uniformly at random from
the set of r-reqular graphs on an even number n of vertices. Let (1 —log™ " n)n < s < n
and (1 —log*n)2 <t < rn/2, and let £ > 0. Then

1+e n
I (C\b/(Gr; 3)) = nlog (ﬁ

- +1>+0(nlogn),

E (CH(Gy5t)) = ﬁnlog (rn—r—;t—i—l) + o(nlogn).

We take a = b= c to mean that b—c < a < b+c. The (1 —log ?n) factor in the lower
bound for ¢ is a fairly arbitrary choice, and may be replaced by (1 —1/w) for any w tending
to infinity sufficiently slowly. The specific choice of log™*n is made to aid readability.

Applying Theorem 2 with s = n and t = rn/2 gives E (C},(G,)) ~ —5nlogn and
E (C?E(Gr)) ~ ﬁnlog n. Some more work is needed to conclude that w.h.p. G, is
such that C%(G,.), C%(G,) have the same asymptotic values, see Section 6.3.

"'We say that a,, ~ by, if lima,, /b, = 1.
2An event & holds with high probability (w.h.p.) if Pr{€} — 0 as n — co.
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2 Proof outline

The random r-regular graph G, is chosen according to the configuration model, introduced
by Bollobds [4]. Each vertex v € [n] is associated with a set P(v) of r configuration points,
and we let P = U,P(v). We choose u.a.r. (uniformly at random) a perfect matching p of
the points in P. Each p induces a multigraph G on [n] in which u is adjacent to v if and
only if u(z) € P(v) for some = € P(u), allowing parallel edges and self-loops. Any simple
r-regular graph is equally likely to be chosen under this model.

We study a biased random walk. On a fixed graph G, this process is defined as follows.
Initially, all edges are declared unwvisited, and we choose some vertex vy as the active
vertex. At any point of the walk, the walk moves from the active vertex v along an edge
chosen uniformly at random from the unvisited edges incident to v, after which the edge
is permanently declared wisited. If there are no unvisited edges incident to v, the walk
moves along a visited edge chosen uniformly at random. The other endpoint of the chosen
edge is declared active, and the process is repeated.

A biased random walk on the random r-regular graph can be seen as a random walk
on the configuration model, where we expose p along with the walk as follows. Initially
choosing some point xy € P, we walk to 1 = p(z), chosen u.a.r. from P\ {zo}. Suppose
x1 € P(v1). From z;, the walk moves to some unvisited zo € P(v1). In general, if
Wy = (29,21, ...,xx) then (i) if k is odd, the walk moves to xp1 = p(xy) (chosen u.a.r.
from P\ {xo,...,xx} if ) is previously unvisited), and (ii) if £ is even, the walk moves
from zy € P(vg) to zx+1 € P(vx), chosen w.a.r. from the unvisited points of P(vy) if such
exist, otherwise chosen u.a.r. from all of P(uvy).

We define C'(t) to be the number of steps taken immediately before the walk exposes
its t—th distinct edge. To be precise, if Wy = (xo, ..., z;) denotes the walk after k steps,
then

1
C(t) = = minfk : [{zo, 21, .., 2}] = 2 — 1},

2
Note that the set in this definition always will consist of exactly one k, which is even.
We divide by 2 because the sequence (zg, 1, ..., ;) consists of [k/2] edge traversals

and |k/2] steps between configuration points within one vertex, and the quantity we are
interested in is the number of edge traversals. We also let W (t) = W5c(). Note that C(t)
is a random variable over the combined probability space of random graphs and random
walks, as opposed to the classical cover times C%(G,) and C%(G,) which are variables
over the space of random graphs only.

We will show (Lemma 13) that if ¢, = (1 — log~"/? n)% then

E (C(t)) = o(nlog n),

which does not contribute significantly to the cover time. The main part of the proof
is devoted to calculating E (C'(t + 1) — C(t)) when t > t;. We define the random graph
G(t) C G, as the graph spanned by the first ¢ distinct edges visited by the walk, i.e. the
trace of W (t). If, immediately after discovering its t—th edge, the biased random walk
inhabits a vertex incident to no unvisited edges, then a simple random walk commences
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on G(t), and C(t+ 1) — C(t) is the number of steps taken for this simple random walk to
hit a vertex incident to an unvisited edge.

We construct from G(t) a graph G*(t) by contracting all vertices incident to at least
one unvisited edge into one “supervertex” x. Thus, conditioning on W (t), the graph G*(t)
is a fixed graph, i.e. one with no random edges. We will show that when ¢ > t;, w.h.p.
x lies on “few” cycles of “short” length and has the appropriate number of self-loops (to
be made precise in Section 4), which will imply that the expected hitting time of = for a
simple random walk on G*(t) is

1 ™m
r—2rn—2t

E (H(z))

Readers familiar with the proof for the cubic graph [5] will recognize the general idea of
this outline. In the case of cubic graphs, the set of vertices visited exactly once coincides
with the set of vertices incident to one unvisited edge, modulo the starting vertex of the
walk. This is no longer true when r > 5, which forces a more detailed study of the edges
not visited by the walk.

The paper is laid out as follows. Sections 3, 4 and 5 respectively discuss properties
of the random regular graph, hitting times of simple random walks, and a uniformity
lemma for biased random walks, and may be read in any order. Section 6 contains the
calculation of the cover time. Sections 7 and 8 are devoted to bounding the sizes of certain
sets appearing in the calculations.

3 Properties of the random regular graph

Here we collect some properties of random r-regular graphs, chosen according to the
configuration model.

Lemma 3. Let r > 3. Let G, denote the random r-regular graph on vertex set [n],
chosen according to the configuration model. Let w tend to infinity arbitrarily slowly with
n. Its value will always be small enough so that where necessary, it is dominated by other
quantities that also go to infinity with n.

(i) With high probability, the second largest in absolute value of the eigenvalues of the
transition matriz for a simple random walk on G, is at most 0.99.

(i) With high probability, G, contains at most wr® cycles of length at most w,
(i1i) The probability that G, is simple is (1).

Friedman [8] showed that for any € > 0, the second eigenvalue of the transition matrix
is at most 2y/r — 1/r + & w.h.p., which gives (i). Property (ii) follows from the Markov
inequality, given that the expected number of cycles of length k£ < w can be bounded
by O(r*). For the proof of (iii) see Frieze and Karonski [9], Theorem 10.3. Note that
(iii) implies that any property which holds w.h.p. for the configuration multigraph holds
w.h.p. for simple r-regular graphs chosen uniformly at random.
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Let G(t) denote the random graph formed by the edges visited by W (t). Let X;(t)
denote the set of vertices incident to ¢ unvisited edges in G(t) for ¢ = 0,1,...,r. Let
X(t) = X;(t) U--- U X,(t) denote the set of vertices incident to at least one unvisited
edge. Let G*(t) denote the graph obtained from G(t) by contracting the set X (¢) into a
single vertex, retaining all edges. Define A*(¢) to be the second largest eigenvalue of the
transition matrix for a simple random walk on G*(¢).

We note that by [2, Corollary 3.27], if I" is a graph obtained from G by contracting a set
of vertices, retaining all edges, then A(I') < A(G). This implies that \*(t) = M(G*(t)) <
A(G) < 0.99 for all £. Initially, for small ¢, we find that w.h.p. G*(t) consists of a single
vertex. In this case there is no second eigenvalue and we take A*(¢f) = 0. This is in line
with the fact that a random walk on a one vertex graph is always in the steady state.

We define C(t) to be the number of steps the biased random walk takes to traverse
t distinct edges of G,.. Of course, if GG, is disconnected and the random walk starts in a
connected component of less than t edges, then C(t) = co. We resolve this by defining
a stopping time 7™ = min{t : A*(¢) > 0.99}, and setting C*(t) = C(min{t,T'}). Strictly
speaking, the estimates of C'(t) in the upcoming sections are estimates of C*(t), but we
do not make any explicit distinction between the two, noting that by Lemma 3 (i), w.h.p.
T* = oo which implies that C*(t) = C(t) for all t.

4 Simple random walks

We are interested in calculating C'(t + 1) — C(t), i.e. the time taken between discovering
the t—th and the (t41)-th edge. Between the two discoveries, the biased random walk can
be coupled to a simple random walk on the graph induced by W (t), and in this section
we derive the hitting time of a certain type of expanding vertex set.

Implicitly, when we state results about a vertex set S in a graph G we are considering
a sequence of vertex sets (S,) in a graph sequence (G,). We say that G has positive
eigenvalue gap if the second largest eigenvalue A, of the transition matrix for G,, satisfies
limsup A, < 1.

Consider a simple random walk on an r-regular graph G = (V, E') with eigenvalue gap
1 —X> 0. For aset S of vertices and a probability measure p on V, let E, (H(.S)) denote
the expected hitting time of the set S, i.e. the number of steps the walk takes until it
reaches S, when the initial vertex is chosen according to p. Let 7 denote the stationary
distribution of the random walk, uniform in the case of a regular graph and proportional to
degrees in general. Let Pzgt)(v) denote the probability that a simple random walk starting
at u occupies vertex v at time t.

Lemma 4. Suppose v is a vertex of a graph. Then the hitting time of v, starting from
the stationary distribution m, is given by
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where

Zyw =Y (PP (v) = 7,).

t>0

Lemma 4 can be found in [2] (Lemma 2.11), and can be applied to hitting times of
sets by contracting a set of vertices to a single vertex, retaining all edges. The following
bound will be frequently used. Suppose G is a graph with eigenvalue gap 1 —A(G), and S
is a set of vertices in G. Then if Gg is the graph obtained by contracting S into a single
vertex, retaining all edges, we have equal hitting times for S in G and G and

B (H(S)) = 17 2 (P(8) = ms) < 17 2AGs)!

>0 t>0
1 n 1 n

S L S 1

Gy ls Stoags W

Indeed, |P1£t) (v) — m,| < (d(v)/d(u))*/2\* for any w,v,t in a graph with eigenvalue gap
1 — X (see for example Jerrum and Sinclair [11]), and A(I') < A(G) for any I' obtained
from G by contracting a set of vertices (see [2, Corollary 3.27]). From an arbitrary starting
distribution p, we have for any constant ¢ > 0,

E,(H(S)) <O(logn)+ (1+¢)E, (H(S)) =0 (logn + Fn’) , (2)

which follows from the fact that if the graph has positive eigenvalue gap, after O(logn)
steps the walk has mixed to within ¢ distance in total variation from the stationary
distribution.

In the following lemma we define Ny(S) to be the set of vertices at distance exactly d
from the vertex set S.

Lemma 5. Suppose G is an r-reqular graph on n vertices with positive eigenvalue gap. Let
w tend to infinity arbitrarily slowly with n. Suppose S is a set of vertices with |S| = o(n)
even such that

INa(S)] = (r = 1)U5]

foralll < d < w. Then
ron

B (H(S) ~ -5 a7

Proof. We first note that the set S contains exactly |S|/2 edges. Indeed, as |[N(S)| =
(r —1)|S| and the total degree of S is r|S|, S contains at most |S|/2 edges. As |No(S)| =
(r—1)2]5], each vertex of N(S) must have exactly one edge to S, implying that S contains
at least |S|/2 edges.

Consider the graph Gg obtained by contracting S into a single node s, retaining all
edges. In the graph Gg, s has degree r|S|. Then s is a node with exactly |S|/2 self-loops,
and is otherwise contained in no cycle of length at most w, as | Ng(S)| = (r—1)4]S| ensures
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that G is locally a tree up to distance w from s. Since 75, = |S|/n = o(1) we may choose
w tending to infinity with wmy = o(1). We have

Zo =Y (PV(s) Z PY

t=0

—i—Z\P ) — ).

t>w

Repeating the argument following (1),

D 1PY(s) = m| < YA =0(N) = o(1).

t>w t>w

We now argue that

PO(s) = - ~ 5 +o(D).

It is argued in Cooper and Frieze [6], Lemma 7, that with no loop at vertex s, the expected
number of returns to s within w steps is (r —1)/(r —2) +o(1). With |S|/2 loops, when at
s, there is a 1/r chance of using the loop and so each visit to s yields 1/(r — 1) expected
returns. Le. the 2 of [6] becomes

r—1 1 r

1 = : O
r—2 . < * r— 1) r—2
Definition 6. Let G = (V| F) be an r-regular graph. A set S C V is a root set of order
¢ if (i) |S| = ¢°, (ii) the number of edges with both endpoints in S is between |S|/2 and

(1/2+¢73)|S|, and (iii) there are at most |S|/¢* paths of length at most ¢ between vertices
of S which use no edges induced by S.

The set S in Lemma 5 can be thought of as a “pure” root set, and we now show that
the hitting time remains similar when we allow some impurities in both the structure of
the set and in the starting distribution.

Lemma 7. Letw tend to infinity arbitrarily slowly with n. Suppose G is an r-reqular graph
on n vertices whose transition matrix has second largest eigenvalue A\ < 0.99, containing
at most wr® cycles of length at most w. Suppose S is a root set of order w, and a simple
random walk is initated at a vertex y chosen according to a distribution p satisfying
w(y) < r/|S| fory €S and u(y) =0 fory ¢ S. The expected time to reach a vertex in S
at distance at least 2 from y is then

(T — j:s) 5 O(logn), (3)

for any constant € > 0.

Proof. We first argue that
ron

Er (H(S)) ~ =279
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Consider the contracted graph Gg, and let s denote the contracted node. Then s has
degree 7|S|, and s has at most (1/2 + w™3)|S| self-loops. Apart from the self-loops, s lies
on at most |S|/w? cycles of length at most w, as any cycle of G containing s corresponds
to a path between members of S in G.

Let R = N(S), and note that |R| = Q(]S|). Consider the graph I', defined as Gg
induced on the set of vertices at distance 1,2,...,w from s. Note that s is not included
in I'. The graph T' contains all of R, and as s lies on at most |S|/w? cycles of length
at most w in Gg, the number of components in I' containing more than one member of
R is O(|S|/w?) = O(|R|/w?®). As G contains at most wr® short cycles, the number of
components of I' containing a cycle is at most wr* = O(|R|/w?®) (choosing w tending to
infinity sufficiently slowly). This leaves (1 — o(1))|R| connected components in I' which
are all complete (r—1)-ary trees of height w, each rooted at a member of R and containing
no other member of R. Let T' denote the set of vertices on such components.

Arbitrarily choose |S|/2 of the self-loops of s in Gg, and designate them as good. Also
say that an edge is good if it has both endpoints in 7°U {s}. All other edges are bad.

Consider a simple random walk Z(7) of length w on Gg, starting at s. Let B, denote
the event that Z(7) traverses a bad edge to reach Z(7 4+ 1). Whenever the walk visits s,
the probability that it chooses a bad edge is O(w™3). If the walk is inside T, there are no
bad edges to choose. So for any 7 > 0 we have

P (s) :PI{Z(T) =sN ﬁB }—i—Pr{Z(T) :sﬂDBT}
:Pr{Z(T):sﬂhB}—l—O( 2).

r=0
If B, does not occur for any r < 7 — 1, then the walk (Z(0),...,Z(7 — 1)) can be viewed
as the same Markov chain as considered in Lemma 5. So, by Lemma 5,

ZP o).

This shows that E, (H(S)) ~ 5 Te

We show (3), noting that we only need to consider |S| = o(n/logn) due to the O(log n)
term. Suppose y € S is chosen according to a distribution p with p(y) < r/|S| for any
y € S. Let S(y) denote the set of vertices in S at distance at least 2 from y, and let H be
the random time at which S(y) is hit. The probability of H < w steps is then bounded by
r/w?, as there are at most |S|/w? paths of length at most w between vertices of S which

use no edges induced by S. For any t we have

IPY(S) — mg] < A,

so if we let p; denote the probability that the walk is in S at time ¢,
tS|

n .

Pr{H <t} < Pr{H<w}—|—Zps < —+Z7r + 2 =0(1) +
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Since |S| = o(n/logn), we conclude that Pr{H < Clogn} = o(1) for any constant C.

With ¢t = C'logn for C' large enough, we have Pét)(-) within ¢ of 7 in total variation
distance. If H" denotes the first time after time ¢ that S(y) is hit, we then have

n

E(H')=t+ (1+e)E. (H(S(y))) = O(logn) + <— * 6) [

Since H' = H with probability 1 — o(1), the lemma follows. O

The next lemma is needed in the study of the sizes of X;(t), and will be applied with
R=X,(t),S=X(t).

Lemma 8. Let G be an r-regular graph with positive eigenvalue gap. Let R C S CV be
vertex sets. Suppose a simple random walk is initiated at a vertex y chosen according to a
distribution p with u(y) < |R‘ fory € R and pu(y) =0 fory ¢ R. Suppose the walk ends
as soon as it hits S\ {y}. Then there is a constant B > 0 such that for any x € S, the
probability that the walk ends at x is at most B/|R).

Proof. We will in general write (wg, wy,...) for a simple random walk. Define S(z,y) =
S\ {z,y}. The following reversibility property is central to the proof. If Ts(,,) denotes
the first time at which S(x,y) is visited, then as the graph is regular,

Py(wy =y and T(zy) > t) = Py(wy = & and Ty, >t), forallt > 0.

Let 1 denote the uniform probability measure on R. Then, writing - or y for the starting
vertex chosen by p, the probability that x is the first vertex of S\ {y} to be hit is

Py(T, < Ts(zy) = »_ Pult =T, and Ts(z,) > 1)

t=0

ZP (wy =z and Tg(z,) > t)

t=0

| Z Z P = x and TS(%y) > t)

t=20 yeR
Z > Pulwy =y and T,y > 1). (4)
yER t=0

Write
Quy(t) = Po(wy =y and wy, ..., w1 # y and Ty > 1),

so that ()., (t) denotes the probability that the walk avoids S(xz,y) and first visits y is at
time ¢ (or returns to y if x = y). Then for all £ > 1,

P (wt =1 and TS(:ty > t Zwa wt—s =Y and TS(z,y) >t — 8)7
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so, letting 1,—, = 1 if x = y and 0 otherwise,

ZP (wy =y and Ty > 1) = xy—i-ZZQxy y(Wi—s =y and Tg(z,) >t — 5)

>0 t>1 s=1
= 1r:y + Z er(s)] Z Py(wt =Yy and TS(az,y) > t)
s>1 t>0

(5)

As hitting times are almost surely finite, writing 7,7 = min{t > 1 : w; = y}, we have

Z Qxy T < Ts(m y)) (6>

s>1

Letting = y and plugging (6) into (5) we obtain

1 1
Pyfw, =y and Ts(uy) > £) = = |
; ’ o =221 Qu(s)  Py(Ts@y) <T)

Now let ¥ # y and note that in this case 7,7 = T,. Plug (6) and (7) into (5) to obtain

Po(T, < Ts(ay))
Py(Ts(eyy <T,))

(7)

Z Py(wy =y and Tg(zy) > ) =

t=0

(8)

The identity (8) also holds for z =y, as Py(T, < Ts(z,)) = 1, matching the expression in
(7). Plugging (8) into (4) yields

T < TS 2 ))
P(T, < Tsa Y 9
T < Tste) |m§:fww<Tﬂ ¥
Claim 9.
n 1—A
Py<TS(w,y) < Ty ) 2 T
Proof of Claim 9. Corollary 2.8 of [2] states that for any states i, j in a Markov chain,
1

Pl <10) = S ) + 8, ()

We consider running a simple random walk on the graph obtained by contracting S(z,y)
to a single vertex, and set i =y, j = S(z,y). As m, = 1/n, we have
n

Ey (Ts(ey) + Estey) (1)

For any two states k, ¢ in a Markov chain with eigenvalue gap 1 — A we have

P(Ts@y) <T,) =

1 1
SO 1 A
n _
P,(Ts <TF) > - — > : O
! Y O(logn) + 1= Syl T 1ox 2
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2r

Applying Claim 9 to (9) and choosing B = finishes the proof, as the events

-
{T, < Ts(z,)} are mutually exclusive for y € R, so
2r B
Pu(Ty < Tsay) < — =S Po(T, < Tsay) < — O
[ (z,y) (1_>\)|R|y;% Yy (zy) IR|

5 On vertices with at least one unvisited edge

We now move from considering simple random walks, to the biased random walk Wj.
Recall that W (t) = Wse() denote the state of the walk immedately after it visits its
(2t — 1)~th distinct configuration point. See Section 2 for details.

The walk W (t) induces a colouring on the edges and vertices of G, as follows. An
edge is coloured red, green or blue if it has been visited zero, one or at least two time(s),
respectively. A vertex is (i) green if it is incident to exactly r — 1 green edges and one red
edge, (ii) red if it is incident to red edges only, and (iii) blue otherwise.

Recall that X;(t) denotes the set of vertices incident to exactly ¢ red edges in W (t).
We let X7(t), Xb(t) denote the green and blue vertices of X;(t), respectively, and set

Z(t) =Xt U U X;(t).

We have X (t) = X{(t) U Z(t). Note that the number of configuration points not visited
by W (t) is exactly rn — 2t + 1. We will eventually show that | X7 (¢)| = (rn—2t)(1 —o(1))
and |Z(t)| = o(rn — 2t), so that X7{(t) makes up almost all of X(t) when t = (1 — 0)2
for some § = o(1). In this section we present a “sprinkling” tool used to show that X7 (¢)

is a root set of order w, which will imply that X (¢) is also a root set of order w. Before
this, we state our results on the necessary set sizes.

5.1 Set sizes

Define

1 1 1
- 5 =— = §3=n"%* 6, =n"logn, 10
loglogn ! logl/zn’ 2 10g2n’ 3= ¢=n 0en (10)

0o

and t; = (1 — 9;)%* for 0 < i < 4. From this point on we will use ¢ and J interchangeably

™m

to denote time, and the two are always related by ¢ = (1 — )%
Lemma 10. Let 0 <e <r —2. Then

(i) for any fixred t > t1, w.h.p. the number of green vertices in X1(t) is
X7(t) =rno(1 — o(1)),

(i1) for any fived t; <t < t3, w.h.p. the number of green edges ®(t) satisfies
O(t) = né'’?,
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(i1i) for any fized t > t1, w.h.p. the size of Z(t) is

Z(t) = 0O(nd’?),

(iv) for any fived t > t, such that né™?> — oo or né™/?> — 0, w.h.p. the number of
unuvisited vertices is

X, (t) =nd"2(1 + o(1)).

Parts (i), (iii) and (iv) are proved in Section 7, and part (ii) in Section 8.

5.2 A sprinkling technique

The green edges and vertices are the focus of this section. Suppose W = W(t) =
(20,21, ...,x1). Recall that a vertex is green if r — 1 of its configuration points appear ex-
actly once in W, and its remaining configuration point does not. Suppose xo;, To;11, T2;12,
Zo;13 are consecutive configuration points visited exactly once by W, where xo;y1, X910
belong to a green vertex v. In this situation we call the pair (zg9; 41, ei12) a green link.
Let L(W) C P x P be the set of green links in W. For i < j, say that (zy,...,%241)
is a green segment if (41, Toiv2), (Toits, Toita), . .., (T2j-1,T2;) € L(W), and a mazimal
green segment if (To;_1, ), (T2j41, Tajr2) € L(W) (orif i = 0 or 2j+1 = k, respectively).
Form the contracted walk (W) by replacing each maximal green segment (g, ..., %2;41)
by the single edge (x2;, 22;4+1). Two walks Wy, W, are said to be equivalent if (W;) = (W2)
and L(W;) = L(W3), and we let [W] = ((W), L) denote the equivalence class of the walk
W. Note that X;(W;) = X;(WW3) for any i and Wy ~ W5, and that the two walks induce
the same vertex colouring.

Lemma 11. If W is such that Pr{{W(t)] = [W]} > 0, then
PriW(t) =W | [W(#)] = W]} = =7

Proof. Recall the distinction between Wy and W (t) from Section 2. Let w = (o, ..., xx)
be a walk with Pr{W(¢) = w} > 0, i.e. a walk with Pr{W, =w} > 0, and such that
{zo,...,zx}| = 2t — 1. We calculate Pr{WW, = w} exactly. For 0 < i < k, let w; =
(xo,...,2;) and let s; denote the number of distinct edges traversed by w;.

If 7 is even, the walk proceeds to u(zx;), i.e. the other endpoint of the edge attached
to x;. If x; ¢ w;_q is visited, we have Pr{W, 1 = w; 1 | W, =w;} = 1/(rn — 2s; —
1). Note that z;;1 ¢ w; is guaranteed by the assumption that Pr{W, =w} > 0. If
this is not the first time z; is visited, then p(z;) is uniquely determined by w;, and
Pr{W;i1 = w1 | W; = w;} = 1, again using the assumption that Pr{W, = w} > 0.

If 7 is odd, suppose the configuration point x; belongs to a vertex v such that 0 <
j < r of the points in P(v) have not been visited by w;. If j > 0 then we have
Pr{Wi1 = wi1 | Wy =w;} = 1/7, while if 7 = 0 then this probability is 1/r. Say that
the step has type a if the probability in question is 1/a (note that the j = 0 case is type
r, which will be convenient notationally).
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All in all, letting e(w) =t — 1 denote the number of distinct edges visited by w,

e(w)—1

1 v1 1
Pri{W., = = G _ 11
r{We = w} rnga 311) rm—2s—1’ (11)
for some integers 1, 19,...,%, = 0, counting the number of steps of the different types.

The 1/rn factor accounts for the starting point of the walk. We argue that (11) can be
expressed as a function of [w].

Suppose w has (w) = (z(,..., %)) and green link set L(w). If e(w) denotes the
number of distinct edges visited by w, we have

e(w) = e((w)) + [L(w)].

It remains to argue that [['_, a ™% is determined by (w) and L(w). For a single vertex
v let i,(v) denote the number of steps (i1, %212) of type a with xq;,1 € P(v). If v is
green in the colouring induced by w, then i,(v) = 1fora € {2,4,...,r—1} and i,(v) =0
otherwise. Indeed, w makes exactly (r — 1)/2 visits to v, and the i—th visit involves a
step of type r — 2¢ + 1. If v is not green, then every visit to a configuration point of v
is recorded by (w). Indeed, (w) is exactly the subsequence of w of configuration points
belonging to non-green vertices. So i,(v) is determined by L(w) if v is green and by (w)
otherwise. This shows that the right-hand side of (11) can be expressed as a function of
[w], which finishes the proof. O

Conditioning on [W (t)] = ((W (t)), L), we generate W (t) as follows. Suppose (W (t)) =
(z(0y, 21y, -- -, xpy) is the contracted walk with ¢ green edges. Let F denote the set of
edges visited exactly once by (W (t)). Arbitrarily assigning some order to L, let (pq,q1)
denote the first link, and choose some (37<21'), 3:<22-+1>) € F uniformly at random. We reroute
the edge (x(2:), Z(2i41y) through (p1, ¢:), forming

Wy = ($<0>, <oy L2y P15 41y T (25415 - - - 7$(k>>-

Form Fy from F by replacing (2, ®2i11)) by (Z(2s9, 1) and (g1, Z(2:41y). We repeat the
above using F; with the next (ps, q2) € L, forming W, W3, ... until all links have been
placed in the walk. The final walk is W (t). We refer to this as sprinkling the links into
the green edges of the contracted walk. Note that this can be viewed as a Pdlya urn
process; the urns are the edges of F', and the number of balls in urn (2, (2i41)) € F is
the length of the path between the two points in W (t). Indeed, this value is initially 1 for
each member of F', and if a member of F' is picked then it is replaced by two members,
and so on.

5.3 Set structure

Lemma 12. Suppose [W(t)] is an equivalence class with rn — 2t + 1 free configuration
points, where rn—2t — 0o and rn—2t = o(n), and suppose ®(t) = né*/?, X{(t) = rné(1—
o(1)) and Z(t) = O(nd*?). Let w tend to infinity arbitrarily slowly. If W(t) is chosen
uniformly at random from [W(t)], then with high probability, the set X (t) associated with
W (t) is a root set of order w.
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Proof. Say that v € XY is bad if its distance to the rest of X is at most w, or if it lies
on a cycle of length at most w. Otherwise it is good. As X{ makes up almost all of
X = X{UZ, to show that X is a root set of order w it is enough to show that the number
of bad vertices in X7 is at most X7 /w?.

By Lemma 3, at most wr® = o(X7(t)) vertices lie on cycles of length at most w. Let
(1,05 € L be links. As they are sprinkled onto the ¢ = Q(nd'/?) green edges of [W ()], the
probability that they are placed within distance w of each other is O(r¥/¢(t)). Indeed,
any green edge in [W(t)] is within graph distance at most w of at most r* other green
edges. The expected number of pairs /1, /5 within distance w of each other is bounded by

Do) -0 () o) oo

b7
As X{ = Q(nd), choosing w small enough this shows that all but X (t)/w? of the links
are at distance at least w from other links. We conclude that X (¢) is a root set of order
w. O

(1)

6 Calculating the cover time

Recall the definitions (10) of §; and ¢;, 0 < i < 4. We begin by showing that the time
taken to find the first ¢; edges contributes insignificantly to the cover time.

Lemma 13.
E (C(t1)) = o(nlogn).

This is proved in Section 6.1. We then move on to estimating the expected cover time
increment for larger t.

Lemma 14. Fort, <t <ty and any e > 0,

r—2 rn — 2t

E(C(t+1)—0(t)):( r :I:g) 1

Lemma 14 is proved in Section 6.2. The time to discover the final O(logn) edges can
be bounded using (2). The increment C(t + 1) — C(¢) is the number of steps taken by
a simple random walk to reach a set of configuration points of size rn — 2t 4+ 1, which
corresponds to a vertex S of size at least (rn — 2t + 1)/r. By (2), we then have

E(C({t+1)—-C(t) =0 (logn+ rniQt) ,

which implies
rn/2—1

E (C’ (%) —C(t4)> < Z O (logn+ 1 ) = o(nlogn).

rn — 28

s=tq
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This shows that for t > ¢4,

E(C(t) =E(C(t1)) + Z_:E (C(s+1)—C(9))

r+te | ™ N (1 )
=——nlog| —— o(nlogn
2r—2) B\ —2t+ 1 &n)

proving the edge cover time statement of Theorem 2. The vertex cover time follows from
a simple argument using Lemma 10 (iv): the walk is expected to cover all but s vertices
at time 6 = ((s + 1)/n)?", which accounts for the 7/2 factor separating the vertex and
edge cover times. The details are in Section 6.3.

To prove Theorem 1 it remains to show that Eq (C(t)) ~ E (C(t)) for almost all fixed
r-regular graphs GG. This is done in Appendix A.

6.1 Phase one: Proof of Lemma 13

With ¢; as in (10), we show that E (C(t1)) = o(nlogn). Suppose W (t) = (zg, 21, ..., T}
for some t, k. If x; € P(X(t)) then x4 = p(xy) is uniformly random inside P (X (t)
{zx}, and since C(t + 1) = C(t) + 1 in the event of x4y € P(X2U--- U X,), we have

)
\
]E(O(t + 1) - O(t)) < 1 —|—E (O(t + 1) - O(t) | Lht1 € P(Xl)) Pr {xk—l—l € P(Xl)}, (13)

We use the following theorem of Ajtai, Komlés and Szemerédi [1] to bound the expected
change when 241 € P(X4).

Theorem 15. Let G = (V, E) be an r-regular graph on n vertices, and suppose that each
of the eigenvalues of the adjacency matriz with the exception of the first eigenvalue are
at most Ag (in absolute value). Let A be a set of cn vertices of G. Then for every {, the
number of walks of length £ in G which avoid A does not exceed (1 —c)n((1—c)r+cAg)’.

The set A of Theorem 15 is fixed. In our case we choose a point xp,; uniformly at
random from P(X;(t)), so we consider a simple random walk initiated at a uniformly
random vertex v € X;(t). The subsequent walk now begins at vertex u and continues
until it hits a vertex of Y;, = X (¢)\ {u}. Because the vertex u is random, the set Y, differs
for each possible exit vertex u € X;(t). To apply Theorem 15, we split X;(¢) into two
disjoint sets A, A" of (almost) equal size. For u € A, instead of considering the number
of steps needed to hit Y,, we can upper bound this by the number of steps needed to hit
B =AUX;U---UJX,, and vice versa. Suppose without loss of generality that u € A.

Let S(¢) be a simple random walk of length ¢ starting from a uniformly chosen vertex
of A. Thus S(¢) could be any of |A|r® uniformly chosen random walks. Let ¢ = |B'|/n.
The probability p, that a randomly chosen walk of length ¢ starting from A has avoided
B’ is, by Theorem 15, at most
2(1—c)n

(I=c)n(r(l—rc) + cAg)Z <———((1=¢)+ c)\)e,

Pe < =
( | X1(2)]

[ Xa(8)]/2)r
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where A < .99 (see Lemma 3) is the absolute value of the second largest eigenvalue of the
transition matrix of S. Thus

Z 1—C 1
Pes |X1 | e(1— )

So,

E(C(t+1) = C(t) | aa € PLX1(1) = O (%) |

Now, for any ¢ we have r~*(rn —2t) < |B’| < rn—2t, and the probability that x,; € X,
is | X1|/(rn — 2t + 1). Summing over 0 < ¢ < ¢y, (13) gives

E(C(t)) = ; (1 +0 (ﬁ)) = o(nlogn).

6.2 Phase two: Proof of Lemma 14
Lemma 16. Let ¢ > 0. Fort; <t < iy,

E(C(t+1)—C(t)):( L ia) n

rn — 2t

Proof. The proof of Lemma 14 is based on the following calculation. Define events

Aty = {1x2(0) - m - 20] < 22

w
B(t) = {X(t) is a root set of order w},

and set £(t) = A(t) N B(t). Then for any £ > 0, Lemma 7 shows that E (C(t + 1) — C(t))

can be calculated as
(5 4¢) 7ty + Oowm| eteon + 0 (gm {F0Y ). (o

Indeed, suppose £(t) holds. As X (t) contains almost all unvisited configuration points,
edge t is attached to some v € X;(t) w.h.p., and a simple random walk commences at v,
ending once it hits X \ {v}. As A(t) holds we have | X| ~ rn — 2t. If £() does not hold,
then we use the bound (1), stating that the hitting time is O(n/|X|) = O(n/(rn — 2t))
(as | X| = (rn—2t)/r) as long as the graph has a positive eigenvalue gap. We refer to the
discussion in Section 3 justifying our assumption that the second largest eigenvalue stays
at most 0.99 throughout the process.

Lemmas 10 and 12 show that indeed, Pr{&(t)} =1 — o(1) for t; <t < t3. It remains

to show that Pr{&€(t)} = 1 —o(1) for t5 < t < ty. Fix t > t5. As Z(t3) = O(né2'*) = o(1),
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we have Z(t) C Z(t3) = () w.h.p. by Markov’s inequality. Note that this implies X{(t) C
X7 (t3) and | X{(t)| = rn — 2t. We also have

L(t3)? n?o3 a/an3/2
Dts) (W) =0 (n (7)) = o).

Thus, repeating the calculation (12) of Lemma 12, we have that no two vertices of X7 (¢3)
are placed within distance w of each other. As X{(t) C X7{(¢3), the same must be
true of X{(t). Thus the only vertices of X7(¢) which violate the root set constraints
are those placed on the wr® short cycles of GG, and choosing w small enough we have
wr® < (rn—2t)/w? for all t3 < t < ty, so w.hop. X(t) = X{(¢) is a root set of order w. [

6.3 The vertex cover time

Using Lemma 10 (iv) we can move between partial edge cover time C(t) = Cg(t) and
partial vertex cover time Cy (t). The following lemma is almost exactly as the one in [5]
for the case r = 3.

Lemma 17. Let (1 —log™"n)n < s < n. Then

E (Cy(s)) = (r i S+ g) nlog <n+s+1> .

Proof. The set of undiscovered vertices at time ¢ is X,.(¢). We write Cy (s) = C(7s), where

7, = min{t : | X,.(¢t)| = n — s}.

Suppose n — s tends to infinity with n. Let 6, = (1 — (s — 1)/n)¥", and let w tend to
infinity arbitrarily slowly with n. Define 7,7 = (1 — d,w)%* and 7}t = (1 — dw™")%. By
Lemma 10 (iv), w.h.p.,

S —

s n

1
X (17) =~ n(dw)’? =n <1 — > W >n—s,

and similarly, w.h.p. X,.(7;7) < n — s. In particular, w.h.p. 7, < 75 < 7;7. We have

E(Cy(s)) = E(C(r,)) =E (C()")) +E (C(r:) = C(7)"))

S

E(C(r) +E (C(rs) = C(ri N1, o +)

S

E(C(r})) +E(C(T) = () | 7o > ) Pr{r, > 7},

S

NN

where T' = (1 — ?) T+ is an upper bound for 7,. Indeed, at time T' there are rn — 2T <
r(n — s) unvisited configuration points, so 7, < T'. Conditional on the event {7, > 7.},
for t > 77 we can apply (2) to obtain

_ +) — i
E(Ct+1)—C(t) | 7> 1)) O(logn+rn_2t).
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We then have

E(C(T)~C(rf) 7> 7f) =0 <<T—Ts+>10g”+”log (M»

rn — 275
=0 <nlog (n25>)

We calculate E (C(7;7)) using Theorem 2 to obtain

For a lower bound, we use

S S

E(Cy(s)) > E (C’(T*)) -E (C(T*) —CO(1s) | 75 < T;) Pr {Ts < T;},

and using the same argument as above it is enough to note that for ¢t < 77,

n
E 1) — <t)= 1 :
(Ct+1)—C@t)|1s<t)=0 (ogn + o Qt) O

7 Set sizes

Recall the definition .
Z(t) = Xy ulJ Xu(t),
i=2

where X; denotes the set of vertices incident to ¢ unvisited edges, and X? is the set of
vertices in X; which are incident to at least one edge which has been visited more than
once.

Lemma 18. There exists a constant B > 0 such that fort >ty and 0 < 0 = o(1),
E (eez(t)) < exp {93n53/2} )

Proof. We show that there exists a B > 0 such that for any m > 1,
Pr{[m] C Z(t)} < (B8)*™/?,

beginning with m = 1 before the general statement. Note that any vertex v € Z(t) has
been visited some number 0 < k < r of times. To be precise, there are k indices i1, ..., i
such that 9,41 € P(v). Let ¢; € {1,2} denote the number of new edges incident to v
in the segment (2;,—1, T2;;, T2i; 41, T2i,+2); the edge (22,41, 72;;42) must be new by design
of the random walk, while (z3;,_1,22;,) may or may not appear earlier in the walk. Let
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L = L(r) denote the set of vectors (¢1, s, ..., 0) with ¢; € {1,2} such that > ¢; <r —1,
including in £ the empty vector () (for unvisited vertices), excluding the vector (2,2, ...,2)
consisting of (r — 1)/2 copies of 2 (for green vertices). We partition

2t = | 2(t)

teL
where v € Zy(t) for £ = (ly,...,4) if and only if there exists a sequence 0 < s; <
Sy < -+ < s < ¢ such that v moves from X, 4 .., | to X, 4, .., at time s; for

j=1,...,k,andisin X, o _.._4 at time ¢. If v € X; at time s, the probability that v is
chosen by random assignment is i/(rn — 2s), while Lemma 8 shows that the probability
that v is at the end of a blue walk is O(1/(rn — 2s)). In either case, the probability that

v moves from one set to another is at most B/(rn — 2s) for some B > 0. For a fixed
{= (gl,...,gk) € £, with So — 1,

S]'—l

Pr{l ¢ Z,(t Z H H (1 _r= (517;_ 2:‘ gj—l)) B

™ — 2s;
51< <8 j=1 | s=sj_1+1
t
r—(l 4+ )
X 1— . 15
H ( ™ — 2s (15)

For b > 1 we use the bound

s=to s=to
{-9/ =3
2 to 2 -
b/2
16
(rn—QtO (16)

Combining (15) and (16), the probability that 1 € Z,(¢) is bounded above by

Z ﬁ B rn — 23j (r=(1++£-1))/2 rn — 2t (r=(l1++Ly))/2
rn—2s; \rn —2s;_q rn — 25y '

s1<<s Lj=1

Collecting powers of rn — 2s; for j =1,...,k, we have

(Tn — Qt) (r_(£1+"'+£k))/2

Pr{le Z,)} < B (rn)"/2

Z H —2s;) 3/2_1.

§1<-<8E J=1
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Let N denote the number of indices j € {1,...,k} with {; = 1. Then

Z H(?”n — 25j)éj/2—1 < H (Z(rn _ QS)Ej/2—1>

51<<sp j=1 j=1 \s=0
t
< (t+ DN H (Z(rn - 25)1/2>
jil;=1 \'s=0
< (rn) N (rn — 2t)N/2,
which implies that

Bk
Pr{l e Z,(t)} < W(m _ Qt)(T+N—(€1+-~~+€k))/2(rn)kz—N—r/z‘
rT

Astly+---+ 0, =2k — N, wehave (r+ N — (01 +---+4;))/2=r/2—k+ N. So
B*

5r/2—k+N )
pr—k+N

Pr{l e Z(t)} <

We now argue that /2 — k + N > 3/2, or equivalently 2(k — N) < r — 3, for all £ € L.
Firstly, if ¢; 4+ --- 4+ ¢ < r — 3 then we have 2(k — N) <2k — N =0, + -+ {, <r —3.
Secondly, if ¢; + -+ + ¢, = r — 2 then as r — 2 is odd we have N > 1, so 2(k — N) <
2k — N —1<r—3. Finally, if {4 +--- + ¢, = r — 1 then (as (2,2,...,2) ¢ L) we have
N>2s02k—N)<2k—N-2<r—-3.

As |L£(r)| is a function of r only, and therefore constant with respect to n, it follows
that

Pr{l e Z(t)} = Z Pr{l € Z,(t)} = O(6*?).

LeL(r)
We turn to bounding the probability that [m] C Z(t). We fix /1), ... (™ ¢ £ and

bound the probability that i € Z,u(t) for i = 1,...,m. Let k(i) = dim ¢ denote the
(

number of components of £). Then, summing over all choices sz‘) for 1 <7 < m and

1< j <k(),
Pr{ie Z,(t),i=1,...,m}
(r-%;47)/2 KO

T k) (rn — 21) o )\ 21
< ZHB (rn)"/2 H(T" 2s;7)"

S0 i=1 j=1
J
m _ )=, 672 kG /¢ ;
=1 (rn) j=1 \s=0
< sz(i)53m/2 — O((BT5)3m/2).
Summing over all O(m) choices of /)i =1,... m, we have

Pr{[m] C Z(t)} = O(m(B"5)""?) < (Co)*""?
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for some constant C' > 0. By symmetry the same bound holds for any vertex set of size
m. It follows that for any m, writing (n),, =n(n —1)...(n —m + 1),

E ((Z(t)m) < (n)m x (C8)*™2 < (Cné*2)™.

For s > 1 we apply the binomial theorem to obtain

E (sz(t)) =E ((1 + (s — 1))Z(t)) — Z E((Z(t)m) (s — 1)m'

We set s = e? <1+ 260 (as 0 = o(1)) to obtain

3/2\m m
E ("41) <Z(0n5 26) <exp {0Dno**}

m)!

m=0
for D > 2C. ]

Corollary 19. Fort = (1 —6)%5" with 6 = o(1), and 0 < 6 = o(1),

E (e*exf(t)> = exp {—0rnd(1 —o(1))}

Proof. The number of free configuration points at time ¢ is rn — 2t, so
rn — 2t = ZiXi(t) < X{(t)+rZ(t).
i=1

By Lemma 18 we have
E <679X19(t)) < e 0 (eTeZ(t)) =exp{—0rndé(1 —o(1))}. O
The technique used to prove Lemma 18 can be strengthened to obtain concentration
for the number of unvisited vertices X,.(¢). This is the topic of the next lemma.

Lemma 20. For 6 > 0,
E (eeX“"(t)) < exp {20n6r/2} : (17)

Furthermore, if t = (1 — 0)% with 6 = o(1) and né"/? — oo, then for any w tending to
infinity arbitrarily slowly,

§/? 1
Pr{\XT(t) —no? > 2 } <

wl/2 w

Finally, if nd"/? = o(1) then X,(t) = 0 w.h.p.
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Proof. Suppose a biased random walk is initiated at a vertex chosen uniformly at random.
The probability that no vertex in [m] is not incident to any of the first ¢ distinct edges
visited by the walk is bounded by

t
m rm
Pr{im] € X, (0} = (1-2) [T (1- = ) <o 18
el € %oy = (1= (- 55 (18)
The factor 1 — m/n is the probability that the initial vertex is in [m], and the bound
otherwise is exactly as in (16). The inequality (17) follows from the arguments used in
the proof of Lemma 18.
For m = 1 we need the converse inequality to (16). From 1 — 2 > e~2/(172) valid for

x # 1, we have

t t
r r
1— > —
H( rn—QS) exp{ Zrn—Qs—r}

s=0

_ (7"” - Qt)m (1= o(1)).

rm

Together with (16) this shows that E(X,(t)) = nd/?(1 — o(1)). From (18) we have
E ((X,.(t))2) < n(n — 1)d". We conclude that the leading terms of E ((X,(¢))2) and
E (X, (t))* agree, and

Var(X,.(1)) = E((X,(1))2) + E (X, (1)) — E(X,(1))* = o(E (X, (t))*)-
We apply Chebyshev’s inequality with some w tending to infinity sufficiently slowly:

E (Xq;(t))} < VarX(0)e
wiP? E (X, (¢))

Pr {|XT(t) —E(X,(t)] > = o(1).
Finally, if n6"/2 = o(1) then E (X,(t)) < nd"/? = o(1) and Markov’s inequality shows that
| X, ()] = 0 w.h.p. O

Lemma 20 relates the number of unvisited edges to the number of unvisited vertices:

we expect | X, (t)] = n — s to occur when t ~ (1 — %)2#

C%(G,) ~ 5CV(G,). See Section 6.3 for details.

. This heuristically explains why

8 The green edges

Let ®(t) denote the number of green edges in W(t).

Lemma 21. Let 0 < e <r — 2 and define

log*n\ "7
5. = (Og ”) L t=(1-6)"
n 2

Then with high probability, ®(t) > nér1 for all t; <t < t..
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With € > 0 small enough so that (r —1)/(r +¢) > 3/4 and (1+¢)/(r — 1) < 1/2,
Lemma 21 implies statement (i) of Lemma 10: if #; < ¢ < t3 then w.h.p., ®(t) > né'/2.

Proof of Lemma 21. Firstly, let us see how ®(¢) changes with time. Fix £; > 0 such that

1 14+¢
< ;
(1—e)(r—1) r—1

(19)

let
X(t) ={X{(t) = (1 —e1)(rn —2t)}

and let 1, denote the indicator variable for X'(t). We note that with A = 1/logn, by

Corollary 19
e_AXlg ()

- £1nd,
Pr {X(t)} S e—A(1—e1)(rn—21) S oxp {_ } = (20)

for any t < t..
Claim 22. For 0 < § <é.log%n, e; >0 and ty < t < t.,

200(t)
(1 —e1)(r—1)(rn —2t)

B (-0, | 1(0) < e { 1+ 00D {1

with v = o(log™' n).

Proof. Condition on a [W(t)] such that X7{(t) > (1 — &1)(rn — 2t), recalling that the set
X7 (t) is the same for all walks in [WW(¢)], as mentioned in Section 5.2. If the next edge is
added without entering a blue walk, then ®(t + 1) = ®(¢) + 1. So,

Xi(t)

rn — 2t

Pri{d(t+1)— ) =1|[WH)]} =1—

Suppose the new edge chooses a vertex of X;(t), thus entering a blue walk. We may view
this as a walk on [W(¢)], and any time a green edge is traversed, we ask if the green edge
in [W(t)] contains a green link in W (t), in which case the blue walk ends. If not, the
green edge turns blue and ® decreases by one.

There are L(t) = "5 X7 (t) green links, distributed into the ®(t) green edges by a Pélya
urn process as discussed in Section 5. Suppose ey, €9, . .., e, are green edges in [W(t)], and
let K1, Ks, ..., Ky be the lengths of the corresponding paths in W(t), corresponding to
the first ¢ entries of a vector (ki,...,kew) ) drawn uniformly at random from all vectors

with &; > 1 and Zf:(tl) k; = ®(t). The number of such vectors is (((I;((g:ll), and noting that

O (t) = ¢(t) + L(t), the probability that none of the ¢ edges contain a green link is exactly

B .  Gw-e-1)  ypot) —i
Pr{Ki—lforZ—l,Z,...,K}—W—H(b(t)_i
B ¢ L L ¢
I (-555) < (1-50) -
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This shows that the number of green edges visited before discovering a green link can be
bounded by a geometric random variable. If a green edge is visited without a discovery,
that edge turns blue. Note that the blue walk also ends when a vertex of X? is found for
some ¢ > 1; we are upper bounding the number of green edges visited.

So in distribution,

d X3 (t)
dt+1)—P(t)=1—-B| ——=—
(t+1) ®) (rn—2t)Rt
where B(p) denotes a Bernoulli random variable taking value 1 with probability p, and R;

is stochastically dominated above by a geometric random variable with success probability
L(t)/®(t). The two random variables on the right-hand side are independent. So

X0, X0 g on [W(t)]))

m—2t rn—2t

E (6—9(®(t+1)—<1>(t)) ’ [W(t)]) _ 6_9 (1 .

The map = +— €% is increasing for § > 0, so we can couple R; to a geometric random
variable S; with success probability L(t)/®(t) in such a way that

E (e [ W(B)]) <E (™ | [W(H)]).

As S, is geometrically distributed and X7 (t) > (rn — 2t)/2 by conditioning on X (t),

E@%tuwwn):1+e%%§—o<é§§3)=ﬂ+ﬂ%%%1+OW”-

Conditioning on X{(t) > (1 — &1)(rn — 2t) implies that L(t) = 52 X{(t) = Q(nd), so

o(t) .
=0—= < 6.1

Qo)) = o(log ™' n).

We also have Xb(t) < rn — 2t — X{(t) < &(rn — 2t), so

Xb(t) o 2 e1(rn — 2t) B 2

L) Sr—1 (-e)Sitm—21) (A-er—1)

(6—6(<I>(t+1)—<1>(t))1t | [W(t)])
<o <1_ Xi(t) n Xi1(t) <1+0%(1+O(’y))))

rm—2t  rn—2t L(t)
25 (1)
< (o o)
20(1)
<o | e = 1=z O -
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Define for 0 < 6 = o(1),
ft(Q) = ]E (6_9¢(t)1t) .

As ®(t) > L(t) = 52 X{(t) we have for 0 < 6 = o(1), by Corollary 19,

fto (0) <E <6—6<I>(t0)) <E <6_9rgle(t)> = exp {_07* —
Claim 22 shows that for ty <t < t.,

ft+1(9) - (6—9<1>(t+1)1t) +E (e—9q>(t+1)(1t+1 _ 1t))
<E (e—eé(t)E (6—9(<I>(t+1)—¢’(t))1 | [ ( )])) +E(1— 1t)

<& (e {000 (1- = 51;(1;_?; ) p 1)+
=t (9 (1_ (1—el)<(lr+—01 rn—2t )) o

where 1 = exp{—e1nd./logn} is an upper bound for Pr{ }, as defined in (20). As

L ndo(1 + 0(1))} e

v = o(log™' n), repeating the calculations in (16) and (18), we have

t—1

11 (1 (- 512)((17“t01)((77")7)1 — 25)) - (:::;;) e :

s=to

It follows by induction and from (21) that

.mm<ngﬂj(1—u_f§étf%2_2Q)>+u—mm

§\ TG
< exp § —0rndy (5—> + (t —to)n.
0

Now, €; was chosen in (19) to satisty 1/(1—e1)(r—1) < (1+¢)/(r—1). The dy = 1/loglogn
factors are insignificant compared to those involving § < log™'/?n, and we have

5\ T e
ndo (—> > et = A(t),
do

which implies
ft( )\ —r0A(t) +TLT]
Now, setting 6 = §. log™2 n, using the bound 1ixsqy < X/a,

Pr{®(t) < A(t)} < Pr {X(t)} FPr{d(t) < A1), X(1))

n+E (1{ —9<I>(t)>e—6A(t)}1t>

1+ e (6)
— O(ne®MOp) 4 ¢0r-DAD) (22)

N

N
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We bound the two terms in (22) separately. Firstly,

55 14e 817155

=nex nor—1 —
1 P {log2 n logn

NG

} < nexp { no. (23)

and as § = o(1) and né./logn = Q (ni%), we have nef )

§>6.= (n—l 10g4 n)(r—l)/(r-&-s),

n = o(n™'). Secondly, for

—0(r—1)A() Oc Lic nod ! “log?n
e = exp —(r—l)l no1 5 < exp{ — =e %" (24)

so combining (22), (23) and (24), we conclude

Pr{3t <t<t.: o) <A@)} <n (o(n—l) + O(e—log%)) = o(1). O
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A From expectation to w.h.p.

We have calculated the expected partial edge cover time of the random regular graph,
E (C(t)), with the expectation taken over the full probability space of random wak and
random graph. Let G = G, ,, be the class of r-regular (multi-)graphs on n vertices. In this
section we show that if G € G is chosen u.a.r., then w.h.p., Eq (C(t)) ~ E(C(t)), where
Eq (C(t)) is the expectation with G fixed.

The following lemma is a direct generalization of the corresponding lemma for r = 3
found in [5]. We remark that the class of r-regular multigraphs G, , may be replaced in
the statement by the class of r-regular simple graphs G, ., as |G) .| > ¢;|G, | for some
¢, > 0 independent of n, see e.g. [9, Theorem 10.3].

Recall that d, = log™?n and ty = (1 — b2) 5.

Lemma 23. Let t > ty and s > (1 —log " n)n. If G € G,, is chosen uniformly at
random, then with high probability,

Bo (C(0) = 5570108 (=57 ) (25)

Ee (Cv(s)) = +—nlog (L) |

Proof. Fix some t > t5, and some constant ¢ > 0 and some w tending to infinity arbitrarily
slowly with w. Let A(s) = C(s+1)—C(s). We define the following subfamilies of G = G, ..

rm
Zerlos\ 1) |

t—1

> (EG (As) - 5 2s>

s=to

%:{GEQ:

7={0cg:ms 0w > %"
L={GeG:\G)>099).

We will show that the union of these families has size o(|G|). In particular, almost all
G € G are in H N J, which implies that G satisfies (25).

It follows from Lemma 3 that |£|/|G|] = o(1). By Lemma 13 we have E (C(t;)) =
o(nlogn). By Lemma 14,

E(C(ty)) — E(C(t)) = O (i _m 2t> _0 (n log (g_;)) — o(nlogn).

t=t1
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We insist that w is small enough so that E (C(¢2)) < w™*nlogn. Then

nlogn 1 |T| nlogn

g7 2 B (k) > 51

w
from which we conclude that | 7| < w™!|G|. Define ¢’ = G\ (JUKUL) and H' = HNG'.
We will show that |H'|/|G'| = o(1), which implies |H|/|G| = o(1).

For G € @', let T denote the set of times s where Eg (A(s)) deviates from E (A(s)),
by

en
Eq (A > :
¢ (A()) rn — 25}

We define a family 7' C G’ of graphs G where the contribution from Ty is large, viz.

n n N
'={Ged: > —1 — | 7.
a { i Zrn—Qs w0g<rn—2t+1)}

seTq

1 ™

ng{t1<s<t:

r—2rn—2s

As |X(s)] = (rn — 2s)/r for all s, if G € G’ then (letting W(s) denote the history of the
walk up to time s),
1 n 100rn

<

B (A6) | W) < =3 ) S mm—ts

So, if G € §'\ F,

> (EG (AE) ~ 5" 25)

Eq (A(s)) =

1 N

r—2rn—2s

n 100rn 1 rn
<
\gzrn—Qs—'— Z (rn—25+r—2rn—23)
s=t1 s€Tq

€ 1 rn
< (= - — .
= (2+O<w))n10g<rn—2t+l)

It follows that H' C F’, and it remains to show that |F'|/|G'| = o(1). For t; < s <t let
F! C G’ denote the set of graphs G with s € Tg.

Recall the definition of £(s) from Section 6.2: we say that £(s) holds if X7{(s)
(rn — 2s)(1 — o(1)) and X (s) is a root set of order w. Repeating the calculation of (14)
with £/2 in place of ¢, and conditioning on G, we have

o (M) = (15 5) 5 PrE) | 6)

r—2 2)rn—2s
—l—O( n Pr{%‘@}%—logn).

rn — 28
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Let s > t9 so that the logn term is insignificant. If G € F., so that s € T(;, then we must
have Pr{ (s) | G} = (2(1). But as shown in Section 6.2 we have Pr{&(s)} = 1 — o(1),
so almost all graphs G have Pr{&(s) | G} = 1—o0(1), and it follows that |F.|/|G'| = o(1).

Suppose w is small enough that |F!|/|G'| < w™? for all s. Then

>y o < e (s
< —=nlog| ——— | .
m—2s |Q’ rm—2s - w? & rn —2t+ 1

Geg’ seTq
s<t

|g/|
But by definition of F7,

|71 rn
nl — .
|g’|zzrn—2$ G| w e 2t 1

Geg's

We conclude that |F'|/|G’] < w™!, which finishes the proof for the edge cover time.

The vertex cover time statement follows from the edge cover time statement in the

same manner as the proof of Lemma 17.
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