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Abstract

The Terwilliger algebra T (x) of a finite connected simple graph Γ with respect
to a vertex x is the complex semisimple matrix algebra generated by the adjacency
matrix A of Γ and the diagonal matrices E∗i (x) = diag(vi) (i = 0, 1, 2, . . . ), where
vi denotes the characteristic vector of the set of vertices at distance i from x. The
twisted Grassmann graph J̃q(2D+1, D) discovered by Van Dam and Koolen in 2005
has two orbits of the automorphism group on its vertex set, and it is known that one
of the orbits has the property that T (x) is thin whenever x is chosen from it, i.e.,
every irreducible T (x)-module W satisfies dimE∗i (x)W 6 1 for all i. In this paper,
we determine all the irreducible T (x)-modules of J̃q(2D+ 1, D) for this “thin” case.

Mathematics Subject Classifications: 05E30, 16S50

1 Introduction

In 2005, Van Dam and Koolen [5] discovered a new infinite family of distance-regular
graphs with unbounded diameter, which they call the twisted Grassmann graphs. Let q
be a prime power, and let D be an integer at least two. Fix a hyperplane H of the vector
space F2D+1

q over the finite field Fq. Let X ′ be the set of (D + 1)-dimensional subspaces
of F2D+1

q not contained in H, and let X ′′ be the set of (D − 1)-dimensional subspaces of

H. The twisted Grassmann graph J̃q(2D+ 1, D) has vertex set X = X ′ tX ′′, where two
vertices y and z are adjacent whenever

dim y + dim z − 2 dim y ∩ z = 2. (1)
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The graph J̃q(2D+1, D) has the same intersection array as the Grassmann graph Jq(2D+
1, D) on the set of D-dimensional subspaces of F2D+1

q . A particularly interesting feature of
the twisted Grassmann graphs is that these are not vertex-transitive. All the previously
known families of distance-regular graphs with unbounded diameter are at least vertex-
transitive, and many of them are in fact distance-transitive. For more information on the
twisted Grassmann graphs, see [1, 5, 6, 8, 11, 12, 13, 16, 17].

In this paper, we discuss the Terwilliger algebra of the twisted Grassmann graph
J̃q(2D + 1, D). In general, for a finite connected simple graph Γ with vertex set V Γ, the
Terwilliger algebra T (x) of Γ with respect to the base vertex x ∈ V Γ is the subalgebra of
the C-algebra of complex matrices with rows and columns indexed by V Γ, generated by
the adjacency matrix A of Γ and the diagonal matrices E∗i (x) = diag(vi) (i = 0, 1, 2, . . . ),
where vi denotes the characteristic vector of the set of vertices at distance i from x [20, 21,
22, 23]. The algebra T (x) is non-commutative whenever |V Γ| > 1, and is semisimple as it
is closed under conjugate-transpose. For the role of the Terwilliger algebra in the study of
distance-regular graphs, see [6] and the references therein. We note that, for the examples
of distance-regular graphs with large diameter known before 2005, the Terwilliger algebra
T (x) is independent of the choice of the base vertex x up to isomorphism, since these
graphs are vertex-transitive. On the other hand, the automorphism group of J̃q(2D+1, D)
has two orbits on the vertex set X, namely X ′ and X ′′, and T (x) indeed depends on the
orbit to which x belongs. More specifically, Bang, Fujisaki, and Koolen [1] showed that
T (x) is thin for x ∈ X ′′ and is non-thin for x ∈ X ′. Here, T (x) is called thin if every
irreducible T (x)-module W satisfies dimE∗i (x)W 6 1 for all i, and non-thin otherwise.

The Terwilliger algebra of the Grassmann graph Jq(n,D) (n > 2D) is known to be
thin, and its irreducible modules have been described; see, e.g., [10, 18, 22, 26]. The goal
of this paper is to determine the irreducible modules of the Terwilliger algebra T (x) of
J̃q(2D + 1, D) for the thin case, i.e., x ∈ X ′′. While the non-thin case for J̃q(2D + 1, D)
currently appears to be beyond our scope, the thin case is already more involved than
Jq(n,D). Our approach is to embed T (x) into a larger matrix algebra, denoted by H̃,
whose rows and columns are indexed by the subspaces of F2D+1

q , not just X. The algebra

H̃ is generated by three types of “lowering” matrices and “raising” matrices, together
with certain 0-1 diagonal matrices. We note that H̃ is an extension of the incidence
algebra of the subspace lattice of F2D+1

q (cf. [19]), and that it is also a subalgebra of the
centralizer algebra of the parabolic subgroup of GL(F2D+1

q ) which stabilizes both H and
x (⊂ H), acting on the subspaces of F2D+1

q . A similar approach was previously taken for
Jq(n,D), and the representation theory of the corresponding algebra, denoted by H, has
been fully developed by Watanabe [27] (and also [18]). In Section 2, we collect necessary
results from [18, 27]. In Section 3, after introducing the algebra H̃, we extend some
of the results of Srinivasan [15], where he gave, among other results, a linear algebraic
interpretation of the Goldman–Rota identity for the number of subspaces of Fnq . This

enables us to relate the representation theory of H̃ to that of H, which then leads to a
complete description (Theorem 3.5) of the irreducible H̃-modules. Section 4 is devoted
to finding all the irreducible T (x)-modules. The algebra H̃ contains the 0-1 diagonal
matrix Ẽ∗ whose (y, y)-entry equals one if and only if y ∈ X. We first observe that
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T (x) is viewed as a subalgebra of the algebra Ẽ∗H̃Ẽ∗ with identity Ẽ∗. Put differently,
T (x) is contained in the set of principal submatrices indexed by X, of the elements of H̃.
We then show that, for every irreducible H̃-module W̃ , the subspace Ẽ∗W̃ is either an
irreducible T (x)-module, or the direct sum of two irreducible T (x)-modules. We also find
the isomorphisms among these irreducible T (x)-modules. In view of the semisimplicity of
T (x), this completes the classification of the irreducible T (x)-modules. Our main results
are Theorems 4.2, 4.3, and 4.4. See also the comments after Theorem 4.4.

Throughout this paper, we fix a prime power q and use the following notation:

(α)i = (α; q)i =
i−1∏
`=0

(1− αq`) (α ∈ C, i ∈ Z>0),[
m

n

]
=

[
m

n

]
q

=
(q)m

(q)n(q)m−n
(m,n ∈ Z>0, m > n).

For every non-empty finite set S, we let MatS(C) denote the C-algebra of complex matrices
with rows and columns indexed by S, and we also let CS denote the C-vector space with
basis S, on which MatS(C) acts from the left in the standard manner.

2 The algebra H

Let a and b be non-negative integers, and let P be the set of all subspaces of Fa+bq . We
will always fix x ∈ P with dimx = a. For 0 6 i 6 a and 0 6 j 6 b, let

Pi,j = {y ∈ P : dimx ∩ y = i, dim y = i+ j}.

We note that the Pi,j give a partition of P , and that (cf. [3, Lemma 9.3.2])

|Pi,j| = q(a−i)j
[
a

i

][
b

j

]
.

In particular, if we let sq(n) denote the number of subspaces of Fnq , then we have

sq(a+ b) = |P | =
a∑
i=0

b∑
j=0

q(a−i)j
[
a

i

][
b

j

]
. (2)

For convenience, we set Pi,j := ∅ for i, j ∈ Z unless 0 6 i 6 a and 0 6 j 6 b.
For 0 6 i 6 a and 0 6 j 6 b, let E∗i,j ∈ MatP (C) be the diagonal matrix with

(y, y)-entry

(E∗i,j)y,y =

{
1 if y ∈ Pi,j,
0 otherwise,

(y ∈ P ).
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Moreover, let L1,L2,R1,R2 ∈ MatP (C) be such that, for y, z ∈ P with z ∈ Pi,j,

(L1)y,z =

{
1 if y ∈ Pi−1,j, y ⊂ z,

0 otherwise,
(R1)y,z =

{
1 if y ∈ Pi+1,j, y ⊃ z,

0 otherwise,

(L2)y,z =

{
1 if y ∈ Pi,j−1, y ⊂ z,

0 otherwise,
(R2)y,z =

{
1 if y ∈ Pi,j+1, y ⊃ z,

0 otherwise.

We note that (L1)
T = R1 and (L2)

T = R2, where T denotes transpose. Let H be the
subalgebra of MatP (C) generated by L1,L2,R1,R2, and all the E∗i,j. The algebra H is
semisimple as it is closed under conjugate-transpose. We note that every irreducible
H-module appears in CP up to isomorphism.

Let W be an irreducible H-module. Let

ν = min{i : (E∗i,0 + · · ·+ E∗i,b)W 6= 0},
ν ′ = max{i : (E∗i,0 + · · ·+ E∗i,b)W 6= 0},
µ = min{j : (E∗0,j + · · ·+ E∗a,j)W 6= 0},
µ′ = max{j : (E∗0,j + · · ·+ E∗a,j)W 6= 0}.

We call (ν, µ) (resp. (ν ′, µ′)) the lower endpoint (resp. upper endpoint) of W . It is known
([27, Lemma 8.3]) that

ν + ν ′ + µ+ µ′ = a+ b.

We let
ρ = a− ν − ν ′ = µ+ µ′ − b,

and call ρ the index of W .

Theorem 2.1 ([18, 27]). There exists an irreducible H-module with lower endpoint (ν, µ)
and index ρ if and only if

0 6 ν 6 a, 0 6 µ 6 b, max{0, 2µ− b} 6 ρ 6 min{a− 2ν, µ}.

Let W be an irreducible H-module with lower endpoint (ν, µ) and index ρ. Then W has a
basis wi,j (ν 6 i 6 a− ν − ρ, µ 6 j 6 b− µ+ ρ) such that wi,j ∈ E∗i,jW, and

L1wi,j = qν+j
[
a− ν − ρ− i+ 1

1

][
i− ν

1

]
wi−1,j, R1wi,j = wi+1,j,

L2wi,j = qa−ν+µ−ρ
[
b− µ+ ρ− j + 1

1

][
j − µ

1

]
wi,j−1, R2wi,j = qν−iwi,j+1

for all i, j, where we set wν−1,j = wa−ν−ρ+1,j = wi,µ−1 = wi,b−µ+ρ+1 := 0. In particular, the
isomorphism class of W is determined by ν, µ, and ρ. Moreover, the multiplicity mν,µ,ρ of
W in CP is given by

mν,µ,ρ =
(−1)ρ(q)a(q)b(1− qa−2ν−ρ+1)(1− qb−2µ+ρ+1)qν+µ−ρ+(ρ2)

(q)a−ν−ρ+1(q)b−µ+1(q)ν(q)µ−ρ(q)ρ
.
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Remark 2.2. The generators of the algebra H commute with the action on P of the max-
imal parabolic subgroup of GL(Fa+bq ) stabilizing the subspace x. Hence H is a subalgebra
of the centralizer algebra of this parabolic subgroup. However, by comparing Theorem
2.1 with the results of Dunkl [7] we can show that the two algebras are in fact equal. In
particular, the formula for the multiplicity mν,µ,ρ above agrees with [7, Proposition 4.15]
under the replacement (ν, µ, ρ) 7→ (m,n+ r, r). See also [26].

3 The algebra H̃

Let a and b be as in the previous section. Let P̃ be the set of all subspaces of Fa+b+1
q . We

will again fix x ∈ P̃ with dim x = a, and we will also fix a hyperplane H ∈ P̃ containing
x. For 0 6 i 6 a, 0 6 j 6 b, and 0 6 k 6 1, let

P̃i,j,k = {y ∈ P̃ : dimx ∩ y = i, dimH ∩ y = i+ j, dim y = i+ j + k}.

Then the P̃i,j,k give a partition of P̃ , and

|P̃i,j,k| = q(a−i)j+(a+b−i−j)k
[
a

i

][
b

j

]
.

For convenience, we set P̃i,j,k := ∅ for i, j, k ∈ Z unless 0 6 i 6 a, 0 6 j 6 b, and
0 6 k 6 1.

For 0 6 i 6 a, 0 6 j 6 b, and 0 6 k 6 1, let Ẽ∗i,j,k ∈ MatP̃ (C) be the diagonal matrix
with (y, y)-entry

(Ẽ∗i,j,k)y,y =

{
1 if y ∈ P̃i,j,k,
0 otherwise,

(y ∈ P̃ ).

Moreover, let L̃1, L̃2, L̃3, R̃1, R̃2, R̃3 ∈ MatP̃ (C) be such that, for y, z ∈ P̃ with z ∈ P̃i,j,k,

(L̃1)y,z =

{
1 if y ∈ P̃i−1,j,k, y ⊂ z,

0 otherwise,
(R̃1)y,z =

{
1 if y ∈ P̃i+1,j,k, y ⊃ z,

0 otherwise,

(L̃2)y,z =

{
1 if y ∈ P̃i,j−1,k, y ⊂ z,

0 otherwise,
(R̃2)y,z =

{
1 if y ∈ P̃i,j+1,k, y ⊃ z,

0 otherwise,

(L̃3)y,z =

{
1 if y ∈ P̃i,j,k−1, y ⊂ z,

0 otherwise,
(R̃3)y,z =

{
1 if y ∈ P̃i,j,k+1, y ⊃ z,

0 otherwise.

We note that (L̃1)
T = R̃1, (L̃2)

T = R̃2, and (L̃3)
T = R̃3. Let H̃ be the subalgebra

of MatP̃ (C) generated by L̃1, L̃2, L̃3, R̃1, R̃2, R̃3, and all the Ẽ∗i,j,k. The algebra H̃ is
semisimple as it is closed under conjugate-transpose. We note that every irreducible
H̃-module appears in CP̃ up to isomorphism.

Our goal in this section is to describe the irreducible H̃-modules. To this end, we
extend some of the results of Srinivasan [15]. Let G be the subgroup of SL(Fa+b+1

q )
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consisting of the elements which fix every vector in H. If we fix a basis u1, . . . ,ua+b+1 of
Fa+b+1
q such that H = span{u1, . . . ,ua+b}, then the matrices representing the elements of
G with respect to this basis are of the form

1 α1

· ·
· ·

1 αa+b
1

 (α1, . . . , αa+b ∈ Fq). (3)

Observe that G is abelian and is isomorphic to the additive group Fa+bq , and that the P̃i,j,k
are G-invariant. Let

P̃0 =
a⊔
i=0

b⊔
j=0

P̃i,j,0, P̃1 =
a⊔
i=0

b⊔
j=0

P̃i,j,1.

Thus, P̃0 is the set of subspaces of H, and P̃1 is the set of subspaces of Fa+b+1
q not contained

in H. We define the equivalence relation ∼ on P̃1 by

y ∼ z if and only if H ∩ y = H ∩ z (y, z ∈ P̃1).

We observe that the equivalence classes of this relation are precisely the G-orbits on P̃1.
For every y ∈ P̃1, let Gy denote the stabilizer of y in G.

Let Ĝ be the character group of G with trivial character 1G. For 0 6 i 6 a and
0 6 j 6 b, let ψi,j be the permutation character of G on P̃i,j,1. Note that (g− id)(Fa+b+1

q )
is a one-dimensional subspace of H for every g ∈ G with g 6= id (cf. (3)). The elements
of G such that (g − id)(Fa+b+1

q ) ⊂ x form a subgroup of G of order qa, which we denote
by K. The following extends [15, Theorem 2.3], and the proof is straightforward.

Lemma 3.1. The following hold:

(i) For 0 6 i 6 a, 0 6 j 6 b, and g ∈ G, we have

ψi,j(g) =


q(a−i)j+(a+b−i−j)[a

i

][
b
j

]
if g = id,

q(a−i)j+(a+b−i−j)[a−1
i−1

][
b
j

]
if g 6= id, g ∈ K,

q(a−i)(j−1)+(a+b−i−j)[a
i

][
b−1
j−1

]
if g ∈ G \K.

(ii) For 0 6 i 6 a, 0 6 j 6 b, and χ ∈ Ĝ, we have

[χ, ψi,j] =


q(a−i)j

[
a
i

][
b
j

]
if χ = 1G,

q(a−i)j
[
a
i

][
b−1
j

]
if χ 6= 1G, χ|K = 1K ,

q(a−i−1)j
[
a−1
i

][
b
j

]
if χ|K 6= 1K ,

where [·, ·] denotes the usual inner product of characters.
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For 0 6 i 6 a, 0 6 j 6 b, and χ ∈ Ĝ, let M(χ) and M(χ)i,j be the homogeneous
components of χ in CP̃1 and CP̃i,j,1, respectively. Note that

dimM(χ)i,j = [χ, ψi,j]. (4)

Hence it follows from Lemma 3.1 (ii) that

M(χ) =


⊕a

i=0

⊕b
j=0M(1G)i,j if χ = 1G,⊕a

i=0

⊕b−1
j=0M(χ)i,j if χ 6= 1G, χ|K = 1K ,⊕a−1

i=0

⊕b
j=0M(χ)i,j if χ|K 6= 1K ,

and that

dimM(χ) =

{
sq(a+ b) if χ = 1G,

sq(a+ b− 1) if χ 6= 1G,
(5)

by virtue of (2). Moreover,

CP̃1 =
⊕
χ∈Ĝ

M(χ).

Observe that G acts trivially on P̃0, and that the generators of H̃ commute with the action
of G, from which it follows that CP̃0

⊕
M(1G) and the M(χ) (χ 6= 1G) are H̃-modules.

For χ ∈ Ĝ, let

eχ =
1

qa+b

∑
g∈G

χ(g−1)g ∈ CG.

Note that the eχ are the (central) primitive idempotents of the group algebra CG. In
particular, we have

eχCP̃i,j,1 = M(χ)i,j (0 6 i 6 a, 0 6 j 6 b). (6)

Lemma 3.2 ([15, Lemma 2.4]). Let y ∈ P̃1 and χ ∈ Ĝ. Then eχy 6= 0 if and only if
χ|Gy = 1Gy .

For the rest of this section, we will fix u ∈ P̃0,0,1. For y ∈ P̃0, we will use y ∨ u to
denote the subspace of Fa+b+1

q spanned by y and u, in order to avoid confusion with the

addition in CP̃ . The following is essentially from [15, Theorem 2.5 (i)–(iii)].

Lemma 3.3. Let χ ∈ Ĝ. Then the following hold:

(i) Let y, z ∈ P̃1. If y ∼ z then eχy is a non-zero scalar multiple of eχz.

(ii) Let y, z ∈ P̃1. If y ⊂ z and eχz 6= 0 then eχy 6= 0.

(iii) For 0 6 i 6 a and 0 6 j 6 b, the non-zero vectors among the vectors

eχ(y ∨ u) (y ∈ P̃i,j,0)

form a basis of M(χ)i,j.

the electronic journal of combinatorics 27(4) (2020), #P4.15 7



Proof. (i), (ii): See [15, Theorem 2.5 (i), (iii)].
(iii): Note that the subspaces y ∨ u (y ∈ P̃i,j,0) form a complete set of representatives

of the equivalence classes in P̃i,j,1. From (i) above and (6), it follows that these vectors
span M(χ)i,j. Moreover, they have mutually disjoint supports, and hence are linearly
independent.

For any subspaces x′ and H ′ of Fa+b+1
q with x′ ⊂ H ′, we let P (x′, H ′) denote the set of

all subspaces of H ′, to which we attach the matrices L1,L2,R1,R2, E∗i,j ∈ MatP (x′,H′)(C)
with respect to the fixed subspace x′ as in the previous section. (For these matrices, the
underlying subspaces x′ and H ′ will be clear from the context.) We will also consider the
corresponding algebra H(x′, H ′) generated by these matrices. The following extends [15,
Theorem 2.5 (iv), (v)].

Proposition 3.4. The following hold:

(i) The matrix R̃3 gives a vector space isomorphism from CP (x,H)(= CP̃0) to M(1G),
where we have, on CP (x,H),

L̃1R̃3 = R̃3L1, L̃2R̃3 = R̃3L2, L̃3R̃3E∗i,j = qa+b−i−jE∗i,j,
R̃1R̃3 = qR̃3R1, R̃2R̃3 = qR̃3R2, R̃3R̃3 = 0,

Ẽ∗i,j,0R̃3 = 0, Ẽ∗i,j,1R̃3 = R̃3E∗i,j
for 0 6 i 6 a and 0 6 j 6 b.

(ii) Let χ ∈ Ĝ with χ 6= 1G and χ|K = 1K. Define the linear map Θχ : CP̃0 → CP̃1 by

Θχy = eχ(y ∨ u) (y ∈ P̃0).

Then there is a unique Hχ ∈ P̃a,b−1,0 such that for every y ∈ P̃0, we have Θχy 6= 0 if
and only if y ⊂ Hχ. Moreover, Θχ gives a vector space isomorphism from CP (x,Hχ)
to M(χ), where we have, on CP (x,Hχ),

L̃1Θχ = qΘχL1, L̃2Θχ = qΘχL2, L̃3Θχ = 0,

R̃1Θχ = ΘχR1, R̃2Θχ = ΘχR2, R̃3Θχ = 0,

Ẽ∗i,j,0Θχ = Ẽ∗i,b,0Θχ = Ẽ∗i,b,1Θχ = 0, Ẽ∗i,j,1Θχ = ΘχE∗i,j
for 0 6 i 6 a and 0 6 j 6 b− 1.

(iii) Let χ ∈ Ĝ with χ|K 6= 1K. Let Θχ : CP̃0 → CP̃1 be as in (ii) above. Then there is
a unique Hχ ∈ P̃a−1,b,0 such that for every y ∈ P̃0, we have Θχy 6= 0 if and only if
y ⊂ Hχ. Moreover, Θχ gives a vector space isomorphism from CP (x ∩ Hχ, Hχ) to
M(χ), where we have, on CP (x ∩Hχ, Hχ),

L̃1Θχ = qΘχL1, L̃2Θχ = qΘχL2, L̃3Θχ = 0,

R̃1Θχ = ΘχR1, R̃2Θχ = ΘχR2, R̃3Θχ = 0,

Ẽ∗i,j,0Θχ = Ẽ∗a,j,0Θχ = Ẽ∗a,j,1Θχ = 0, Ẽ∗i,j,1Θχ = ΘχE∗i,j
for 0 6 i 6 a− 1 and 0 6 j 6 b.
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Proof. (i): Let y ∈ P̃i,j,0. Then there are qa+b−i−j elements z ∈ P̃i,j,1 such that y ⊂ z, or
equivalently, H ∩ z = y. Hence we have L̃3R̃3y = qa+b−i−jy, from which it follows that
L̃3R̃3E∗i,j = qa+b−i−jE∗i,j. Since CP (x,H) and M(1G) have the same dimension by (5), it

follows that R̃3 gives a vector space isomorphism from CP (x,H) to M(1G). The other
identities are easily verified.

(ii): By Lemma 3.1 (ii) and (4), we have dimM(χ)a,b−1 = 1. Hence it follows from
Lemma 3.3 (iii) that there is a unique Hχ ∈ P̃a,b−1,0 such that ΘχHχ 6= 0. Since CP (x,Hχ)
and M(χ) have the same dimension by (5), it follows from Lemma 3.3 (ii) and (iii) that
Θχ gives a vector space isomorphism from CP (x,Hχ) to M(χ), and that, for every y ∈ P̃0,
we have Θχy 6= 0 if and only if y ⊂ Hχ.

Let y ∈ P̃i,j,0 be such that y ⊂ Hχ. On the one hand, we have

ΘχR1y =
∑

z∈P̃i+1,j,0

y⊂z⊂Hχ

Θχz.

On the other hand, since R̃1 and eχ commute, we have

R̃1Θχy = eχR̃1(y ∨ u) = eχ
∑

w∈P̃i+1,j,1
y∨u⊂w

w = eχ
∑

z∈P̃i+1,j,0
y⊂z

(z ∨ u) =
∑

z∈P̃i+1,j,0
y⊂z

Θχz.

However, in the last sum above, we have Θχz = 0 unless z ⊂ Hχ. Hence it follows that
the above two vectors are equal. This proves that R̃1Θχ = ΘχR1. Likewise, we have

ΘχL1y =
∑

z∈P̃i−1,j,0
z⊂y

Θχz,

and also
L̃1Θχy = eχL̃1(y ∨ u) = eχ

∑
w∈P̃i−1,j,1
w⊂y∨u

w =
∑

z∈P̃i−1,j,0
z⊂y

∑
w∈P̃i−1,j,1
z⊂w⊂y∨u

eχw.

In the last sum above, for each z, there are exactly q choices for w. Pick any such w.
Then since w ∼ z ∨ u, there exists g ∈ G such that w = g(z ∨ u). However, since both w
and z ∨ u are subspaces of y ∨ u, this g must fix y ∨ u, i.e., g ∈ Gy∨u. On the other hand,
recall that Θχy 6= 0 since y ⊂ Hχ. Hence it follows from Lemma 3.2 that χ|Gy∨u = 1Gy∨u .
In particular, we have χ(g) = 1, and hence

eχw = eχg(z ∨ u) = eχ(z ∨ u) = Θχz.

Combining these comments, we have L̃1Θχy = qΘχL1y, and consequently, L̃1Θχ = qΘχL1.
The identities involving L̃2 and R̃2 are proved similarly. Let y be as above. Then, since
L̃3 and eχ commute, we have

L̃3Θχy = eχL̃3(y ∨ u) = eχy =
1

qa+b

∑
g∈G

χ(g−1)y = 0,
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which proves that L̃3Θχ = 0. The other identities are trivial.
(iii): Similar to the proof of (ii) above.

Let W̃ be an irreducible H̃-module. Let

ν = min{i : (Ẽ∗i,0,0 + · · ·+ Ẽ∗i,b,1)W̃ 6= 0},
ν ′ = max{i : (Ẽ∗i,0,0 + · · ·+ Ẽ∗i,b,1)W̃ 6= 0},
µ = min{j : (Ẽ∗0,j,0 + · · ·+ Ẽ∗a,j,1)W̃ 6= 0},
µ′ = max{j : (Ẽ∗0,j,0 + · · ·+ Ẽ∗a,j,1)W̃ 6= 0},
τ = min{k : (Ẽ∗0,0,k + · · ·+ Ẽ∗a,b,k)W̃ 6= 0},
τ ′ = max{k : (Ẽ∗0,0,k + · · ·+ Ẽ∗a,b,k)W̃ 6= 0}.

We call (ν, µ, τ) (resp. (ν ′, µ′, τ ′)) the lower endpoint (resp. upper endpoint) of W̃ . We let

ρ = a− ν − ν ′,

and call ρ the index of W̃ . We now state the main result of this section.

Theorem 3.5. There exists an irreducible H̃-module with lower endpoint (ν, µ, τ), upper
endpoint (ν ′, µ′, τ ′), and index ρ if and only if

0 6 ν 6 a, 0 6 µ 6 b, 0 6 τ 6 1, τ ′ = 1,

max{0, 2µ− b+ τ} 6 ρ = µ+ µ′ + τ − b 6 min{a− 2ν, µ+ τ}.

Let W̃ be an irreducible H̃-module with lower endpoint (ν, µ, τ) and index ρ. Then the
isomorphism class of W̃ is determined by ν, µ, τ , and ρ, and the following hold:

(i) If τ = 0, then W̃ has a basis wi,j,k (ν 6 i 6 a−ν−ρ, µ 6 j 6 b−µ+ρ, 0 6 k 6 1)
such that wi,j,k ∈ Ẽ∗i,j,kW̃, and

L̃1wi,j,k = qν+j
[
a− ν − ρ− i+ 1

1

][
i− ν

1

]
wi−1,j,k, R̃1wi,j,k = qkwi+1,j,k,

L̃2wi,j,k = qa−ν+µ−ρ
[
b− µ+ ρ− j + 1

1

][
j − µ

1

]
wi,j−1,k, R̃2wi,j,k = qν−i+kwi,j+1,k,

L̃3wi,j,k = qa+b−i−jwi,j,k−1, R̃3wi,j,k = wi,j,k+1

for all i, j, k, where we set wi,j,k := 0 if (i, j, k) is outside the above range. Moreover,
in this case, the multiplicity mν,µ,0,ρ of W̃ in CP̃ is given by

mν,µ,0,ρ =
(−1)ρ(q)a(q)b(1− qa−2ν−ρ+1)(1− qb−2µ+ρ+1)qν+µ−ρ+(ρ2)

(q)a−ν−ρ+1(q)b−µ+1(q)ν(q)µ−ρ(q)ρ
.
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(ii) If τ = 1, then W̃ has a basis wi,j,1 (ν 6 i 6 a− ν − ρ, µ 6 j 6 b− µ+ ρ− 1) such
that wi,j,1 ∈ Ẽ∗i,j,1W̃, and

L̃1wi,j,1 = qν+j+1

[
a− ν − ρ− i+ 1

1

][
i− ν

1

]
wi−1,j,1, R̃1wi,j,1 = wi+1,j,1,

L̃2wi,j,1 = qa−ν+µ−ρ+1

[
b− µ+ ρ− j

1

][
j − µ

1

]
wi,j−1,1, R̃2wi,j,1 = qν−iwi,j+1,1,

L̃3wi,j,1 = 0, R̃3wi,j,1 = 0

for all i, j, where we set wi,j,1 := 0 if (i, j) is outside the above range. Moreover, in
this case, the multiplicity mν,µ,1,ρ of W̃ in CP̃ is given by

mν,µ,1,ρ =
(−1)ρ+1(q)a(q)b(1− qa−2ν−ρ+1)(1− qb−2µ+ρ)qν+µ−ρ+(ρ2)

(q)a−ν−ρ+1(q)b−µ+1(q)ν(q)µ−ρ+1(q)ρ

× (qb+2 − qb−µ+1 − qµ−ρ+1 + 1).

Proof. First, recall that CP̃0

⊕
M(1G) is an H̃-module. Recall also the algebra H(x,H)

acting on CP (x,H) = CP̃0. Let W be an irreducible H(x,H)-module in CP (x,H) with
lower endpoint (ν, µ) and index ρ, and let the basis vectors wi,j be as in Theorem 2.1. For
ν 6 i 6 a− ν − ρ and µ 6 j 6 b− µ+ ρ, let wi,j,0 = wi,j and wi,j,1 = R̃3wi,j. Then from
Proposition 3.4 (i) it follows that the wi,j,k are non-zero and are linearly independent, and
that they form a basis of an H̃-module, which we denote by W̃ . It is also immediate to
see that the actions of the generators on the wi,j,k are as in (i). We now claim that W̃
is irreducible. Since H̃ is semisimple, W̃ is a direct sum of irreducible H̃-submodules.
Since Ẽ∗ν,µ,0W̃ = span{wν,µ,0} 6= 0, there is an irreducible H̃-submodule Ũ of W̃ such that

Ẽ∗ν,µ,0 Ũ 6= 0. Then we have wν,µ,0 ∈ Ũ , and hence W̃ = H̃wν,µ,0 ⊂ Ũ , i.e., W̃ = Ũ . It

follows that W̃ is irreducible. We note that W̃ has lower endpoint (ν, µ, 0) and index ρ.

Second, let χ ∈ Ĝ with χ 6= 1G and χ|K = 1K , and recall the H̃-module M(χ). In
this case, we consider the algebra H(x,Hχ), where Hχ ∈ P̃a,b−1,0 is from Proposition
3.4 (ii). We argue as above by letting W̃ be the linear span of the vectors wi,j,1 = Θχwi,j
(ν 6 i 6 a − ν − ρ, µ 6 j 6 b − µ + ρ − 1). The actions of the generators on the wi,j,1
are as in (ii). The irreducible H̃-module W̃ has lower endpoint (ν, µ, 1) and index ρ.

Third, let χ ∈ Ĝ with χ|K 6= 1K . In this case, we consider the algebra H(x∩Hχ, Hχ),
where Hχ ∈ P̃a−1,b,0 is from Proposition 3.4 (iii). We again argue as above, but we start
from an irreducible H(x∩Hχ, Hχ)-module W with lower endpoint (ν, µ) and index ρ− 1.
Then the actions of the generators on the wi,j,1 are again as in (ii), and the irreducible
H̃-module W̃ has lower endpoint (ν, µ, 1) and index ρ.

The formulas for the multiplicities follow from Theorem 2.1. Note that we obtain
isomorphic irreducible H̃-modules from the second and the third cases above, so that the
multiplicity in (ii) is computed by adding two terms, each multiplied by the number of
respective characters, and then simplifying. The other statements are also verified using
Theorem 2.1.
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4 The Terwilliger algebra T = T (x)

We now turn to the discussions on the Terwilliger algebra T = T (x) of the twisted Grass-
mann graph J̃q(2D+1, D), where we choose the base vertex x from X ′′. We mentioned in
Introduction that J̃q(2D+ 1, D) has the same intersection array as the Grassmann graph
Jq(2D + 1, D). In particular, it is an example of a Q-polynomial distance-regular graph
with diameter D. (For the background information on distance-regular graphs, we refer
to [2, 3, 6, 9].) The eigenvalues of Jq(2D + 1, D), and hence of J̃q(2D + 1, D), are given
in [3, Theorem 9.3.3] as follows:

θi = q

[
D

1

][
D + 1

1

]
−
[
i

1

][
2D − i+ 2

1

]
(0 6 i 6 D).

Recall the diagonal matrices E∗i = E∗i (x) ∈ MatX(C) (0 6 i 6 D). We note that two
vertices y and z are at distance i if and only if (cf. (1))

dim y + dim z − 2 dim y ∩ z = 2i. (7)

For 0 6 i 6 D, let Ei ∈ MatX(C) be the orthogonal projection onto the eigenspace of the
adjacency matrix A with eigenvalue θi.

Let W be an irreducible T -module. Define the support and the dual support of W by

Ws = {i : E∗iW 6= 0}, W ∗
s = {i : EiW 6= 0},

respectively. We then define the endpoint, dual endpoint, diameter, and the dual diameter
of W by

ε = minWs, ε∗ = minW ∗
s , d = |Ws| − 1, d∗ = |W ∗

s | − 1,

respectively. It is known that d = d∗, and that

Ws = {ε, ε+ 1, . . . , ε+ d}, W ∗
s = {ε∗, ε∗ + 1, . . . , ε∗ + d}.

See [14, Corollary 3.3] and [20, Lemmas 3.9, 3.12]. Moreover, we have

ε > 0, ε∗ > 0, d > 0, (8)

ε+ d 6 D, ε∗ + d 6 D, (9)

2ε+ d > D, 2ε∗ + d > D. (10)

Here, (8) and (9) are clear, and (10) is given in [4, Lemmas 5.1, 7.1]. In describing the
irreducible T -modules, we thus consider the following set:

Ω = ΩD = {(ε, ε∗, d) ∈ Z3 : (8), (9), (10) hold}. (11)

Observe that the first two inequalities in (8) are consequences of (9) and (10), so that we
may replace (8) in the definition of Ω by the following:

d > 0. (8)’
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It will also be important to consider the following (d+ 1)× (d+ 1) matrix having four
free parameters (besides q and d):

A(q, d;h, r, s, λ0) =


a0 b0 0
c1 a1 b1

c2 a2 ·
· · ·
· · bd−1

0 cd ad

 , (12)

where

ai + bi + ci = λ0 (0 6 i 6 d),

bi = h(1− qi−d)(1− rqi+1), ci = hsq(1− qi)(1− rqi−d−1/s) (0 6 i 6 d),

and where we assume that h, r, s 6= 0, that rqi, sqi/r 6= 1 (1 6 i 6 d), and that sqi 6= 1
(2 6 i 6 2d). We note that bi−1ci 6= 0 (1 6 i 6 d). This matrix is the standardized form
of one of the operators of a Leonard system of dual q-Hahn type; cf. [25, Example 5.5].
With the notation of [20, Section 2], this also corresponds to Case (I) with r1 = s∗ = 0.
See also [24, Theorem 17.7]. The eigenvalues of the matrix (12) are given by

λi = λ0 + h(1− qi)(1− sqi+1)q−i (0 6 i 6 d). (13)

In particular, if we fix h, s, and λ0, then the matrices (12) with distinct values of r are all
similar. On the other hand, we note that

Lemma 4.1. Suppose that d > 0. Then there exists a (d+ 1)× (d+ 1) invertible diagonal
matrix S such that

S−1A(q, d;h, r, s, λ0)S = A(q, d;h, r′, s, λ0)

if and only if r = r′, in which case S is a non-zero scalar matrix.

Proof. Observe that the ai are linear in r provided that d > 0. Since conjugation by S
does not change the diagonal entries, the result follows.

If d = 0 then the matrix (12) is in fact independent of h, r, and s, but we will still include
these for convenience of the descriptions.

For the rest of this paper, we retain the notation of Section 3 with

a = D − 1, b = D + 1,

where we take the base vertex x ∈ X ′′ as the fixed subspace x ∈ P̃ in Section 3, and
similarly for the hyperplane H. Then we have

X ′ =
D⊔
`=1

P̃D−`,`,1, X ′′ =
D−1⊔
`=0

P̃D−`−1,`,0.
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Set

Ẽ∗′ =
D∑
`=1

Ẽ∗D−`,`,1, Ẽ∗′′ =
D−1∑
`=0

Ẽ∗D−`−1,`,0, Ẽ∗ = Ẽ∗′ + Ẽ∗′′.

Note that Ẽ∗ is the orthogonal projection onto CX ⊂ CP̃ . We also identify MatX(C)
with Ẽ∗MatP̃ (C)Ẽ∗ in the obvious manner. With this notation, the adjacency matrix
A ∈ MatX(C) of J̃q(2D + 1, D) is written as

A = Ẽ∗′AẼ∗′ + Ẽ∗′AẼ∗′′ + Ẽ∗′′AẼ∗′ + Ẽ∗′′AẼ∗′′,

and direct computations show that

Ẽ∗′AẼ∗′ = Ẽ∗′(R̃1 + R̃2 + R̃3)(L̃1 + L̃2 + L̃3)Ẽ∗′ −
[
D + 1

1

]
Ẽ∗′, (14)

Ẽ∗′AẼ∗′′ = Ẽ∗′R̃3(R̃1 + R̃2)Ẽ∗′′, (15)

Ẽ∗′′AẼ∗′ = Ẽ∗′′(L̃1 + L̃2)L̃3Ẽ∗′, (16)

Ẽ∗′′AẼ∗′′ = Ẽ∗′′(R̃1 + R̃2)(L̃1 + L̃2)Ẽ∗′′ −
[
D − 1

1

]
Ẽ∗′′. (17)

Moreover, we have (cf. (7))

E∗i = Ẽ∗D−i,i,1 + Ẽ∗D−i−1,i,0 (0 6 i 6 D), (18)

where Ẽ∗D,0,1 = Ẽ∗−1,D,0 := 0. It follows that T is a subalgebra of Ẽ∗H̃Ẽ∗.
We will now find all the irreducible T -modules in CX. First, let W̃ be an irreducible

H̃-module in CP̃ with lower endpoint (ν, µ, 0) and index ρ, where we recall from Theorem
3.5 that ν, µ, and ρ satisfy

0 6 ν 6 D − 1, 0 6 µ 6 D + 1, (19)

max{0, 2µ−D − 1} 6 ρ 6 min{D − 2ν − 1, µ}. (20)

In particular, ν + µ 6 D. Let the basis vectors wi,j,k of W̃ be as in Theorem 3.5 (i). Note
that

Ẽ∗W̃ = Ẽ∗′W̃
⊕
Ẽ∗′′W̃ ,

and that

Ẽ∗′W̃ = span
{
wD−i,i,1 : max{ν + ρ+ 1, µ} 6 i 6 min{D − ν,D − µ+ ρ+ 1}

}
,

Ẽ∗′′W̃ = span
{
wD−i−1,i,0 : max{ν + ρ, µ} 6 i 6 min{D − ν − 1, D − µ+ ρ+ 1}

}
,

where we always have Ẽ∗′W̃ 6= 0, whereas Ẽ∗′′W̃ 6= 0 precisely when ν + µ < D.
Let

wi = wD−i,i,1 + qν+i
[
D − ν − i

1

]
wD−i−1,i,0,
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for max{ν + ρ, µ} 6 i 6 min{D − ν,D − µ+ ρ+ 1}, and let

wi = wD−i,i,1 − qD
[
i− ν − ρ

1

]
wD−i−1,i,0,

for max{ν + ρ + 1, µ} 6 i 6 min{D − ν − 1, D − µ + ρ + 1}, where we set wi,j,k := 0
whenever (i, j, k) is outside the parameter range. Observe by (18) that wi, wi ∈ E∗i W̃ .
We define the subspaces W1 and W2 of Ẽ∗W̃ by

W1 = span
{
wi : max{ν + ρ, µ} 6 i 6 min{D − ν,D − µ+ ρ+ 1}

}
,

W2 = span
{
wi : max{ν + ρ+ 1, µ} 6 i 6 min{D − ν − 1, D − µ+ ρ+ 1}

}
,

where we always have W1 6= 0, whereas W2 6= 0 precisely when ρ < D− 2ν − 1. Then we
have

Ẽ∗W̃ = W1

⊕
W2.

Moreover, it follows from Theorem 3.5 (i) and (14)–(17) that

Awi =

{
qν+i

[
D − ν − i

1

][
i− ν − ρ+ 1

1

]
−
[
D

1

]
+ qµ−ρ+i

[
D − µ+ ρ− i+ 2

1

][
i− µ

1

]}
wi

+ q2ν−D+2i+1

[
D − ν − i

1

][
i− ν − ρ+ 1

1

]
wi+1

+ qD−ν+µ−ρ
[
D − µ+ ρ− i+ 2

1

][
i− µ

1

]
wi−1, (21)

and

Awi =

{
qν+i+1

[
D − ν − i− 1

1

][
i− ν − ρ

1

]
−
[
D

1

]
+ qµ−ρ+i

[
D − µ+ ρ− i+ 2

1

][
i− µ

1

]}
wi

+ q2ν−D+2i+2

[
D − ν − i− 1

1

][
i− ν − ρ

1

]
wi+1

+ qD−ν+µ−ρ
[
D − µ+ ρ− i+ 2

1

][
i− µ

1

]
wi−1

for all i, where we understand that wi = wi = 0 whenever they are undefined. It follows
that W1 and W2 are T -modules.

We now claim that W1 and W2 are thin irreducible T -modules. (For W2, the claim
holds under the additional assumption that ρ < D − 2ν − 1; otherwise we have W2 = 0.)
Let U be a non-zero T -submodule of W1. Since U is closed under the E∗i , and since
E∗iW1 = span{wi}, it follows that U is spanned by some of the wi. Suppose that wi ∈ U .
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Observe that the coefficients of wi±1 in Awi are non-zero whenever wi±1 are defined.
In other words, E∗i±1Awi are non-zero scalar multiples of wi±1, and hence wi±1 ∈ U .
By repeating this argument, it follows that U contains all the basis vectors of W1, i.e.,
U = W1. Hence W1 is an irreducible T -module, and it is clear that W1 is thin. The same
proof works for W2 as well.

The endpoint ε and the diameter d of W1 are given by

(ε, d) =

{
(ν + ρ,D − 2ν − ρ) if ν + ρ > µ,

(µ,D − 2µ+ ρ+ 1) if ν + ρ < µ.

Consider the matrix (12) with parameters

h =
q2D+2−ν−µ

(1− q)2
, s = q2ν+2µ−2D−3, λ0 = θν+µ,

and

r =

{
qν+µ−D−2 if ν + ρ > µ,

qν+µ−D−1 if ν + ρ < µ.

Let γi+1 denote the coefficient of wi+1 in Awi; cf. (21). We mentioned above that γi+1 6= 0
for ε 6 i < ε+ d. Define the new basis vi (0 6 i 6 d) of W1 by

vi =

(
i−1∏
`=0

γε+`+1

c`+1

)
wε+i (0 6 i 6 d).

Then we can routinely verify that A(q, d;h, r, s, λ0) with the above parameters gives the
matrix representing A|W1 with respect to the vi, and that (cf. (13))

λi = θν+µ+i (0 6 i 6 d).

It follows that the dual endpoint ε∗ of W1 is given by

ε∗ = ν + µ.

Theorem 4.2. Let V1 be the sum of all the W1 obtained as above, where the W̃ are over
the irreducible H̃-modules in CP̃ with τ = 0. Then we have

V1 = V1,0
⊕

V1,1,

where V1,0 and V1,1 are T -submodules of V1 such that the following hold:

(i) For the irreducible T -submodules W in V1,0, the endpoint ε, dual endpoint ε∗, and
the diameter d range over the set (cf. (11))

Ω1,0 = {(ε, ε∗, d) ∈ Ω : ε∗ > ε, d > 0}.

the electronic journal of combinatorics 27(4) (2020), #P4.15 16



Every W is thin and has a basis vi (0 6 i 6 d) such that vi ∈ E∗ε+iW for all i, and
that the matrix representing A|W with respect to it agrees with the matrix (12) with
parameters

h =
q2D+2−ε∗

(1− q)2
, r = qε

∗−D−2, s = q2ε
∗−2D−3, λ0 = θε∗ .

The isomorphism classes in V1,0 are determined by ε, ε∗, and d, and the corresponding
multiplicity m1,0

ε,ε∗,d in V1,0 is given by

m1,0
ε,ε∗,d

(q)D−1(q)D+1

=
(−1)D−d(1− q2D−2ε∗−d+2)(1− qd)qD−2ε+ε∗−d+(2ε−D+d

2 )

(q)D−ε(q)2D−ε−ε∗−d+2(q)D−ε−d(q)2ε−D+d(q)ε∗−ε
.

(ii) Similar statements to (i) above hold for V1,1 with r = qε
∗−D−1, where we replace Ω1,0

and m1,0
ε,ε∗,d by Ω1,1 and m1,1

ε,ε∗,d, respectively, where

Ω1,1 = {(ε, ε∗, d) ∈ Ω : ε∗ > ε, 2ε+ d > D},
m1,1
ε,ε∗,d

(q)D−1(q)D+1

=
(−1)D−d+1(1− q2D−2ε∗−d+1)(1− qd+1)qD−2ε+ε

∗−d+1+(2ε−D+d−1
2 )

(q)D−ε+2(q)2D−ε−ε∗−d+1(q)D−ε−d+1(q)2ε−D+d−1(q)ε∗−ε
.

Proof. We let V1,0 (resp. V1,1) be the sum of the W1 for which the corresponding W̃ satisfy
ν + ρ > µ (resp. ν + ρ < µ). All the computations are routinely done using (19), (20),
and Theorem 3.5 (i).

Concerning W2, the endpoint ε and the diameter d are given by

(ε, d) =

{
(ν + ρ+ 1, D − 2ν − ρ− 2) if ν + ρ+ 1 > µ,

(µ,D − 2µ+ ρ+ 1) if ν + ρ+ 1 < µ.

In this case, we consider the matrix (12) with parameters

h =
q2D+1−ν−µ

(1− q)2
, s = q2ν+2µ−2D−1, λ0 = θν+µ+1,

and

r =

{
qν+µ−D−1 if ν + ρ+ 1 > µ,

qν+µ−D if ν + ρ+ 1 < µ.

A similar argument shows that the dual endpoint ε∗ of W2 is given by

ε∗ = ν + µ+ 1.

Theorem 4.3. Let V2 be the sum of all the W2 obtained as above, where the W̃ are over
the irreducible H̃-modules in CP̃ with τ = 0. Then we have

V2 = V2,0
⊕

V2,1,

where V2,0 and V2,1 are T -submodules of V2 such that the following hold:
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(i) Similar statements to Theorem 4.2 (i) hold for V2,0 with r = qε
∗−D−2, where we

replace Ω1,0 and m1,0
ε,ε∗,d by Ω2,0 and m2,0

ε,ε∗,d, respectively, where

Ω2,0 = {(ε, ε∗, d) ∈ Ω : ε∗ > ε, ε+ d < D},
m2,0
ε,ε∗,d

(q)D−1(q)D+1

=
(−1)D−d(1− q2D−2ε∗−d+2)(1− qd+2)qD−2ε+ε

∗−d−1+(2ε−D+d
2 )

(q)D−ε+1(q)2D−ε−ε∗−d+2(q)D−ε−d−1(q)2ε−D+d(q)ε∗−ε
.

(ii) Similar statements to Theorem 4.2 (i) hold for V2,1 with r = qε
∗−D−1, where we

replace Ω1,0 and m1,0
ε,ε∗,d by Ω2,1 and m2,1

ε,ε∗,d, respectively, where

Ω2,1 = {(ε, ε∗, d) ∈ Ω : ε∗ > ε, 2ε+ d > D},
m2,1
ε,ε∗,d

(q)D−1(q)D+1

=
(−1)D−d+1(1− q2D−2ε∗−d+3)(1− qd+1)qD−2ε+ε

∗−d+(2ε−D+d−1
2 )

(q)D−ε+2(q)2D−ε−ε∗−d+2(q)D−ε−d+1(q)2ε−D+d−1(q)ε∗−ε−1
.

Proof. We let V2,0 (resp. V2,1) be the sum of the W2 for which the corresponding W̃ satisfy
ν + ρ + 1 > µ (resp. ν + ρ + 1 < µ). Recall that we have the additional assumption in
this case that ρ < D − 2ν − 1, so that W2 6= 0.

Next, let W̃ be an irreducible H̃-module in CP̃ with lower endpoint (ν, µ, 1) and index
ρ, where we recall from Theorem 3.5 that ν, µ, and ρ satisfy

0 6 ν 6 D − 1, 0 6 µ 6 D + 1,

max{0, 2µ−D} 6 ρ 6 min{D − 2ν − 1, µ+ 1}.

Let the basis vectors wi,j,1 of W̃ be as in Theorem 3.5 (ii). Let

W3 = Ẽ∗W̃ = span
{
wD−i,i,1 : max{ν + ρ+ 1, µ} 6 i 6 min{D − ν,D − µ+ ρ}

}
.

Then it follows from Theorem 3.5 (ii) and (14) that

AwD−i,i,1 =

{
qν+i+1

[
D − ν − i

1

][
i− ν − ρ

1

]
−
[
D + 1

1

]
+ qµ−ρ+i

[
D − µ+ ρ− i+ 1

1

][
i− µ

1

]}
wD−i,i,1

+ q2ν−D+2i+2

[
D − ν − i

1

][
i− ν − ρ

1

]
wD−i−1,i+1,1

+ qD−ν+µ−ρ
[
D − µ+ ρ− i+ 1

1

][
i− µ

1

]
wD−i+1,i−1,1

for all i, where we understand that wD−i,i,1 = 0 whenever it is undefined. We can similarly
show that W3 is a thin irreducible T -module. The endpoint ε and the diameter d of W3

are given by

(ε, d) =

{
(ν + ρ+ 1, D − 2ν − ρ− 1) if ν + ρ > µ,

(µ,D − 2µ+ ρ) if ν + ρ < µ.
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Consider the matrix (12) with parameters

h =
q2D+1−ν−µ

(1− q)2
, s = q2ν+2µ−2D−1, λ0 = θν+µ+1,

and

r =

{
qν+µ−D if ν + ρ > µ,

qν+µ−D−1 if ν + ρ < µ.

Then we find that the dual endpoint ε∗ of W3 is given by

ε∗ = ν + µ+ 1.

Theorem 4.4. Let V3 be the sum of all the W3 obtained as above, where the W̃ are over
the irreducible H̃-modules in CP̃ with τ = 1. Then we have

V3 = V3,0
⊕

V3,1,

where V3,0 and V3,1 are T -submodules of V3 such that the following hold:

(i) Similar statements to Theorem 4.2 (i) hold for V3,0 with r = qε
∗−D−2, where we

replace Ω1,0 and m1,0
ε,ε∗,d by Ω3,0 and m3,0

ε,ε∗,d, respectively, where

Ω3,0 = {(ε, ε∗, d) ∈ Ω : ε∗ > ε},
m3,0
ε,ε∗,d

(q)D−1(q)D+1

=
(−1)D−d+1(1− q2D−2ε∗−d+2)(1− qd+1)qD−2ε+ε

∗−d−1+(2ε−D+d
2 )

(q)D−ε+2(q)2D−ε−ε∗−d+1(q)D−ε−d+1(q)2ε−D+d(q)ε∗−ε−1

× (qD+3 − qD−ε+2 − qD−ε−d+1 + 1).

(ii) Similar statements to Theorem 4.2 (i) hold for V3,1 with r = qε
∗−D−1, where we

replace Ω1,0 and m1,0
ε,ε∗,d by Ω3,1 and m3,1

ε,ε∗,d, respectively, where

Ω3,1 = {(ε, ε∗, d) ∈ Ω : ε∗ = ε− 1} t {(ε, ε∗, d) ∈ Ω : ε∗ > ε, 2ε+ d > D},
m3,1
ε,ε∗,d

(q)D−1(q)D+1

=
(−1)D−d(1− q2D−2ε∗−d+2)(1− qd+1)qD−2ε+ε

∗−d+(2ε−D+d−1
2 )

(q)D−ε+1(q)2D−ε−ε∗−d+3(q)D−ε−d(q)2ε−D+d−1(q)ε∗−ε+1

× (qD+3 − q2D−ε−ε∗−d+3 − qε∗−ε+1 + 1).

Proof. In this case, we let V3,0 (resp. V3,1) be the sum of theW3 for which the corresponding
W̃ satisfy ν + ρ < µ (resp. ν + ρ > µ).

We have
CX = V1,0

⊕
V1,1

⊕
V2,0

⊕
V2,1

⊕
V3,0

⊕
V3,1,

and hence Theorems 4.2, 4.3, and 4.4 give all the irreducible H̃-modules up to isomor-
phism. In view of Lemma 4.1, it follows that
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• Irreducible T -modules in V1,0
⊕

V2,0
⊕

V3,0 are isomorphic if and only if they have
the same ε, ε∗, and d.

• Irreducible T -modules in V1,1
⊕

V2,1
⊕

V3,1 are isomorphic if and only if they have
the same ε, ε∗, and d.

• Irreducible T -modules with d = 0 are isomorphic if and only if they have the same
ε and ε∗.

• There are no other isomorphisms.

By these comments, we may compute the multiplicity of an irreducible T -module in CX
simply by summing up the corresponding multiplicities in the above summands, but we
omit the formulas as these seem too complicated.

Remark 4.5. It is known that every irreducible T -module of the Grassmann graph Jq(n,D)
satisfies ε∗ > ε; cf. [10, 18, 22, 26]. On the other hand, J̃q(2D + 1, D) has irreducible T -
modules with ε∗ = ε− 1.

Remark 4.6. Using the above results, we can compute the spectrum of the local graph of
J̃q(2D + 1, D) with respect to x, i.e., the induced subgraph on the neighbors of x. First,
there is a unique irreducible T -module with ε = 0, namely, Tx. This module is called the
primary T -module. It satisfies ε∗ = 0 and d = D (cf. [20, Lemma 3.6]), and resides in
V1,0. From the primary T -module, we obtain the eigenvalue a1 = q(1 + q)

[
D
1

]
−1 (cf. (12))

with multiplicity one. Next, there are four types of irreducible T -modules with ε = 1,
namely, those with (ε∗, d) = (1, D−2) in V1,0

⊕
V2,0, those with (ε∗, d) = (1, D−1) in V1,0,

those with (ε∗, d) = (2, D− 2) in V1,0
⊕

V2,0
⊕

V3,0, and those with (ε∗, d) = (1, D− 1) in
V1,1

⊕
V3,1. The corresponding eigenvalues a0 are q2

[
D
1

]
− 1, −1, −q− 1, and q2

[
D−1
1

]
− 1,

respectively. By computing their multiplicities, we obtain the spectrum as follows:[
q(1 + q)

[
D
1

]
− 1 q2

[
D
1

]
− 1 −1 −q − 1 q2

[
D−1
1

]
− 1

1
[
D−1
1

]
(qD+1 − 1)

[
D−1
1

]
q2
[
D−1
1

] ([
D+1
1

]
− qD−1

)
q
[
D+1
1

]
− 1

]

This spectrum was first found by Bang, Fujisaki, and Koolen [1, Theorem 1.1 (ii)].
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