Monochromatic subgraphs in iterated triangulations
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Abstract

For integers n > 0, an iterated triangulation Tr(n) is defined recursively as
follows: Tr(0) is the plane triangulation on three vertices and, for n > 1, Tr(n) is
the plane triangulation obtained from the plane triangulation Tr(n — 1) by, for each
inner face F' of Tr(n — 1), adding inside F' a new vertex and three edges joining this
new vertex to the three vertices incident with F'.

In this paper, we show that there exists a 2-edge-coloring of Tr(n) such that Tr(n)
contains no monochromatic copy of the cycle C} for any k > 5. As a consequence,
the answer to one of two questions asked by Axenovich et al. is negative. We
also determine the radius 2 graphs H for which there exists n such that every 2-
edge-coloring of Tr(n) contains a monochromatic copy of H, extending a result of
Axenovich et al. for radius 2 trees.

Mathematics Subject Classifications: 05C55, 05C10, 05D10

1 Introduction

For graphs G and H, we write G — H if, for any 2-edge-coloring of GG, there is a monochro-
matic copy of H. Otherwise, we write G 4 H. We say that H is planar unavoidable if
there exists a planar graph G such that G — H. Otherwise, we say H is planar avoidable.
This notion is introduced and studied in [4].

Deciding if G 4 H is clearly equivalent to asking whether a graph G admits a decom-
position (i.e., an edge-decomposition) such that none of the two graphs in the decomposi-
tion contains the given graph H. The well-known Four Color Theorem [2,3] (also see [10])
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implies that every planar graph admits a decomposition into two bipartite graphs; so pla-
nar unavoidable graphs must be bipartite. A result of Gongalves [5] says that every planar
graph admits a decomposition into two outer planar graphs; so planar unavoidable graphs
must be also outer planar. There are a number of interesting results about decomposing
planar graphs, see [1,6-9].

For any positive integer n, let P, denote the path on n vertices, K,, denote the complete
graph on n vertices, and K, ,, denote the complete bipartite graph with two parts of sizes
n and m. For integer n > 3, we use C,, to denote the cycle on n vertices. It is shown in [4]
that P,, C4, and all trees with radius at most 2 are planar unavoidable. This is done by
analyzing several sequences of graphs.

In this paper, we investigate one such sequence — the iterated triangulations, which is of
particular interest as suggested in [4]. Let n > 0 be an integer. An iterated triangulation
Tr(n) is a plane graph defined as follows: Tr(0) = Kj is the plane triangulation with
exactly two 3-faces. For each i > 0, let Tr(i+ 1) be obtained from the plane triangulation
Tr(i) by adding a new vertex in each of the inner faces of Tr(i) and connecting this vertex
with edges to the three vertices in the boundary of their respective face. The authors
of [4] asked whether for any planar unavoidable graph H there is an integer n such that
Tr(n) — H. They also asked whether there exists an integer & > 3 such that the even
cycle (' is planar-unavoidable.

Our first result indicates that a positive answer to one of the above questions implies
a negative answer to the other. Let H™ be the graph with vertex set {vy, vo, v3, vy, vs, V6 }
and edge set {v1vy, Vav3, U3V, V4V1, V1V, VoV }-

Theorem 1.1. For all positive integers n, Tr(n) 4 Cy for k > 5, Tr(n) /A HT, and
TI‘(TL) 7L> K273

Us Ve
U1 (%
Uy U3
Figure 1: H*

As another direct consequence, we see that if B is a bipartite graph and Tr(n) — B
for some n, then every block of B must be a Cy or K,. This can be used to characterize
all radius 2 graphs B for which there exists n such that Tr(n) — B, generalizing a result
in [4] for radius 2 trees. Before we state this characterization, it is worth mentioning
that the authors in [4] show that there is a planar avoidable tree of radius 3. We need
some additional notation. A flower F} is a collection of k copies of Cys sharing a common
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vertex, which is called the center. A k-ary tree of radius 2 means a rooted tree such that
every non-leaf vertex has degree k and every leaf has depth 2. A jellyfish J, is obtained
from F), and a k-ary tree of radius 2 by identifying the center of F} with the root of the
k-ary tree. A bistar By, is obtained from one Cj and two disjoint K s by identifying the
roots of the K ;s with two non-adjacent vertices of Cy, respectively.

Figure 2: J; and Bj

Theorem 1.2. Let L be a graph with radius 2. Then there ezists n such that Tr(n) — L
if, and only if, L is a subgraph of a jellyfish or bistar.

We organize this paper as follows. In Section 2, we prove Tr(n) /4 Cy for k > 5
and Tr(n) 4 H™T by finding a special edge-coloring scheme for Tr(n). In Section 3, we
complete the proof of Theorem 1.1 by using another edge-coloring scheme on Tr(n). From
Theorem 1.1, we can derive the following: if L has radius 2 and Tr(n) — L for some n,
then L is a subgraph of a jellyfish or bistar. Hence to prove Theorem 1.2, it suffices to
show that for any & > 1 there exists some n such that Tr(n) — Ji and Tr(n) — B,. We
prove the former statement in Section 4 and the latter one in Section 5 by showing that
we can choose n to be linear in k.

2 HTand Cy for k >5

In this section, we prove Theorem 1.1 for H* and Cj, with & > 5. First, we describe the
2-edge-coloring of Tr(n) that we will use. Let o : E(Tr(n)) — {0, 1} be defined inductively
for all n > 1 as follows:

(i) Fix an arbitrary triangle 7" bounding an inner face of Tr(1), and let o(e) = 0 if
ec E(T) and o(e) =1 if e € E(Tr(1)) \ E(T).

(ii) Suppose for some 1 < i < n, we have defined o(e) for all e € E(Tr(i)). We extend
o to E(Tr(i + 1)) as following. Let x € V(Tr(:)) \ V(Tr(i — 1)) be arbitrary, let
vov1V2vy denote the triangle bounding the inner face of Tr(i — 1) containing z, and
fix a labeling so that o(zv;) = o(xvs).

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(4) (2020), #P4.18 3



(iii) Let x; € V(Tr(i+ 1)) \ V(Tr(4))

be such that z; is inside the face of Tr(7) bounded
by the triangle xv;v;12, where j =

(2

o (3

0,1,2 and the subscripts are taken modulo
3. Define o(zvy) = o(xovy) = vy) = o(xjz) for all j = 0,1,2, and o(zv;) =
v2).

O'(ZUo’l)l) = O'<$1’U1) = O'(.Tlvz)

Figure 3: 2 edge-coloring scheme

We now proceed by a sequence of claims to show that ¢ has no monochromatic Cj, for
k > 5 nor monochromatic H*, thereby proving Tr(n) /4 Cjy for k > 5 and Tr(n) /A H™.
The first claim is immediate from (iii) so we omit its proof.

Claim 1. For 1 <i<nandx € V(Tr(:)) \V(Tr(i —1)), {o(zv) : v € V(Tr(i—1))}| = 2.

Claim 2. Let vyviv9vg be a triangle bounding an inner face of Tr(7), where 0 < i < n, let
ve V(Tr(i+ 1))\ V(Tr(i)) with v inside vgv vavg. Then, for any vow € E(Tr(n)) with w
inside vovvavg, o(vow) = o (vVev).

Proof. Let vow € E(Tr(n)) with w inside vov,v2vy. Then there exists k > 0 with i+k+1 <
n, such that w € V(Tr(i +k+1))\ V(Tr(i+ k)). We prove Claim 2 by applying induction
on k. The basis case is trivial because k = 0 implies w = v.

So assume k > 1. Let vyvsv4v9 be the triangle bounding an inner face of Tr(i + k£ — 1)
with w inside vouzvgvg, and let vs € V(Tr(i+k)) \ V(Tr(i 4+ k — 1)) that is inside vgvzvgvp.
By symmetry, assume w is inside vgusvsvg. By induction hypothesis, o(vovs)=c(vgv).

Suppose o(v4vs5) = o(vovs). Hence by (ii) and (iii), o(vow) = o(wvy) = o(vevs).
Thus o(vow) = o(vgv). Now assume o(v4v5) # o(vovs). Then o(vsvs) = o(vgus) or
o(v3vs)=0c(v4vs). It follows from (iii) that o(vow) = o(vovs). Hence, o(vow) = o(vgv). R

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(4) (2020), #P4.18 4



Claim 3. Let vyvjv9vg be a triangle bounding an inner face of Tr(7) with 0 < ¢ < n—2, and
let v € V(Tr(i41))\V(Tr(7)) such that v is inside vov1v2v9 and o (vvg) # o(vvy) = o(vve).
Then for any vw € E(Tr(n)) with w inside vyviv9v9, o(vw) = o(vuy).

Proof. To prove Claim 3, let {wg, w1, wo} C V(Tr(i+2))\V (Tr(i+1)) such that w, is inside
vv;v4qv for j = 0,1,2, with subscripts modulo 3. By (ii) and (iii), o(vwy) = o(vwsy) =
o(vwy) = o(vyy). By Claim 2, there exists some j € {0,1,2} with o(vw) = o(vwy).
Hence, o(vw) = o(vup).

Claim 4. Let vyviv9v9 be a triangle bounding an inner face of Tr(7), where 0 < ¢ <
n—2, and let v € V(Tr(i + 1)) \ V(Tr(¢)) such that v is inside vovivavy and o(vvy) €
{o(vv1),0(vvy)}. Then for any w € (N(v) N N(vg)) \ {v1,v2}, o(wuvg) # o(wv).

Proof. To prove Claim 4, we may assume by symmetry and Claim 1 that o(vvy) #
o(vvg) = o(vvy). Then o(wvy) = o(vyy) by Claim 2, and o(wv) = o(vve) by Claim
3. Hence, o(wuvy) # o(wv). ]

Claim 5. Suppose upv is a monochromatic path of length two in Tr(n) with uv €
E(Tr(i+ 1)) and p € V(Tr(n)) \ V(Tr(i + 1)). Then any monochromatic path in Tr(n)
between u and v and of the color o(up) has length at most two.

Proof. Consider any monochromatic path P = aga . ..a, of the color o(up) with ay = v
and a, = u. First, suppose uv € E(Tr(0)). Let Tr(0) = wvwu and z € V(Tr(1))\V(Tr(0)).
By Claim 2, o(uzx) = o(up) and o(vzx) = o(vp); so o(zxu) = o(zxv). Thus, by (i),
o(wz) = o(wu) = o(wv) # o(zu). Let vyvy...v, be a path in Tr(n) with vy = w,
vy =z and for 1 <7 < n, v; € V(Tr(7)) \ V(Tr(i — 1)) is inside v;_juvv;—y. By (ii) and
(i), o(viu) = o(v;v) = o(vx) for 1 < i < n, and o(v;v;41) = o(zw) for 0 < i < n — 1.
By planarity, P is contained in the closed region bounded by wvwu. So either P = uw
or there exists some 1 < k < r — 1 such that a; € {vg,...,v,}. We may assume the
latter case occurs. If {ax_1,ax+1} = {u, v}, then r = 2. Hence without loss of generality,
let ap_1 ¢ {u,v}. Then by Claim 2 and Claim 3, o(ay_1ax) = o(v;viy1) # o(pu) for
i€{0,1,...,n— 1}, a contradiction. Hence r < 2. We remark that this paragraph also
shows that such uv in E(Tr(0)) cannot be in a monochromatic Cj.

Thus, we may assume uv ¢ E(Tr(0)). By symmetry, we may assume that v € V/(Tr(i+
1))\ V(Tr(i)) for some 0 < ¢ < n and v is inside the triangle u;ususu; bounding an inner
face of Tr(7) and u; = u. By Claim 4, o(uyv) # o(ugv) = o(ugv).

If a; is inside vugousv then there exists 1 < k& < r such that a; is inside vususv and
ag+1 € {ug,us}; so by Claim 2, o(agars1) = o(vuz) = o(vus) # o(ww) = o(pu), a
contradiction.

Therefore, suppose that P # wuwv, by symmetry, we may assume that a; is inside
uvuguy. Let vg = ug and let v1vy ... v,_;—1 be the path in Tr(n) such that, for 1 < ¢ <
n—i—1LveV(Tr(i++1))\ V(Tr(i + ¢)) is inside uyve—_1vu;.

By (ii) and (iii), o(veuy) = o(vw) = o(ugv) for 1 < € < n—i—1, and o(vevey1) =
o(vuy) # o(vuy) for 0 < € < n —i— 2. If a1 is inside vpvyy vV, for some ¢ with 0 < £ <
n — i — 2, then exists 1 < k < r such that ay is inside vy vV, and agy € {vg, Vog1};
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so by Claim 3 o(agars1) = o(vevey1), a contradiction. So a; = v, for some ¢ with
1<l <n—i—1. Then as o(ajas) = o(u1v) and by Claim 3, we have ay = uy. Therefore,
r = 2, proving Claim 5. |

Claim 6. If C} is monochromatic in Tr(n) then k& < 4.

Proof. Let Cy = ajas...ara; be a monochromatic cycle in Tr(n). By (i), E(Cx) €
E(Tr(0)). So we may assume that there exists some 1 < i < k such that a;41 € V(Tr(¢+
1))\ V(Tr(¢)) is inside the triangle a;uva; which bounds an inner face of some Tr(¢). We
may further assume that ¢ < n — 2, as otherwise, we could consider Tr(n + 1) instead of
Tr(n).!

Suppose o(a;a;11) € {o(a;41u),0(a;+1v)}. By symmetry, we may assume o(a;a;11) =
o(a;y1u). Then a;49 = u by Claim 3. Hence, by Claim 5, any monochromatic path in C
between a; and a;12 = u has length at most 2. So k£ < 4.

Thus, we may assume o(a;a;11) ¢ {o(a;r1u),0(a;110)}; hence, o(a;1u) = o(a;11v).
Let w € V(Tr(£ +2)) \ V(Tr(¢ 4+ 1)) be inside the triangle a;ua;11a;. By (ii) and (iii),
o(wa;) = o(wa;1) = o(a;a;41). Hence, by Claim 5, the monochromatic path Cy — a;a;11
in Tr(n) of the color o(a;a;1+1) = o(wa;) has length at most 2; so k = 3. |

Claim 7. There is no monochromatic H* in Tr(n).

Proof. Suppose that there is a monochromatic copy of H* on {v; : 1 <4 < 6} in which
v1UaU3V4Yy 18 a 4-cycle and vyvs, vovg are edges. If vivy € E(Tr(0)), then vivy satisfies
the conditions of Claim 5 and by the footnote from the proof of Claim 5, there is no
monochromatic Cy containing v1v,, a contradiction. So vyvy ¢ E(Tr(0)). By symmetry,
we may assume that vy € V(Tr(i + 1)) \ V(Tr(é)) for some i and that vjuwwv; is the
triangle bounding the inner face of Tr(i) containing v,. Again as before we may assume
that 0 <i<n—2.

If 0(vou) = o(vew), then there exists some p € V(Tr(n))\ V(Tr(i+ 1)) such that vipvs
has the same color as o(v1v2). But v1v4v309 is @ monochromatic path of length 3 in Tr(n)
between v; and ve and of the color o(vyv3), a contradiction to Claim 5.

Hence, o(vive) € {o(vou),o(vew)} and by symmetry, we may assume o(vivy) =
o(vau). Then by Claim 1, o(v1v9) # o(vow) and thus o(vavs) = o(vevs) # o(vew). This
shows w ¢ {vs3,v6}. So there exists y € {vs,v6} \ {u, w}. By Claim 3, o(vy) = o(vow), a
contradiction. [

This completes the proof of Theorem 1.1 for Ht and Cj, with k > 5.

3 Monochromatic K3

In this section, we prove Theorem 1.1 for K 3 using a different coloring scheme on Tr(n)
described below. Let o : E(Tr(n)) — {0, 1} be defined inductively as follows:

!This is fair because Tr(n + 1) /4 Cj implies Tr(n) 4 C.
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(i) Fix a triangle T" bounding an inner face of Tr(1), and let o(e) = 0 if e € E(T') and
ole)=1lifee E(Tr(1)) \ E(T).

(ii) Suppose for some 1 < i < n, we have defined o(e) for all e € E(Tr(i)). We now
extend o to E(Tr(i+1)). Let z € V(Tr(4)) \ V(Tr(i — 1)) be arbitrary, let vovivevg
denote the triangle bounding the inner face of Tr(i — 1) containing x, with vy, v1, ve
on the triangle in clockwise order, and let o(zv,) = o(zvs).

(ili) Let z; € V(Tr(i 4+ 1)) \ V(Tr(7)) such that x; is inside the face of Tr(i) bounded
by the triangle xv;v;4 12, where 7 = 0,1,2 and the subscripts are taken modulo 3.
Define o(voz) = o(voz) = o(voxe) = o(xxs) = 0(2101), and o(vex) = o(vexy) =
o(vemg) = o(xxq) = 0(x20) = O(THV1).

Yo

Figure 4: 2 edge-coloring scheme

Note that in (ii) we have [{o(zv;) : j = 0,1,2}| = 2 and that in (iii) we have o(z;v,) #
o(zjvj+1) for 7 = 0,1,2. Hence, inductively, we have

(1) For 1 <i<mnand z € V(Tr(d)) \ V(Tr(i — 1)), {o(zv) :v e V(Tr(i — 1))} = 2.

(2) If zqz9z32y is a triangle which bounds an inner face of Tr(i) for some 1 < i < n— 2,
and if x € V(Tr(n))\ V(Tr(i+1)) is inside xy 292321 with zxy, xxe € E(Tr(n)), then
o(xxzy) # o(xxs).

These two claims are straightforward so we omit their proofs.
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(3) For any zyx9 € E(Tr(n)), [{z € N(x1) N N(x2) : o(zz;) = o(zze) = 0} < 2 and
H{x € N(z1) N N(23) : o(xzay) = o(xxy) = 1} < 2.

First, suppose z129 € E(Tr(0)). Then by (i) and (2), [{z € N(z1) N N(z2) : o(zz1) =
o(zzy) =0} < 1and |[{z € N(x;) N N(x2) : o(zz1) = o(zz2) = 1} < 1.

So we may assume that z;vwz; bounds an inner face of Tr(i) and zo € V(Tr(: +
1)) \ V(Tr(7)) inside zjvwzy. Let v; € Tr(i + 2) be inside xyvzozr; and wy € Tr(i + 2)
be inside zywxex;. By (iil), o(wiz1) # o(wixs) or o(vizy) # o(vixs). By (2), for any
x € V(Tr(n)) \ V(Tr(i + 2)) inside zyvwzy with zxy, zxe € E(Tr(n)), we have o(zz,) #
o(xzxzy). Hence, if (3) fails, then we may assume by symmetry between w; and v; that
o(vxy) = o(vry) = o(wxy) = o(wzy) = o(nzy) = o(nzr), and o(wizy) # o(wixs).
Then, by (1), o(z122) # o(x9v) = o(zow). Now by (iii), at least one of the two edges
viz1 and v1zo has the same color as x5, a contradiction. This proves (3).

(4) If zyxowgzymy is a 4-cycle in Tr(n), then x1x3 € E(Tr(n)) or xexy € E(Tr(n)).

We may assume that {1, zo, 23,24} C V(Tr(i+ 1)) and z; € V(Tr(i + 1)) \ V(Tr(¢)) for
some 0 < ¢ < nand j € [4]. Let uvwu be the triangle bounding an inner face of Tr(7) such
that x; is inside it. Then {z;_1,z;41} € {u, v, w}, implying that z;_1z;+1 € E(Tr(n)). O

(5) There is no monochromatic Ky 3 in Tr(n).

For, suppose Tr(n) has a monochromatic copy of Ks 3 on {vy, ve, v3,v4, v5} With vgv;, vsv; €
E(Tr(n)) for all i = 1,2,3. Then vqvs ¢ E(Tr(n)) by (3) and, hence, it follows from (4)
that vive, vav3,v3v; € E(Tr(n)). By planarity, v;vevsv; bounds an inner face of Tr(z) for
some ¢ with 1 <7 < n and, by the symmetry between v, and vs, we may assume that vy
is inside vyvauzvy. Then vy € V(Tr(i 4+ 1)) \ V(Tr(i)). However, this contradicts (1), as
0(v4v1) = 0(vgv2) = o(v4v3). We have completed the proof of Theorem 1.1. |

4 Monochromatic Jj,

In this section we prove that Tr(100k) — Jx holds for any positive integer k.
We need the following result, which is Lemma 9 in [4]. The original statement in [4]
states Tr(16) — Cy, but the same proof in [4] actually gives the following stronger version.

Lemma 4.1. If xyzx bounds the outer face of Tr(16), then any 2-edge-coloring of Tr(16)
gives a monochromatic Cy that intersects {x,y}.

Note that if the triangle xyzx bounds the outer face of Tr(n) and v € V(Tr(1)) \
V(Tr(0)) then the subgraph of Tr(n) contained in the closed disc bounded by vayv is
isomorphic to Tr(n — 1). Hence, the following is an easy consequence of Lemma 4.1.

Corollary 4.2. If zyzx bounds the outer face of Tr(17) then any 2-edge-coloring of Tr(17)
gives a monochromatic Cy that intersects {x,y} and avoids z.
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Lemma 4.3. For any positive integer k, Tr(38k)— Fj

Proof. Let o : E(Tr(38k)) — {0,1} be an arbitrary 2-edge coloring. Let wvwu be the
triangle bounding the outer face of Tr(38k). Let zp := w and, for 1 < ¢ < 2k, let
€ V(Tr(0)) \ V(Tr(¢ — 1)) such that x, is inside xp_quvxe_q. Let y;o 1= x; for i €
{0,1,...,2k — 1} and, for £ € {1,...,36k}, let y;p € V(Tr(i +1+¢)) \ V(Tr(i + £)) such
that y; , is inside y; p—1uTi1 1Y 0—1.

Suppose for each 0 < ¢ < 2k — 1 there exists a monochromatic Cy inside z;ux; 1x;
that contains u and avoids x;. By pigeonhole principle, at least k£ of these Cys are of the
same color, which form a monochromatic F}, centered at wu.

Hence, we may assume that there exists some ¢ € {0,1,...,2k — 1} such that no
monochromatic Cy inside z;ux;12; contains u and avoids x;. Since ¢ < 2k — 1, zux; 17;
bounds the outer face of a Tr(36k) that is contained in Tr(38%).

Now for each h € {0,1,...,2k — 1}, we view the region enclosed by u, ;11 and y; 155
without the closed region enclosed by w, ;41 and y;18,+1) as a Tr(17). Note that these
copies of Tr(17) share u, x;1; as the only common vertices. Taking y; 15, to be the vertex
z in Corollary 4.2, we conclude from Corollary 4.2 that there is a monochromatic Cy4 in
the Tr(17). We denote this Cy by Gp. Then x;11 € V(Gy) and {u, y;1sn} N V(Gy) = 0.
By pigeonhole principle, at least k of these Cys are of the same color, which clearly form
a monochromatic Fj centered at x;;. |

w(zo) w(zo)

u v U v

Figure 5: Lemma 4.3 Figure 6: Lemma 4.4

Lemma 4.4. Let k be a positive integer and let wvwu bound the outer face of Tr(9k + 2).
Suppose o : E(Tr(9k+2)) — {0, 1} is a 2-edge-coloring such that |[{o(ux) : x € V(Tr(9k+
2))} = 1 and there is no monochromatic Cy containing u. Then Tr(9k + 2) contains
monochromatic Jy, centered at v.
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Proof. Without loss of generality, assume o(uv) = 0. Then o(uy) = 0 for all y € N(u).
Let zp := w and, for 1 <i < 8k +1, let x; € V(Tr(d)) \ V(Tr(i — 1)) such that z; is inside
Zi—juvx;_1. Since no monochromatic Cy in Tr(9k + 2) contains u, there is at most one
i€40,1,2,...,8k + 1} such that o(z;v) = 0. Hence, there exists ¢ € {0,1,...,4k + 2}
such that o(vz;) =1 for j € {i,i+1,...,i+ 4k — 1}. We now make the following claim.

Claim. The subgraph of Tr(9k+2) contained in the closed disc bounded by vz; . ..z 3510
has a monochromatic F} of color 1 and centered at v, which we denote by F,,.

To show this, it suffices to show that for each r with 0 < r < k — 1, the subgraph of
Tr(9k +2) inside vx;1 3,24 30+1%i13r1+20 (inclusive) contains a monochromatic Cy of color 1
and containing v, as the union of such Cj is an F}, centered at v. So fix an arbitrary r, with
0 < T < k — 1. Note that a(xi+3rxi+3r+1) =1or U($i+3r+1xi+3r+2> = ]_, for 0 < r < k— 17
for, otherwise, ;1 3,13, 11Ti1+3r12UT;+3,- is @ monochromatic Cy of color 0 and containing
u, a contradiction. Without loss of generality, assume o (z;13,T;13-11) = 1.

Let y € V(Tr(i +3r +2)) \ V(Tr(i + 3r + 1)) such that y is inside x; 13,24 30+10T; 430
If there are two edges in {yzii3,, YZiysr+1,yv} of color 0, then one can easily find a
monochromatic Cy of color 0 and containing u, a contradiction. Hence, at least two of
{o(yxitsr), o0 (yxizsrs1),0(yv)} are 1. So {y, Ti13r, Tiv3rs1, v} induces a subgraph which
contains a monochromatic Cy of color 1. This proves the claim. O

Note that for i + 3k < r < i+ 4k — 1, uz,z,_1u bounds the outer face of a Tr(k + 1).
Let z.0 :== z,—1 and, for r € {i +3k,0+3k+1,...,i +4k — 1} and ¢ € {1,2,... k},
let 2.0 € V(Tr(r+£€))\ V(Tr(r+¢—1)) such that z,, is inside 2, y_12,uz,,—1. Because
o(uz,;) = 0 (by assumption) and Tr(9%+2) has no monochromatic Cy containing u, there
is at most one y € {21, 2.2, ..., zrk } such that o(yz,) = 0. So there exists k — 1 vertices
in {z.1,..., 2.5} which together with x,v form a monochromatic K j of color 1 centered
at x,, which we denote by H,. Now H;\3r, Hii3r11, ..., Hir4r—1 form a monochromatic
k-ary radius 2 tree rooted at v of color 1. This radius 2 tree and F,, form a monochromatic
Jj of color 1, completing the proof of Lemma 4.4. 1

Now we are ready to prove the main result of this section, that is Tr(100k) — Ji. Let
o : E(Tr(100k)) — {0, 1} be arbitrary. We show that o always contains a monochromatic
Jg. By Lemma 4.3, Tr(76k) contains monochromatic copy of Fy, say F, and, without
loss of generality, assume it is of color 1. Let the Cys in F' be za;1a;2a; 3z for i € [2k].
For i € [2k], let b; € V(Tr(76k + 1)) \ V(Tr(76k)) such that b; is inside za; 1a;2a; 3¢ and
a;10;2b;a; 1 bounds an inner face of Tr(76k + 1). Let A; be the family of all vertices
a € N(a;y) inside a;1a;2b;a;1 and satistying o(aa; ;) = 1.

(1) There exists some i € {k+ 1,k +2,...,2k} such that |4;| < k.
Otherwise, suppose that |A;| > k for all i € {k+ 1,k + 2,...,2k}. Then let Z; :=

{zi1, 22, zig—1} € A;. Now, for each ¢ € {k+1,...,2k}, {x,a;1} U Z; induces a
graph containing a monochromatic K ;. Those K ;s form a monochromatic radius-two
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Figure 7

k-ary tree of color 1 and rooted at x, which we denote by T;,. The k four-cycles za;1a;2a; 3
for ¢ € [k] form a monochromatic Fy. Now Fy U T, is a monochromatic J;. O

Let u := a;1. By (1), there exists an edge vw € Tr(78k) such that uvwu bounds an
inner face of Tr(78k) and o(uy) = 0 for any y € N(u) in the closed disc bounded by
UVWU.

Let G be the subgraph of Tr(78k) contained in the closed disc bounded by uvwu (see
Figure 5). Clearly G is isomorphic to a copy of Tr(22k). In the rest of the proof, we
should only discuss the graph G' and all Tr(7) will be referred to this copy of Tr(22k). Let
xo := w and for i € [4k], let x; € V(Tr(i)) \ V(Tr(i — 1)) such that z; is inside uz;_jvu.

(2) G contains a monochromatic copy of Fy, say F’, which has color 0 and center u and is
disjoint from the union of closed regions bounded by ux;x; 1u over all 0 < ¢ < 2k—1.

If for each i € {k,k+1,...,2k—1} there exists a monochromatic Cy inside ux9;z9;11u and
containing wu, then these k monochromatic Cys of color 0 form a desired monochromatic
F}, centered at u and thus (2) holds. Otherwise, since ux9;z2;,1u bounds the outer face
of a Tr(9k + 2), it follows from Lemma 4.4 that there exists a monochromatic J; in G. O

For j € {0,1,...,2k—1}, let B; be the family of all vertices x € N(z;) inside uz;x;11u
and satisfying o(zz;) = 0.

(3) There exists some j € {0,1,...,k — 1} such that |B;| < k.
Suppose to the contrary that there exist subsets Z; C B, of size k for all j € {0,1,...,k—

1}. Then each Z; U {u,z;} induces a graph containing a monochromatic K, which is
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centered at x; and has color 0. These K s together with F” form a monochromatic Jj
of color 0. This proves (3). O

Let po := xj11 and for 1 < £ < 4k, let pp € V(Tr(j + £+ 1)) \ V(Tr(j + ¢)) such that
pe is inside ux;p,_ju. By (3), there exists some 0 < £ < 4k — 1 such that o(zz;) = 1 for
any z € N(z;) in the closed disc bounded by x;pipri17;.

(4) There is a monochromatic Fj, inside x;psps+1;, say F”, with color 1 and center z;.

Let zp := pey1 and for s € 2k + 1], let z3 € V(Tr(j+ £+ s+2))\V(Tr(j + ¢+ s+ 1)) such
that z, is inside x;2zs_1pex;. Note that each x;205205112; bounds a Tr(9k + 3). If for each
s € [k| there exists a monochromatic Cy of color 1 inside x;29529,112; and containing x;,
then these monochromatic copies of C; form the desired monochromatic F) centered at
xj. Otherwise, it follows from Lemma 4.4 that there exists a monochromatic J;. O

As |B;| < k, there exists a subset A C {p1,p2, ..., pax} of size 2k such that o(azx;) =1
for each a € A and moreover, there is no neighbors of A belonging to V(F”). Let
A:={oy,...,ag}. Note that for each h € [2k], we have o(aju) = 0 and o(apz;) = 1.

It is easy to see that there exist pairwise disjoint sets N, C N(ay,) of size 2k for
h € [2k]. Then there exists M} C Nj, such that |M| = k — 1 and o(zqy) is the same for
all x € M),. This gives 2k monochromatic copies of K ;_; with centers oy, for h € [2k].
At least k of them (say with centers «y, for h € [k]) have the same color. If this color is 0,
these copies together with {uay : h € [k]} and F’ give a monochromatic J; with color 0
and center u. Otherwise, this color is 1. Then these copies together with {z;a : h € [k]}
and F” give a monochromatic Jj with color 1 and center u. This proves Tr(100k) — Ji. B

5 Monochromatic bistar

In this section we prove Tr(6k + 30) — By. We first establish the following lemma.

Lemma 5.1. Let uwvwu be the triangle bounding the outer face of Tr(k + 10). Let o :
E(Tr(k + 10)) — {0,1} such that |[{o(ux) : x € V(Tr(k + 10))}| = 1 and there is no

monochromatic Cy containing w. Then Tr(k + 10) contains a monochromatic By,.

Proof. Without loss of generality, let o(uv) = 0. Let 2o := w and, for ¢ € [6], let
x; € V(Tr(i)) \ V(Tr(i — 1)) such that x; is inside wvz;_ju.

Since Tr(k + 10) has no monochromatic Cy containing u, we see that [{0 < i < 6 :
o(vx;) = 0} < 1. So there exists some i € {0,1,2,3,4} such that o(vz;) = o(vry1) =
o(vxip2) = 1. We have either o(z;x;11) = 1 or o(x;412:42) = 1; as otherwise uz;x;1%;12u
is a monochromatic Cj4 of color 0 and containing u, a contradiction. We consider two
cases.

Case 1. o(z;xi41) = 0(Tip1Ti19).
In this case, we have o(x;x;11) = o(xi1Ti42) = 1. S0 z;x;41T;10vx; is @ monochro-
matic Cy of color 1. Let yo := z;41 and for £ € [k+1], let y, € V(Tr(i+14¢))\V(Tr(i+¢))
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such that y, is inside uy, jz;u. Similarly let zq := x;,1 and for ¢ € [k + 1], let z, €
V(Tr(i +24¢)) \ V(Tr(i + 1 4 ¢)) such that z is inside uzy_1z;40u.

Since Tr(k +10) has no monochromatic Cy containing u, this shows that [{¢ € [k+1] :
o(ziy)) = 0} < 1 and |{¢ € [k + 1] : o(xirez,) = 0}| < 1. Therefore, there exist
Y C{ye:le[k+1]} and Z C {2z : ¢ € [k + 1]} such that |Y| = |Z| =k, o(yz;) = 1 for
each y € Y and o(zx;49) = 1 for each z € Z. Hence, Tr(k + 10) has two monochromatic
K ks of color 1 with centers z;, x;41 and leave sets Y, Z, respectively. These two K ;s
together with va;z; 12,1 9v form a monochromatic By, of color 1.

Case 2. o(x;xi11) # 0(Tit1Ti12).

Without loss of generality, let o(x;z;41) = 0 and o(z;412:42) = 1. Let y € V(Tr(i+2))\
V(Tr(i+1)) be inside uz;x; 1 u. Because o(uy) = 0 and Tr(k+ 10) has no monochromatic
Cy containing u, o(yx;) = o(yx;y1) = 1. Therefore, yx;,1vzr;y is a monochromatic Cy of
color 1. Let yo := y and, for ¢ € [k+1], let y, € V(Tr(i+24£))\V (Tr(i+1+¢)) such that y,
is inside uy,_1z;u. Let 2o := y and, for £ € [k+1], let 2z, € V(Tr(i+24£))\V (Tr(i+1+7))
such that z, is inside uzy_12;11u.

The remaining proof is similar as in Case 1. We observe that |{¢ € [k + 1] : o(z;y0) =
0} < land |[{¢ € [k+1] : o(xi412¢) = 0}| < 1. Therefore, there exist Y C {y, : £ € [k+1]}
and Z C {z : ¢ € [k + 1]} such that |Y| = |Z| = k, o(yz;) = 1 for y € Y, and
o(zxi41) = 1 for z € Z. Hence, Tr(k + 10) has two monochromatic K s of color 1 with
centers x;, ;41 and leave sets Y, Z, respectively. These two K ;s together with yz,;vz;y
form a monochromatic By, of color 1. This proves Lemma 5.1. |

We are ready to prove Tr(6k + 30) — By. Let o : E(Tr(6k + 30)) — {0,1}. By
Lemma 4.1, each copy of Tr(16) with the same outer face as of Tr(6k + 30) contains a
monochromatic Cy, say ujususugu; of color 1 (see Figure 6). For each ¢ € {1, 3}, let v;w;
be an edge in Tr(18) such that u;v;w;u; is a triangle inside ujususuguy. Note that w;v;w;u;
bounds the outer face of a Tr(6k + 12). Let A; be the family of all vertices x € N (u;)
inside w;v;w;u; and satisfying o(zxw;) = 1. If |A;| > k and |A3| > k, then together with
the monochromatic 4-cycle ujusususuy, it is easy to form a monochromatic By, of color 1.

Hence by symmetry, we may assume that |A;| < k. Then there exists an edge vw
in Tr(18 + k) such that wjvwu; bounds an inner face of Tr(18 + k) and o(u;x) = 0
for all x € N(uy) in the closed disc bounded by wjvwu;. We may assume that the
induced subgraph contained in the closed disc bounded by u;vwu; has a monochromatic
Cy say ujxyzu; (as otherwise, it contains a By by Lemma 5.1). Furthermore, we have
{z,y,2z} CV(Tr(2k + 28)).

Let {po, g} C V(Tr(2k+29)) \ V(Tr(2k +28)) such that both zypex and yzgyy bound
two inner faces of Tr(2k+29). For ¢ € [3k], let py € V(Tr(2k+29+¢))\ V (Tr(2k+28+7))
such that py is inside zp,_ yx. Similarly, for ¢ € [3k], let ¢o € V(Tr(2k+29+¢))\V (Tr(2k+
28 4+ ()) such that g, is inside yq,_12y. Moreover, let

By :={p € N(z) : p is inside zppyz and o(zp) = 0},

By :={q € N(z) : q is inside yqozy and o(zq) = 0}.
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If |By| > k and |Bs| > k, we can find two monochromatic K s of color 0, one inside
xpoyz rooted at x and one inside ygozy rooted at z; these two K s and wyzyzu; form a
monochromatic By of color 0. So we may assume, without loss of generality, that |B;| < k.

Let C := {¢ € [3k] : o(ype) = 0}. We claim |C| < k. Suppose to the contrary that
|C| > k. Then there is a monochromatic K;j with root y and leaves in C' of color 0.
Since o(u1p) = 0 for all p € N(uy) inside uyvw, there is also a monochromatic K j; with
root u; and leaves inside wyzyzu; of color 0. Now these two K s and ujzyzu; form a
monochromatic Bj, of color 0.

So |Bi| < k and |C| < k. Then there exist py, ps with h, s € [3k] such that o(pyz) =
o(pry) = o(psz) = o(psy) = 1. Because xpyp;x bounds an inner face of Tr(2k + 30), it
also bounds the outer face of a Tr(4k). As |B;| < k, there exists a monochromatic K
of color 1 with the root x and k leaves inside zpopiz. Similarly, as |C| < k, there exists
a monochromatic K7 j of color 1 with root y and k leavers inside ypop1y. Now these two
K s and the 4-cycle zp,ypsx form a monochromatic By of color 1. This proves that
Tr(6k + 30) — By and thus completes the proof of Theorem 1.2. |
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