Monochromatic subgraphs in iterated triangulations

Jie Ma* Tianyun Tang
School of Mathematical Sciences
University of Science and Technology of China Hefei, Anhui 230026, China
jiema@ustc.edu.cn, tty123@mail.ustc.edu.cn

Xingxing Yu^{\dagger}
School of Mathematics Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.
yu@math.gatech.edu

Submitted: Jan 15, 2020; Accepted: Oct 15, 2020; Published: Oct 30, 2020
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

For integers $n \geqslant 0$, an iterated triangulation $\operatorname{Tr}(n)$ is defined recursively as follows: $\operatorname{Tr}(0)$ is the plane triangulation on three vertices and, for $n \geqslant 1, \operatorname{Tr}(n)$ is the plane triangulation obtained from the plane triangulation $\operatorname{Tr}(n-1)$ by, for each inner face F of $\operatorname{Tr}(n-1)$, adding inside F a new vertex and three edges joining this new vertex to the three vertices incident with F.

In this paper, we show that there exists a 2 -edge-coloring of $\operatorname{Tr}(n)$ such that $\operatorname{Tr}(n)$ contains no monochromatic copy of the cycle C_{k} for any $k \geqslant 5$. As a consequence, the answer to one of two questions asked by Axenovich et al. is negative. We also determine the radius 2 graphs H for which there exists n such that every 2-edge-coloring of $\operatorname{Tr}(n)$ contains a monochromatic copy of H, extending a result of Axenovich et al. for radius 2 trees.

Mathematics Subject Classifications: 05C55, 05C10, 05D10

1 Introduction

For graphs G and H, we write $G \rightarrow H$ if, for any 2-edge-coloring of G, there is a monochromatic copy of H. Otherwise, we write $G \nrightarrow H$. We say that H is planar unavoidable if there exists a planar graph G such that $G \rightarrow H$. Otherwise, we say H is planar avoidable. This notion is introduced and studied in [4].

Deciding if $G \nrightarrow H$ is clearly equivalent to asking whether a graph G admits a decomposition (i.e., an edge-decomposition) such that none of the two graphs in the decomposition contains the given graph H. The well-known Four Color Theorem [2,3] (also see [10])

[^0]implies that every planar graph admits a decomposition into two bipartite graphs; so planar unavoidable graphs must be bipartite. A result of Gonçalves [5] says that every planar graph admits a decomposition into two outer planar graphs; so planar unavoidable graphs must be also outer planar. There are a number of interesting results about decomposing planar graphs, see [1,6-9].

For any positive integer n, let P_{n} denote the path on n vertices, K_{n} denote the complete graph on n vertices, and $K_{n, m}$ denote the complete bipartite graph with two parts of sizes n and m. For integer $n \geqslant 3$, we use C_{n} to denote the cycle on n vertices. It is shown in [4] that P_{n}, C_{4}, and all trees with radius at most 2 are planar unavoidable. This is done by analyzing several sequences of graphs.

In this paper, we investigate one such sequence - the iterated triangulations, which is of particular interest as suggested in [4]. Let $n \geqslant 0$ be an integer. An iterated triangulation $\operatorname{Tr}(n)$ is a plane graph defined as follows: $\operatorname{Tr}(0) \cong K_{3}$ is the plane triangulation with exactly two 3 -faces. For each $i \geqslant 0$, let $\operatorname{Tr}(i+1)$ be obtained from the plane triangulation $\operatorname{Tr}(i)$ by adding a new vertex in each of the inner faces of $\operatorname{Tr}(i)$ and connecting this vertex with edges to the three vertices in the boundary of their respective face. The authors of [4] asked whether for any planar unavoidable graph H there is an integer n such that $\operatorname{Tr}(n) \rightarrow H$. They also asked whether there exists an integer $k \geqslant 3$ such that the even cycle $C_{2 k}$ is planar-unavoidable.

Our first result indicates that a positive answer to one of the above questions implies a negative answer to the other. Let H^{+}be the graph with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and edge set $\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{1}, v_{1} v_{5}, v_{2} v_{6}\right\}$.

Theorem 1.1. For all positive integers $n, \operatorname{Tr}(n) \nrightarrow C_{k}$ for $k \geqslant 5, \operatorname{Tr}(n) \nrightarrow H^{+}$, and $\operatorname{Tr}(n) \nrightarrow K_{2,3}$

Figure 1: H^{+}
As another direct consequence, we see that if B is a bipartite graph and $\operatorname{Tr}(n) \rightarrow B$ for some n, then every block of B must be a C_{4} or K_{2}. This can be used to characterize all radius 2 graphs B for which there exists n such that $\operatorname{Tr}(n) \rightarrow B$, generalizing a result in [4] for radius 2 trees. Before we state this characterization, it is worth mentioning that the authors in [4] show that there is a planar avoidable tree of radius 3. We need some additional notation. A flower F_{k} is a collection of k copies of C_{4} s sharing a common
vertex, which is called the center. A k-ary tree of radius 2 means a rooted tree such that every non-leaf vertex has degree k and every leaf has depth 2 . A jellyfish J_{k} is obtained from F_{k} and a k-ary tree of radius 2 by identifying the center of F_{k} with the root of the k-ary tree. A bistar B_{k} is obtained from one C_{4} and two disjoint $K_{1, k} \mathrm{~s}$ by identifying the roots of the $K_{1, k} \mathrm{~S}$ with two non-adjacent vertices of C_{4}, respectively.

Figure 2: J_{3} and B_{3}

Theorem 1.2. Let L be a graph with radius 2. Then there exists n such that $\operatorname{Tr}(n) \rightarrow L$ if, and only if, L is a subgraph of a jellyfish or bistar.

We organize this paper as follows. In Section 2, we prove $\operatorname{Tr}(n) \nrightarrow C_{k}$ for $k \geqslant 5$ and $\operatorname{Tr}(n) \nrightarrow H^{+}$by finding a special edge-coloring scheme for $\operatorname{Tr}(n)$. In Section 3, we complete the proof of Theorem 1.1 by using another edge-coloring scheme on $\operatorname{Tr}(n)$. From Theorem 1.1, we can derive the following: if L has radius 2 and $\operatorname{Tr}(n) \rightarrow L$ for some n, then L is a subgraph of a jellyfish or bistar. Hence to prove Theorem 1.2, it suffices to show that for any $k \geqslant 1$ there exists some n such that $\operatorname{Tr}(n) \rightarrow J_{k}$ and $\operatorname{Tr}(n) \rightarrow B_{k}$. We prove the former statement in Section 4 and the latter one in Section 5 by showing that we can choose n to be linear in k.

$2 \quad \boldsymbol{H}^{+}$and C_{k} for $k \geqslant 5$

In this section, we prove Theorem 1.1 for H^{+}and C_{k}, with $k \geqslant 5$. First, we describe the 2-edge-coloring of $\operatorname{Tr}(n)$ that we will use. Let $\sigma: E(\operatorname{Tr}(n)) \rightarrow\{0,1\}$ be defined inductively for all $n \geqslant 1$ as follows:
(i) Fix an arbitrary triangle T bounding an inner face of $\operatorname{Tr}(1)$, and let $\sigma(e)=0$ if $e \in E(T)$ and $\sigma(e)=1$ if $e \in E(\operatorname{Tr}(1)) \backslash E(T)$.
(ii) Suppose for some $1 \leqslant i<n$, we have defined $\sigma(e)$ for all $e \in E(\operatorname{Tr}(i))$. We extend σ to $E(\operatorname{Tr}(i+1))$ as following. Let $x \in V(\operatorname{Tr}(i)) \backslash V(\operatorname{Tr}(i-1))$ be arbitrary, let $v_{0} v_{1} v_{2} v_{0}$ denote the triangle bounding the inner face of $\operatorname{Tr}(i-1)$ containing x, and fix a labeling so that $\sigma\left(x v_{1}\right)=\sigma\left(x v_{2}\right)$.
(iii) Let $x_{j} \in V(\operatorname{Tr}(i+1)) \backslash V(\operatorname{Tr}(i))$ be such that x_{j} is inside the face of $\operatorname{Tr}(i)$ bounded by the triangle $x v_{j} v_{j+1} x$, where $j=0,1,2$ and the subscripts are taken modulo 3. Define $\sigma\left(x v_{0}\right)=\sigma\left(x_{0} v_{0}\right)=\sigma\left(x_{2} v_{0}\right)=\sigma\left(x_{j} x\right)$ for all $j=0,1,2$, and $\sigma\left(x v_{1}\right)=$ $\sigma\left(x_{0} v_{1}\right)=\sigma\left(x_{1} v_{1}\right)=\sigma\left(x_{1} v_{2}\right)=\sigma\left(x_{2} v_{2}\right)$.

Figure 3: 2 edge-coloring scheme
We now proceed by a sequence of claims to show that σ has no monochromatic C_{k} for $k \geqslant 5$ nor monochromatic H^{+}, thereby proving $\operatorname{Tr}(n) \nrightarrow C_{k}$ for $k \geqslant 5$ and $\operatorname{Tr}(n) \nrightarrow H^{+}$. The first claim is immediate from (iii) so we omit its proof.

Claim 1. For $1 \leqslant i \leqslant n$ and $x \in V(\operatorname{Tr}(i)) \backslash V(\operatorname{Tr}(i-1)),|\{\sigma(x v): v \in V(\operatorname{Tr}(i-1))\}|=2$.
Claim 2. Let $v_{0} v_{1} v_{2} v_{0}$ be a triangle bounding an inner face of $\operatorname{Tr}(i)$, where $0 \leqslant i<n$, let $v \in V(\operatorname{Tr}(i+1)) \backslash V(\operatorname{Tr}(i))$ with v inside $v_{0} v_{1} v_{2} v_{0}$. Then, for any $v_{0} w \in E(\operatorname{Tr}(n))$ with w inside $v_{0} v_{1} v_{2} v_{0}, \sigma\left(v_{0} w\right)=\sigma\left(v_{0} v\right)$.

Proof. Let $v_{0} w \in E(\operatorname{Tr}(n))$ with w inside $v_{0} v_{1} v_{2} v_{0}$. Then there exists $k \geqslant 0$ with $i+k+1 \leqslant$ n, such that $w \in V(\operatorname{Tr}(i+k+1)) \backslash V(\operatorname{Tr}(i+k))$. We prove Claim 2 by applying induction on k. The basis case is trivial because $k=0$ implies $w=v$.

So assume $k \geqslant 1$. Let $v_{0} v_{3} v_{4} v_{0}$ be the triangle bounding an inner face of $\operatorname{Tr}(i+k-1)$ with w inside $v_{0} v_{3} v_{4} v_{0}$, and let $v_{5} \in V(\operatorname{Tr}(i+k)) \backslash V(\operatorname{Tr}(i+k-1))$ that is inside $v_{0} v_{3} v_{4} v_{0}$. By symmetry, assume w is inside $v_{0} v_{5} v_{4} v_{0}$. By induction hypothesis, $\sigma\left(v_{0} v_{5}\right)=\sigma\left(v_{0} v\right)$.

Suppose $\sigma\left(v_{4} v_{5}\right)=\sigma\left(v_{0} v_{5}\right)$. Hence by (ii) and (iii), $\sigma\left(v_{0} w\right)=\sigma\left(w v_{4}\right)=\sigma\left(v_{0} v_{5}\right)$. Thus $\sigma\left(v_{0} w\right)=\sigma\left(v_{0} v\right)$. Now assume $\sigma\left(v_{4} v_{5}\right) \neq \sigma\left(v_{0} v_{5}\right)$. Then $\sigma\left(v_{3} v_{5}\right)=\sigma\left(v_{0} v_{5}\right)$ or $\sigma\left(v_{3} v_{5}\right)=\sigma\left(v_{4} v_{5}\right)$. It follows from (iii) that $\sigma\left(v_{0} w\right)=\sigma\left(v_{0} v_{5}\right)$. Hence, $\sigma\left(v_{0} w\right)=\sigma\left(v_{0} v\right)$.

Claim 3. Let $v_{0} v_{1} v_{2} v_{0}$ be a triangle bounding an inner face of $\operatorname{Tr}(i)$ with $0 \leqslant i \leqslant n-2$, and let $v \in V(\operatorname{Tr}(i+1)) \backslash V(\operatorname{Tr}(i))$ such that v is inside $v_{0} v_{1} v_{2} v_{0}$ and $\sigma\left(v v_{0}\right) \neq \sigma\left(v v_{1}\right)=\sigma\left(v v_{2}\right)$. Then for any $v w \in E(\operatorname{Tr}(n))$ with w inside $v_{0} v_{1} v_{2} v_{0}, \sigma(v w)=\sigma\left(v v_{0}\right)$.

Proof. To prove Claim 3, let $\left\{w_{0}, w_{1}, w_{2}\right\} \subseteq V(\operatorname{Tr}(i+2)) \backslash V(\operatorname{Tr}(i+1))$ such that w_{j} is inside $v v_{j} v_{j+1} v$ for $j=0,1,2$, with subscripts modulo 3. By (ii) and (iii), $\sigma\left(v w_{0}\right)=\sigma\left(v w_{2}\right)=$ $\sigma\left(v w_{1}\right)=\sigma\left(v v_{0}\right)$. By Claim 2, there exists some $j \in\{0,1,2\}$ with $\sigma(v w)=\sigma\left(v w_{j}\right)$. Hence, $\sigma(v w)=\sigma\left(v v_{0}\right)$.

Claim 4. Let $v_{0} v_{1} v_{2} v_{0}$ be a triangle bounding an inner face of $\operatorname{Tr}(i)$, where $0 \leqslant i \leqslant$ $n-2$, and let $v \in V(\operatorname{Tr}(i+1)) \backslash V(\operatorname{Tr}(i))$ such that v is inside $v_{0} v_{1} v_{2} v_{0}$ and $\sigma\left(v v_{0}\right) \in$ $\left\{\sigma\left(v v_{1}\right), \sigma\left(v v_{2}\right)\right\}$. Then for any $w \in\left(N(v) \cap N\left(v_{0}\right)\right) \backslash\left\{v_{1}, v_{2}\right\}, \sigma\left(w v_{0}\right) \neq \sigma(w v)$.

Proof. To prove Claim 4, we may assume by symmetry and Claim 1 that $\sigma\left(v v_{2}\right) \neq$ $\sigma\left(v v_{0}\right)=\sigma\left(v v_{1}\right)$. Then $\sigma\left(w v_{0}\right)=\sigma\left(v v_{0}\right)$ by Claim 2, and $\sigma(w v)=\sigma\left(v v_{2}\right)$ by Claim 3. Hence, $\sigma\left(w v_{0}\right) \neq \sigma(w v)$.

Claim 5. Suppose $u p v$ is a monochromatic path of length two in $\operatorname{Tr}(n)$ with $u v \in$ $E(\operatorname{Tr}(i+1))$ and $p \in V(\operatorname{Tr}(n)) \backslash V(\operatorname{Tr}(i+1))$. Then any monochromatic path in $\operatorname{Tr}(n)$ between u and v and of the color $\sigma(u p)$ has length at most two.

Proof. Consider any monochromatic path $P=a_{0} a_{1} \ldots a_{r}$ of the color $\sigma(u p)$ with $a_{0}=v$ and $a_{r}=u$. First, suppose $u v \in E(\operatorname{Tr}(0))$. Let $\operatorname{Tr}(0)=u v w u$ and $x \in V(\operatorname{Tr}(1)) \backslash V(\operatorname{Tr}(0))$. By Claim 2, $\sigma(u x)=\sigma(u p)$ and $\sigma(v x)=\sigma(v p)$; so $\sigma(x u)=\sigma(x v)$. Thus, by (i), $\sigma(w x)=\sigma(w u)=\sigma(w v) \neq \sigma(x u)$. Let $v_{0} v_{1} \ldots v_{n}$ be a path in $\operatorname{Tr}(n)$ with $v_{0}=w$, $v_{1}=x$ and for $1 \leqslant i \leqslant n, v_{i} \in V(\operatorname{Tr}(i)) \backslash V(\operatorname{Tr}(i-1))$ is inside $v_{i-1} u v v_{i-1}$. By (ii) and (iii), $\sigma\left(v_{i} u\right)=\sigma\left(v_{i} v\right)=\sigma(v x)$ for $1 \leqslant i \leqslant n$, and $\sigma\left(v_{i} v_{i+1}\right)=\sigma(x w)$ for $0 \leqslant i \leqslant n-1$. By planarity, P is contained in the closed region bounded by uvwu. So either $P=u v$ or there exists some $1 \leqslant k \leqslant r-1$ such that $a_{k} \in\left\{v_{0}, \ldots, v_{n}\right\}$. We may assume the latter case occurs. If $\left\{a_{k-1}, a_{k+1}\right\}=\{u, v\}$, then $r=2$. Hence without loss of generality, let $a_{k-1} \notin\{u, v\}$. Then by Claim 2 and Claim 3, $\sigma\left(a_{k-1} a_{k}\right)=\sigma\left(v_{i} v_{i+1}\right) \neq \sigma(p u)$ for $i \in\{0,1, \ldots, n-1\}$, a contradiction. Hence $r \leqslant 2$. We remark that this paragraph also shows that such $u v$ in $E(\operatorname{Tr}(0))$ cannot be in a monochromatic C_{4}.

Thus, we may assume $u v \notin E(\operatorname{Tr}(0))$. By symmetry, we may assume that $v \in V(\operatorname{Tr}(i+$ 1)) $\backslash V(\operatorname{Tr}(i))$ for some $0 \leqslant i<n$ and v is inside the triangle $u_{1} u_{2} u_{3} u_{1}$ bounding an inner face of $\operatorname{Tr}(i)$ and $u_{1}=u$. By Claim 4, $\sigma\left(u_{1} v\right) \neq \sigma\left(u_{2} v\right)=\sigma\left(u_{3} v\right)$.

If a_{1} is inside $v u_{2} u_{3} v$ then there exists $1 \leqslant k<r$ such that a_{k} is inside $v u_{3} u_{2} v$ and $a_{k+1} \in\left\{u_{2}, u_{3}\right\}$; so by Claim 2, $\sigma\left(a_{k} a_{k+1}\right)=\sigma\left(v u_{2}\right)=\sigma\left(v u_{3}\right) \neq \sigma\left(u_{1} v\right)=\sigma(p u)$, a contradiction.

Therefore, suppose that $P \neq u v$, by symmetry, we may assume that a_{1} is inside $u_{1} v u_{2} u_{1}$. Let $v_{0}=u_{2}$ and let $v_{1} v_{2} \ldots v_{n-i-1}$ be the path in $\operatorname{Tr}(n)$ such that, for $1 \leqslant \ell \leqslant$ $n-i-1, v_{\ell} \in V(\operatorname{Tr}(i+\ell+1)) \backslash V(\operatorname{Tr}(i+\ell))$ is inside $u_{1} v_{\ell-1} v u_{1}$.

By (ii) and (iii), $\sigma\left(v_{\ell} u_{1}\right)=\sigma\left(v_{\ell} v\right)=\sigma\left(u_{1} v\right)$ for $1 \leqslant \ell \leqslant n-i-1$, and $\sigma\left(v_{\ell} v_{\ell+1}\right)=$ $\sigma\left(v u_{2}\right) \neq \sigma\left(v u_{1}\right)$ for $0 \leqslant \ell \leqslant n-i-2$. If a_{1} is inside $v_{\ell} v_{\ell+1} v v_{\ell}$ for some ℓ with $0 \leqslant \ell \leqslant$ $n-i-2$, then exists $1 \leqslant k \leqslant r$ such that a_{k} is inside $v_{\ell} v_{\ell+1} v v_{\ell}$ and $a_{k+1} \in\left\{v_{\ell}, v_{\ell+1}\right\}$;
so by Claim $3 \sigma\left(a_{k} a_{k+1}\right)=\sigma\left(v_{\ell} v_{\ell+1}\right)$, a contradiction. So $a_{1}=v_{\ell}$ for some ℓ with $1 \leqslant \ell \leqslant n-i-1$. Then as $\sigma\left(a_{1} a_{2}\right)=\sigma\left(u_{1} v\right)$ and by Claim 3, we have $a_{2}=u_{1}$. Therefore, $r=2$, proving Claim 5 .

Claim 6. If C_{k} is monochromatic in $\operatorname{Tr}(n)$ then $k \leqslant 4$.
Proof. Let $C_{k}=a_{1} a_{2} \ldots a_{k} a_{1}$ be a monochromatic cycle in $\operatorname{Tr}(n)$. By (i), $E\left(C_{k}\right) \nsubseteq$ $E(\operatorname{Tr}(0))$. So we may assume that there exists some $1 \leqslant i \leqslant k$ such that $a_{i+1} \in V(\operatorname{Tr}(\ell+$ 1)) $\backslash V(\operatorname{Tr}(\ell))$ is inside the triangle $a_{i} u v a_{i}$ which bounds an inner face of some $\operatorname{Tr}(\ell)$. We may further assume that $\ell \leqslant n-2$, as otherwise, we could consider $\operatorname{Tr}(n+1)$ instead of $\operatorname{Tr}(n) .{ }^{1}$

Suppose $\sigma\left(a_{i} a_{i+1}\right) \in\left\{\sigma\left(a_{i+1} u\right), \sigma\left(a_{i+1} v\right)\right\}$. By symmetry, we may assume $\sigma\left(a_{i} a_{i+1}\right)=$ $\sigma\left(a_{i+1} u\right)$. Then $a_{i+2}=u$ by Claim 3. Hence, by Claim 5, any monochromatic path in C_{k} between a_{i} and $a_{i+2}=u$ has length at most 2 . So $k \leqslant 4$.

Thus, we may assume $\sigma\left(a_{i} a_{i+1}\right) \notin\left\{\sigma\left(a_{i+1} u\right), \sigma\left(a_{i+1} v\right)\right\}$; hence, $\sigma\left(a_{i+1} u\right)=\sigma\left(a_{i+1} v\right)$. Let $w \in V(\operatorname{Tr}(\ell+2)) \backslash V(\operatorname{Tr}(\ell+1))$ be inside the triangle $a_{i} u a_{i+1} a_{i}$. By (ii) and (iii), $\sigma\left(w a_{i}\right)=\sigma\left(w a_{i+1}\right)=\sigma\left(a_{i} a_{i+1}\right)$. Hence, by Claim 5, the monochromatic path $C_{k}-a_{i} a_{i+1}$ in $\operatorname{Tr}(n)$ of the color $\sigma\left(a_{i} a_{i+1}\right)=\sigma\left(w a_{i}\right)$ has length at most 2 ; so $k=3$.

Claim 7. There is no monochromatic H^{+}in $\operatorname{Tr}(n)$.
Proof. Suppose that there is a monochromatic copy of H^{+}on $\left\{v_{i}: 1 \leqslant i \leqslant 6\right\}$ in which $v_{1} v_{2} v_{3} v_{4} v_{1}$ is a 4 -cycle and $v_{1} v_{5}, v_{2} v_{6}$ are edges. If $v_{1} v_{2} \in E(\operatorname{Tr}(0))$, then $v_{1} v_{2}$ satisfies the conditions of Claim 5 and by the footnote from the proof of Claim 5, there is no monochromatic C_{4} containing $v_{1} v_{2}$, a contradiction. So $v_{1} v_{2} \notin E(\operatorname{Tr}(0))$. By symmetry, we may assume that $v_{2} \in V(\operatorname{Tr}(i+1)) \backslash V(\operatorname{Tr}(i))$ for some i and that $v_{1} u w v_{1}$ is the triangle bounding the inner face of $\operatorname{Tr}(i)$ containing v_{2}. Again as before we may assume that $0 \leqslant i \leqslant n-2$.

If $\sigma\left(v_{2} u\right)=\sigma\left(v_{2} w\right)$, then there exists some $p \in V(\operatorname{Tr}(n)) \backslash V(\operatorname{Tr}(i+1))$ such that $v_{1} p v_{2}$ has the same color as $\sigma\left(v_{1} v_{2}\right)$. But $v_{1} v_{4} v_{3} v_{2}$ is a monochromatic path of length 3 in $\operatorname{Tr}(n)$ between v_{1} and v_{2} and of the color $\sigma\left(v_{1} v_{2}\right)$, a contradiction to Claim 5 .

Hence, $\sigma\left(v_{1} v_{2}\right) \in\left\{\sigma\left(v_{2} u\right), \sigma\left(v_{2} w\right)\right\}$ and by symmetry, we may assume $\sigma\left(v_{1} v_{2}\right)=$ $\sigma\left(v_{2} u\right)$. Then by Claim $1, \sigma\left(v_{1} v_{2}\right) \neq \sigma\left(v_{2} w\right)$ and thus $\sigma\left(v_{2} v_{3}\right)=\sigma\left(v_{2} v_{6}\right) \neq \sigma\left(v_{2} w\right)$. This shows $w \notin\left\{v_{3}, v_{6}\right\}$. So there exists $y \in\left\{v_{3}, v_{6}\right\} \backslash\{u, w\}$. By Claim 3, $\sigma\left(v_{2} y\right)=\sigma\left(v_{2} w\right)$, a contradiction.

This completes the proof of Theorem 1.1 for H^{+}and C_{k}, with $k \geqslant 5$.

3 Monochromatic $\boldsymbol{K}_{2,3}$

In this section, we prove Theorem 1.1 for $K_{2,3}$ using a different coloring scheme on $\operatorname{Tr}(n)$ described below. Let $\sigma: E(\operatorname{Tr}(n)) \rightarrow\{0,1\}$ be defined inductively as follows:

[^1](i) Fix a triangle T bounding an inner face of $\operatorname{Tr}(1)$, and let $\sigma(e)=0$ if $e \in E(T)$ and $\sigma(e)=1$ if $e \in E(\operatorname{Tr}(1)) \backslash E(T)$.
(ii) Suppose for some $1 \leqslant i<n$, we have defined $\sigma(e)$ for all $e \in E(\operatorname{Tr}(i))$. We now extend σ to $E(\operatorname{Tr}(i+1))$. Let $x \in V(\operatorname{Tr}(i)) \backslash V(\operatorname{Tr}(i-1))$ be arbitrary, let $v_{0} v_{1} v_{2} v_{0}$ denote the triangle bounding the inner face of $\operatorname{Tr}(i-1)$ containing x, with v_{0}, v_{1}, v_{2} on the triangle in clockwise order, and let $\sigma\left(x v_{1}\right)=\sigma\left(x v_{2}\right)$.
(iii) Let $x_{j} \in V(\operatorname{Tr}(i+1)) \backslash V(\operatorname{Tr}(i))$ such that x_{j} is inside the face of $\operatorname{Tr}(i)$ bounded by the triangle $x v_{j} v_{j+1} x$, where $j=0,1,2$ and the subscripts are taken modulo 3 . Define $\sigma\left(v_{0} x\right)=\sigma\left(v_{0} x_{0}\right)=\sigma\left(v_{0} x_{2}\right)=\sigma\left(x x_{2}\right)=\sigma\left(x_{1} v_{1}\right)$, and $\sigma\left(v_{2} x\right)=\sigma\left(v_{2} x_{1}\right)=$ $\sigma\left(v_{2} x_{2}\right)=\sigma\left(x x_{1}\right)=\sigma\left(x x_{0}\right)=\sigma\left(x_{0} v_{1}\right)$.

Figure 4: 2 edge-coloring scheme
Note that in (ii) we have $\left|\left\{\sigma\left(x v_{j}\right): j=0,1,2\right\}\right|=2$ and that in (iii) we have $\sigma\left(x_{j} v_{j}\right) \neq$ $\sigma\left(x_{j} v_{j+1}\right)$ for $j=0,1,2$. Hence, inductively, we have
(1) For $1 \leqslant i \leqslant n$ and $x \in V(\operatorname{Tr}(i)) \backslash V(\operatorname{Tr}(i-1)),|\{\sigma(x v): v \in V(\operatorname{Tr}(i-1))\}|=2$.
(2) If $x_{1} x_{2} x_{3} x_{1}$ is a triangle which bounds an inner face of $\operatorname{Tr}(i)$ for some $1 \leqslant i \leqslant n-2$, and if $x \in V(\operatorname{Tr}(n)) \backslash V(\operatorname{Tr}(i+1))$ is inside $x_{1} x_{2} x_{3} x_{1}$ with $x x_{1}, x x_{2} \in E(\operatorname{Tr}(n))$, then $\sigma\left(x x_{1}\right) \neq \sigma\left(x x_{2}\right)$.

These two claims are straightforward so we omit their proofs.
(3) For any $x_{1} x_{2} \in E(\operatorname{Tr}(n)),\left|\left\{x \in N\left(x_{1}\right) \cap N\left(x_{2}\right): \sigma\left(x x_{1}\right)=\sigma\left(x x_{2}\right)=0\right\}\right| \leqslant 2$ and $\left|\left\{x \in N\left(x_{1}\right) \cap N\left(x_{2}\right): \sigma\left(x x_{1}\right)=\sigma\left(x x_{2}\right)=1\right\}\right| \leqslant 2$.

First, suppose $x_{1} x_{2} \in E(\operatorname{Tr}(0))$. Then by (i) and (2), $\mid\left\{x \in N\left(x_{1}\right) \cap N\left(x_{2}\right): \sigma\left(x x_{1}\right)=\right.$ $\left.\sigma\left(x x_{2}\right)=0\right\} \mid \leqslant 1$ and $\left|\left\{x \in N\left(x_{1}\right) \cap N\left(x_{2}\right): \sigma\left(x x_{1}\right)=\sigma\left(x x_{2}\right)=1\right\}\right| \leqslant 1$.

So we may assume that $x_{1} v w x_{1}$ bounds an inner face of $\operatorname{Tr}(i)$ and $x_{2} \in V(\operatorname{Tr}(i+$ 1)) $\backslash V(\operatorname{Tr}(i))$ inside $x_{1} v w x_{1}$. Let $v_{1} \in \operatorname{Tr}(i+2)$ be inside $x_{1} v x_{2} x_{1}$ and $w_{1} \in \operatorname{Tr}(i+2)$ be inside $x_{1} w x_{2} x_{1}$. By (iii), $\sigma\left(w_{1} x_{1}\right) \neq \sigma\left(w_{1} x_{2}\right)$ or $\sigma\left(v_{1} x_{1}\right) \neq \sigma\left(v_{1} x_{2}\right)$. By (2), for any $x \in V(\operatorname{Tr}(n)) \backslash V(\operatorname{Tr}(i+2))$ inside $x_{1} v w x_{1}$ with $x x_{1}, x x_{2} \in E(\operatorname{Tr}(n))$, we have $\sigma\left(x x_{1}\right) \neq$ $\sigma\left(x x_{2}\right)$. Hence, if (3) fails, then we may assume by symmetry between w_{1} and v_{1} that $\sigma\left(v x_{1}\right)=\sigma\left(v x_{2}\right)=\sigma\left(w x_{1}\right)=\sigma\left(w x_{2}\right)=\sigma\left(v_{1} x_{1}\right)=\sigma\left(v_{1} x_{2}\right)$, and $\sigma\left(w_{1} x_{1}\right) \neq \sigma\left(w_{1} x_{2}\right)$. Then, by (1), $\sigma\left(x_{1} x_{2}\right) \neq \sigma\left(x_{2} v\right)=\sigma\left(x_{2} w\right)$. Now by (iii), at least one of the two edges $v_{1} x_{1}$ and $v_{1} x_{2}$ has the same color as $x_{1} x_{2}$, a contradiction. This proves (3).
(4) If $x_{1} x_{2} x_{3} x_{4} x_{1}$ is a 4-cycle in $\operatorname{Tr}(n)$, then $x_{1} x_{3} \in E(\operatorname{Tr}(n))$ or $x_{2} x_{4} \in E(\operatorname{Tr}(n))$.

We may assume that $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq V(\operatorname{Tr}(i+1))$ and $x_{j} \in V(\operatorname{Tr}(i+1)) \backslash V(\operatorname{Tr}(i))$ for some $0 \leqslant i<n$ and $j \in[4]$. Let $u v w u$ be the triangle bounding an inner face of $\operatorname{Tr}(i)$ such that x_{j} is inside it. Then $\left\{x_{j-1}, x_{j+1}\right\} \subseteq\{u, v, w\}$, implying that $x_{j-1} x_{j+1} \in E(\operatorname{Tr}(n))$.
(5) There is no monochromatic $K_{2,3}$ in $\operatorname{Tr}(n)$.

For, suppose $\operatorname{Tr}(n)$ has a monochromatic copy of $K_{2,3}$ on $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ with $v_{4} v_{i}, v_{5} v_{i} \in$ $E(\operatorname{Tr}(n))$ for all $i=1,2,3$. Then $v_{4} v_{5} \notin E(\operatorname{Tr}(n))$ by (3) and, hence, it follows from (4) that $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1} \in E(\operatorname{Tr}(n))$. By planarity, $v_{1} v_{2} v_{3} v_{1}$ bounds an inner face of $\operatorname{Tr}(i)$ for some i with $1 \leqslant i<n$ and, by the symmetry between v_{4} and v_{5}, we may assume that v_{4} is inside $v_{1} v_{2} v_{3} v_{1}$. Then $v_{4} \in V(\operatorname{Tr}(i+1)) \backslash V(\operatorname{Tr}(i))$. However, this contradicts (1), as $\sigma\left(v_{4} v_{1}\right)=\sigma\left(v_{4} v_{2}\right)=\sigma\left(v_{4} v_{3}\right)$. We have completed the proof of Theorem 1.1.

4 Monochromatic \boldsymbol{J}_{k}

In this section we prove that $\operatorname{Tr}(100 k) \rightarrow J_{k}$ holds for any positive integer k.
We need the following result, which is Lemma 9 in [4]. The original statement in [4] states $\operatorname{Tr}(16) \rightarrow C_{4}$, but the same proof in [4] actually gives the following stronger version.

Lemma 4.1. If $x y z x$ bounds the outer face of $\operatorname{Tr}(16)$, then any 2-edge-coloring of $\operatorname{Tr}(16)$ gives a monochromatic C_{4} that intersects $\{x, y\}$.

Note that if the triangle $x y z x$ bounds the outer face of $\operatorname{Tr}(n)$ and $v \in V(\operatorname{Tr}(1)) \backslash$ $V(\operatorname{Tr}(0))$ then the subgraph of $\operatorname{Tr}(n)$ contained in the closed disc bounded by vxyv is isomorphic to $\operatorname{Tr}(n-1)$. Hence, the following is an easy consequence of Lemma 4.1.

Corollary 4.2. If $x y z x$ bounds the outer face of $\operatorname{Tr}(17)$ then any 2-edge-coloring of $\operatorname{Tr}(17)$ gives a monochromatic C_{4} that intersects $\{x, y\}$ and avoids z.

Lemma 4.3. For any positive integer $k, \operatorname{Tr}(38 k) \rightarrow F_{k}$
Proof. Let $\sigma: E(\operatorname{Tr}(38 k)) \rightarrow\{0,1\}$ be an arbitrary 2-edge coloring. Let uvwu be the triangle bounding the outer face of $\operatorname{Tr}(38 k)$. Let $x_{0}:=w$ and, for $1 \leqslant \ell \leqslant 2 k$, let $x_{l} \in V(\operatorname{Tr}(\ell)) \backslash V(\operatorname{Tr}(\ell-1))$ such that x_{ℓ} is inside $x_{\ell-1} u v x_{\ell-1}$. Let $y_{i, 0}:=x_{i}$ for $i \in$ $\{0,1, \ldots, 2 k-1\}$ and, for $\ell \in\{1, \ldots, 36 k\}$, let $y_{i, \ell} \in V(\operatorname{Tr}(i+1+\ell)) \backslash V(\operatorname{Tr}(i+\ell))$ such that $y_{i, \ell}$ is inside $y_{i, \ell-1} u x_{i+1} y_{i, \ell-1}$.

Suppose for each $0 \leqslant i \leqslant 2 k-1$ there exists a monochromatic C_{4} inside $x_{i} u x_{i+1} x_{i}$ that contains u and avoids x_{i}. By pigeonhole principle, at least k of these $C_{4} \mathrm{~s}$ are of the same color, which form a monochromatic F_{k} centered at u.

Hence, we may assume that there exists some $i \in\{0,1, \ldots, 2 k-1\}$ such that no monochromatic C_{4} inside $x_{i} u x_{i+1} x_{i}$ contains u and avoids x_{i}. Since $i \leqslant 2 k-1, x_{i} u x_{i+1} x_{i}$ bounds the outer face of a $\operatorname{Tr}(36 k)$ that is contained in $\operatorname{Tr}(38 k)$.

Now for each $h \in\{0,1, \ldots, 2 k-1\}$, we view the region enclosed by u, x_{i+1} and $y_{i, 18 h}$ without the closed region enclosed by u, x_{i+1} and $y_{i, 18(h+1)}$ as a $\operatorname{Tr}(17)$. Note that these copies of $\operatorname{Tr}(17)$ share u, x_{i+1} as the only common vertices. Taking $y_{i, 18 h}$ to be the vertex z in Corollary 4.2, we conclude from Corollary 4.2 that there is a monochromatic C_{4} in the $\operatorname{Tr}(17)$. We denote this C_{4} by G_{h}. Then $x_{i+1} \in V\left(G_{h}\right)$ and $\left\{u, y_{i, 18 h}\right\} \cap V\left(G_{h}\right)=\emptyset$. By pigeonhole principle, at least k of these $C_{4} \mathrm{~S}$ are of the same color, which clearly form a monochromatic F_{k} centered at x_{i+1}.

Figure 5: Lemma 4.3

Figure 6: Lemma 4.4

Lemma 4.4. Let k be a positive integer and let uvwu bound the outer face of $\operatorname{Tr}(9 k+2)$. Suppose $\sigma: E(\operatorname{Tr}(9 k+2)) \rightarrow\{0,1\}$ is a 2-edge-coloring such that $\mid\{\sigma(u x): x \in V(\operatorname{Tr}(9 k+$ $2))\} \mid=1$ and there is no monochromatic C_{4} containing u. Then $\operatorname{Tr}(9 k+2)$ contains monochromatic J_{k} centered at v.

Proof. Without loss of generality, assume $\sigma(u v)=0$. Then $\sigma(u y)=0$ for all $y \in N(u)$. Let $x_{0}:=w$ and, for $1 \leqslant i \leqslant 8 k+1$, let $x_{i} \in V(\operatorname{Tr}(i)) \backslash V(\operatorname{Tr}(i-1))$ such that x_{i} is inside $x_{i-1} u v x_{i-1}$. Since no monochromatic C_{4} in $\operatorname{Tr}(9 k+2)$ contains u, there is at most one $i \in\{0,1,2, \ldots, 8 k+1\}$ such that $\sigma\left(x_{i} v\right)=0$. Hence, there exists $i \in\{0,1, \ldots, 4 k+2\}$ such that $\sigma\left(v x_{j}\right)=1$ for $j \in\{i, i+1, \ldots, i+4 k-1\}$. We now make the following claim.

Claim. The subgraph of $\operatorname{Tr}(9 k+2)$ contained in the closed disc bounded by $v x_{i} \ldots x_{i+3 k-1} v$ has a monochromatic F_{k} of color 1 and centered at v, which we denote by F_{v}.

To show this, it suffices to show that for each r with $0 \leqslant r \leqslant k-1$, the subgraph of $\operatorname{Tr}(9 k+2)$ inside $v x_{i+3 r} x_{i+3 r+1} x_{i+3 r+2} v$ (inclusive) contains a monochromatic C_{4} of color 1 and containing v, as the union of such C_{4} is an F_{k} centered at v. So fix an arbitrary r, with $0 \leqslant r \leqslant k-1$. Note that $\sigma\left(x_{i+3 r} x_{i+3 r+1}\right)=1$ or $\sigma\left(x_{i+3 r+1} x_{i+3 r+2}\right)=1$, for $0 \leqslant r \leqslant k-1$; for, otherwise, $x_{i+3 r} x_{i+3 r+1} x_{i+3 r+2} u x_{i+3 r}$ is a monochromatic C_{4} of color 0 and containing u, a contradiction. Without loss of generality, assume $\sigma\left(x_{i+3 r} x_{i+3 r+1}\right)=1$.

Let $y \in V(\operatorname{Tr}(i+3 r+2)) \backslash V(\operatorname{Tr}(i+3 r+1))$ such that y is inside $x_{i+3 r} x_{i+3 r+1} v x_{i+3 r}$. If there are two edges in $\left\{y x_{i+3 r}, y x_{i+3 r+1}, y v\right\}$ of color 0 , then one can easily find a monochromatic C_{4} of color 0 and containing u, a contradiction. Hence, at least two of $\left\{\sigma\left(y x_{i+3 r}\right), \sigma\left(y x_{i+3 r+1}\right), \sigma(y v)\right\}$ are 1. So $\left\{y, x_{i+3 r}, x_{i+3 r+1}, v\right\}$ induces a subgraph which contains a monochromatic C_{4} of color 1 . This proves the claim.

Note that for $i+3 k \leqslant r \leqslant i+4 k-1, u x_{r} x_{r-1} u$ bounds the outer face of a $\operatorname{Tr}(k+1)$. Let $z_{r, 0}:=x_{r-1}$ and, for $r \in\{i+3 k, i+3 k+1, \ldots, i+4 k-1\}$ and $\ell \in\{1,2, \ldots, k\}$, let $z_{r, \ell} \in V(\operatorname{Tr}(r+\ell)) \backslash V(\operatorname{Tr}(r+\ell-1))$ such that $z_{r, \ell}$ is inside $z_{r, \ell-1} x_{r} u z_{r, \ell-1}$. Because $\sigma\left(u z_{r, j}\right)=0$ (by assumption) and $\operatorname{Tr}(9 k+2)$ has no monochromatic C_{4} containing u, there is at most one $y \in\left\{z_{r, 1}, z_{r, 2}, \ldots, z_{r, k}\right\}$ such that $\sigma\left(y x_{r}\right)=0$. So there exists $k-1$ vertices in $\left\{z_{r, 1}, \ldots, z_{r, k}\right\}$ which together with $x_{r} v$ form a monochromatic $K_{1, k}$ of color 1 centered at x_{r}, which we denote by H_{r}. Now $H_{i+3 k}, H_{i+3 k+1}, \ldots, H_{i+4 k-1}$ form a monochromatic k-ary radius 2 tree rooted at v of color 1 . This radius 2 tree and F_{v} form a monochromatic J_{k} of color 1, completing the proof of Lemma 4.4.

Now we are ready to prove the main result of this section, that is $\operatorname{Tr}(100 k) \rightarrow J_{k}$. Let $\sigma: E(\operatorname{Tr}(100 k)) \rightarrow\{0,1\}$ be arbitrary. We show that σ always contains a monochromatic J_{k}. By Lemma 4.3, $\operatorname{Tr}(76 k)$ contains monochromatic copy of $F_{2 k}$, say F, and, without loss of generality, assume it is of color 1 . Let the $C_{4} \mathrm{~s}$ in F be $x a_{i, 1} a_{i, 2} a_{i, 3} x$ for $i \in[2 k]$. For $i \in[2 k]$, let $b_{i} \in V(\operatorname{Tr}(76 k+1)) \backslash V(\operatorname{Tr}(76 k))$ such that b_{i} is inside $x a_{i, 1} a_{i, 2} a_{i, 3} x$ and $a_{i, 1} a_{i, 2} b_{i} a_{i, 1}$ bounds an inner face of $\operatorname{Tr}(76 k+1)$. Let A_{i} be the family of all vertices $a \in N\left(a_{i, 1}\right)$ inside $a_{i, 1} a_{i, 2} b_{i} a_{i, 1}$ and satisfying $\sigma\left(a a_{i, 1}\right)=1$.
(1) There exists some $i \in\{k+1, k+2, \ldots, 2 k\}$ such that $\left|A_{i}\right|<k$.

Otherwise, suppose that $\left|A_{i}\right| \geqslant k$ for all $i \in\{k+1, k+2, \ldots, 2 k\}$. Then let $Z_{i}:=$ $\left\{z_{i, 1}, z_{i, 2}, \ldots, z_{i, k-1}\right\} \subseteq A_{i}$. Now, for each $i \in\{k+1, \ldots, 2 k\},\left\{x, a_{i, 1}\right\} \cup Z_{i}$ induces a graph containing a monochromatic $K_{1, k}$. Those $K_{1, k} \mathrm{~s}$ form a monochromatic radius-two

Figure 7
k-ary tree of color 1 and rooted at x, which we denote by T_{x}. The k four-cycles $x a_{i, 1} a_{i, 2} a_{i, 3} x$ for $i \in[k]$ form a monochromatic F_{k}. Now $F_{k} \cup T_{x}$ is a monochromatic J_{k}.

Let $u:=a_{i, 1}$. By (1), there exists an edge $v w \in \operatorname{Tr}(78 k)$ such that $u v w u$ bounds an inner face of $\operatorname{Tr}(78 k)$ and $\sigma(u y)=0$ for any $y \in N(u)$ in the closed disc bounded by uvwu.

Let G be the subgraph of $\operatorname{Tr}(78 k)$ contained in the closed disc bounded by uvwu (see Figure 5). Clearly G is isomorphic to a copy of $\operatorname{Tr}(22 k)$. In the rest of the proof, we should only discuss the graph G and all $\operatorname{Tr}(i)$ will be referred to this copy of $\operatorname{Tr}(22 k)$. Let $x_{0}:=w$ and for $i \in[4 k]$, let $x_{i} \in V(\operatorname{Tr}(i)) \backslash V(\operatorname{Tr}(i-1))$ such that x_{i} is inside $u x_{i-1} v u$.
(2) G contains a monochromatic copy of F_{k}, say F^{\prime}, which has color 0 and center u and is disjoint from the union of closed regions bounded by $u x_{i} x_{i+1} u$ over all $0 \leqslant i \leqslant 2 k-1$.

If for each $i \in\{k, k+1, \ldots, 2 k-1\}$ there exists a monochromatic C_{4} inside $u x_{2 i} x_{2 i+1} u$ and containing u, then these k monochromatic $C_{4} \mathrm{~S}$ of color 0 form a desired monochromatic F_{k} centered at u and thus (2) holds. Otherwise, since $u x_{2 i} x_{2 i+1} u$ bounds the outer face of a $\operatorname{Tr}(9 k+2)$, it follows from Lemma 4.4 that there exists a monochromatic J_{k} in G.

For $j \in\{0,1, \ldots, 2 k-1\}$, let B_{j} be the family of all vertices $x \in N\left(x_{j}\right)$ inside $u x_{j} x_{j+1} u$ and satisfying $\sigma\left(x x_{j}\right)=0$.
(3) There exists some $j \in\{0,1, \ldots, k-1\}$ such that $\left|B_{j}\right|<k$.

Suppose to the contrary that there exist subsets $Z_{j} \subseteq B_{j}$ of size k for all $j \in\{0,1, \ldots, k-$ $1\}$. Then each $Z_{j} \cup\left\{u, x_{j}\right\}$ induces a graph containing a monochromatic $K_{1, k}$ which is
centered at x_{j} and has color 0 . These $K_{1, k} \mathrm{~s}$ together with F^{\prime} form a monochromatic J_{k} of color 0 . This proves (3).

Let $p_{0}:=x_{j+1}$ and for $1 \leqslant \ell \leqslant 4 k$, let $p_{\ell} \in V(\operatorname{Tr}(j+\ell+1)) \backslash V(\operatorname{Tr}(j+\ell))$ such that p_{ℓ} is inside $u x_{j} p_{\ell-1} u$. By (3), there exists some $0 \leqslant \ell \leqslant 4 k-1$ such that $\sigma\left(z x_{j}\right)=1$ for any $z \in N\left(x_{j}\right)$ in the closed disc bounded by $x_{j} p_{\ell} p_{\ell+1} x_{j}$.
(4) There is a monochromatic F_{k} inside $x_{j} p_{\ell} p_{\ell+1} x_{j}$, say $F^{\prime \prime}$, with color 1 and center x_{j}.

Let $z_{0}:=p_{\ell+1}$ and for $s \in[2 k+1]$, let $z_{s} \in V(\operatorname{Tr}(j+\ell+s+2)) \backslash V(\operatorname{Tr}(j+\ell+s+1))$ such that z_{s} is inside $x_{j} z_{s-1} p_{\ell} x_{j}$. Note that each $x_{j} z_{2 s} z_{2 s+1} x_{j}$ bounds a $\operatorname{Tr}(9 k+3)$. If for each $s \in[k]$ there exists a monochromatic C_{4} of color 1 inside $x_{j} z_{2 s} z_{2 s+1} x_{j}$ and containing x_{j}, then these monochromatic copies of C_{4} form the desired monochromatic F_{k} centered at x_{j}. Otherwise, it follows from Lemma 4.4 that there exists a monochromatic J_{k}.

As $\left|B_{j}\right|<k$, there exists a subset $A \subseteq\left\{p_{1}, p_{2}, \ldots, p_{4 k}\right\}$ of size $2 k$ such that $\sigma\left(\alpha x_{j}\right)=1$ for each $\alpha \in A$ and moreover, there is no neighbors of A belonging to $V\left(F^{\prime \prime}\right)$. Let $A:=\left\{\alpha_{1}, \ldots, \alpha_{2 k}\right\}$. Note that for each $h \in[2 k]$, we have $\sigma\left(\alpha_{h} u\right)=0$ and $\sigma\left(\alpha_{h} x_{j}\right)=1$.

It is easy to see that there exist pairwise disjoint sets $N_{h} \subseteq N\left(\alpha_{h}\right)$ of size $2 k$ for $h \in[2 k]$. Then there exists $M_{h} \subseteq N_{h}$ such that $\left|M_{h}\right|=k-1$ and $\sigma\left(x \alpha_{h}\right)$ is the same for all $x \in M_{h}$. This gives $2 k$ monochromatic copies of $K_{1, k-1}$ with centers α_{h} for $h \in[2 k]$. At least k of them (say with centers α_{h} for $h \in[k]$) have the same color. If this color is 0 , these copies together with $\left\{u \alpha_{h}: h \in[k]\right\}$ and F^{\prime} give a monochromatic J_{k} with color 0 and center u. Otherwise, this color is 1 . Then these copies together with $\left\{x_{j} \alpha_{h}: h \in[k]\right\}$ and $F^{\prime \prime}$ give a monochromatic J_{k} with color 1 and center u. This proves $\operatorname{Tr}(100 k) \rightarrow J_{k}$.

5 Monochromatic bistar

In this section we prove $\operatorname{Tr}(6 k+30) \rightarrow B_{k}$. We first establish the following lemma.
Lemma 5.1. Let uvwu be the triangle bounding the outer face of $\operatorname{Tr}(k+10)$. Let σ : $E(\operatorname{Tr}(k+10)) \rightarrow\{0,1\}$ such that $|\{\sigma(u x): x \in V(\operatorname{Tr}(k+10))\}|=1$ and there is no monochromatic C_{4} containing u. Then $\operatorname{Tr}(k+10)$ contains a monochromatic B_{k}.

Proof. Without loss of generality, let $\sigma(u v)=0$. Let $x_{0}:=w$ and, for $i \in$ [6], let $x_{i} \in V(\operatorname{Tr}(i)) \backslash V(\operatorname{Tr}(i-1))$ such that x_{i} is inside $u v x_{i-1} u$.

Since $\operatorname{Tr}(k+10)$ has no monochromatic C_{4} containing u, we see that $\mid\{0 \leqslant i \leqslant 6$: $\left.\sigma\left(v x_{i}\right)=0\right\} \mid \leqslant 1$. So there exists some $i \in\{0,1,2,3,4\}$ such that $\sigma\left(v x_{i}\right)=\sigma\left(v x_{i+1}\right)=$ $\sigma\left(v x_{i+2}\right)=1$. We have either $\sigma\left(x_{i} x_{i+1}\right)=1$ or $\sigma\left(x_{i+1} x_{i+2}\right)=1$; as otherwise $u x_{i} x_{i+1} x_{i+2} u$ is a monochromatic C_{4} of color 0 and containing u, a contradiction. We consider two cases.

Case 1. $\sigma\left(x_{i} x_{i+1}\right)=\sigma\left(x_{i+1} x_{i+2}\right)$.
In this case, we have $\sigma\left(x_{i} x_{i+1}\right)=\sigma\left(x_{i+1} x_{i+2}\right)=1$. So $x_{i} x_{i+1} x_{i+2} v x_{i}$ is a monochromatic C_{4} of color 1. Let $y_{0}:=x_{i+1}$ and for $\ell \in[k+1]$, let $y_{\ell} \in V(\operatorname{Tr}(i+1+\ell)) \backslash V(\operatorname{Tr}(i+\ell))$
such that y_{ℓ} is inside $u y_{\ell-1} x_{i} u$. Similarly let $z_{0}:=x_{i+1}$ and for $\ell \in[k+1]$, let $z_{\ell} \in$ $V(\operatorname{Tr}(i+2+\ell)) \backslash V(\operatorname{Tr}(i+1+\ell))$ such that z_{ℓ} is inside $u z_{\ell-1} x_{i+2} u$.

Since $\operatorname{Tr}(k+10)$ has no monochromatic C_{4} containing u, this shows that $\mid\{\ell \in[k+1]$: $\left.\sigma\left(x_{i} y_{\ell}\right)=0\right\} \mid \leqslant 1$ and $\left|\left\{\ell \in[k+1]: \sigma\left(x_{i+2} z_{\ell}\right)=0\right\}\right| \leqslant 1$. Therefore, there exist $Y \subseteq\left\{y_{\ell}: \ell \in[k+1]\right\}$ and $Z \subseteq\left\{z_{\ell}: \ell \in[k+1]\right\}$ such that $|Y|=|Z|=k, \sigma\left(y x_{i}\right)=1$ for each $y \in Y$ and $\sigma\left(z x_{i+2}\right)=1$ for each $z \in Z$. Hence, $\operatorname{Tr}(k+10)$ has two monochromatic $K_{1, k} \mathrm{~s}$ of color 1 with centers x_{i}, x_{i+1} and leave sets Y, Z, respectively. These two $K_{1, k} \mathrm{~s}$ together with $v x_{i} x_{i+1} x_{i+2} v$ form a monochromatic B_{k} of color 1 .

Case 2. $\sigma\left(x_{i} x_{i+1}\right) \neq \sigma\left(x_{i+1} x_{i+2}\right)$.
Without loss of generality, let $\sigma\left(x_{i} x_{i+1}\right)=0$ and $\sigma\left(x_{i+1} x_{i+2}\right)=1$. Let $y \in V(\operatorname{Tr}(i+2)) \backslash$ $V(\operatorname{Tr}(i+1))$ be inside $u x_{i} x_{i+1} u$. Because $\sigma(u y)=0$ and $\operatorname{Tr}(k+10)$ has no monochromatic C_{4} containing $u, \sigma\left(y x_{i}\right)=\sigma\left(y x_{i+1}\right)=1$. Therefore, $y x_{i+1} v x_{i} y$ is a monochromatic C_{4} of color 1. Let $y_{0}:=y$ and, for $\ell \in[k+1]$, let $y_{\ell} \in V(\operatorname{Tr}(i+2+\ell)) \backslash V(\operatorname{Tr}(i+1+\ell))$ such that y_{ℓ} is inside $u y_{\ell-1} x_{i} u$. Let $z_{0}:=y$ and, for $\ell \in[k+1]$, let $z_{\ell} \in V(\operatorname{Tr}(i+2+\ell)) \backslash V(\operatorname{Tr}(i+1+\ell))$ such that z_{ℓ} is inside $u z_{\ell-1} x_{i+1} u$.

The remaining proof is similar as in Case 1 . We observe that $\mid\left\{\ell \in[k+1]: \sigma\left(x_{i} y_{\ell}\right)=\right.$ $0\} \mid \leqslant 1$ and $\left|\left\{\ell \in[k+1]: \sigma\left(x_{i+1} z_{\ell}\right)=0\right\}\right| \leqslant 1$. Therefore, there exist $Y \subseteq\left\{y_{\ell}: \ell \in[k+1]\right\}$ and $Z \subseteq\left\{z_{\ell}: \ell \in[k+1]\right\}$ such that $|Y|=|Z|=k, \sigma\left(y x_{i}\right)=1$ for $y \in Y$, and $\sigma\left(z x_{i+1}\right)=1$ for $z \in Z$. Hence, $\operatorname{Tr}(k+10)$ has two monochromatic $K_{1, k}$ s of color 1 with centers x_{i}, x_{i+1} and leave sets Y, Z, respectively. These two $K_{1, k}$ s together with $y x_{i+1} v x_{i} y$ form a monochromatic B_{k} of color 1. This proves Lemma 5.1.

We are ready to prove $\operatorname{Tr}(6 k+30) \rightarrow B_{k}$. Let $\sigma: E(\operatorname{Tr}(6 k+30)) \rightarrow\{0,1\}$. By Lemma 4.1, each copy of $\operatorname{Tr}(16)$ with the same outer face as of $\operatorname{Tr}(6 k+30)$ contains a monochromatic C_{4}, say $u_{1} u_{2} u_{3} u_{4} u_{1}$ of color 1 (see Figure 6). For each $i \in\{1,3\}$, let $v_{i} w_{i}$ be an edge in $\operatorname{Tr}(18)$ such that $u_{i} v_{i} w_{i} u_{i}$ is a triangle inside $u_{1} u_{2} u_{3} u_{4} u_{1}$. Note that $u_{i} v_{i} w_{i} u_{i}$ bounds the outer face of a $\operatorname{Tr}(6 k+12)$. Let A_{i} be the family of all vertices $x \in N\left(u_{i}\right)$ inside $u_{i} v_{i} w_{i} u_{i}$ and satisfying $\sigma\left(x u_{i}\right)=1$. If $\left|A_{1}\right| \geqslant k$ and $\left|A_{3}\right| \geqslant k$, then together with the monochromatic 4-cycle $u_{1} u_{2} u_{3} u_{4} u_{1}$, it is easy to form a monochromatic B_{k} of color 1 .

Hence by symmetry, we may assume that $\left|A_{1}\right|<k$. Then there exists an edge vw in $\operatorname{Tr}(18+k)$ such that $u_{1} v w u_{1}$ bounds an inner face of $\operatorname{Tr}(18+k)$ and $\sigma\left(u_{1} x\right)=0$ for all $x \in N\left(u_{1}\right)$ in the closed disc bounded by $u_{1} v w u_{1}$. We may assume that the induced subgraph contained in the closed disc bounded by $u_{1} v w u_{1}$ has a monochromatic C_{4} say $u_{1} x y z u_{1}$ (as otherwise, it contains a B_{k} by Lemma 5.1). Furthermore, we have $\{x, y, z\} \subseteq V(\operatorname{Tr}(2 k+28))$.

Let $\left\{p_{0}, q_{0}\right\} \subseteq V(\operatorname{Tr}(2 k+29)) \backslash V(\operatorname{Tr}(2 k+28))$ such that both $x y p_{0} x$ and $y z q_{0} y$ bound two inner faces of $\operatorname{Tr}(2 k+29)$. For $\ell \in[3 k]$, let $p_{\ell} \in V(\operatorname{Tr}(2 k+29+\ell)) \backslash V(\operatorname{Tr}(2 k+28+\ell))$ such that p_{ℓ} is inside $x p_{\ell-1} y x$. Similarly, for $\ell \in[3 k]$, let $q_{\ell} \in V(\operatorname{Tr}(2 k+29+\ell)) \backslash V(\operatorname{Tr}(2 k+$ $28+\ell)$) such that q_{ℓ} is inside $y q_{\ell-1} z y$. Moreover, let

$$
\begin{aligned}
B_{1} & :=\left\{p \in N(x): p \text { is inside } x p_{0} y x \text { and } \sigma(x p)=0\right\}, \\
B_{2} & :=\left\{q \in N(z): q \text { is inside } y q_{0} z y \text { and } \sigma(z q)=0\right\} .
\end{aligned}
$$

Figure 8

If $\left|B_{1}\right| \geqslant k$ and $\left|B_{2}\right| \geqslant k$, we can find two monochromatic $K_{1, k}$ S of color 0 , one inside $x p_{0} y x$ rooted at x and one inside $y q_{0} z y$ rooted at z; these two $K_{1, k}$ S and $u_{1} x y z u_{1}$ form a monochromatic B_{k} of color 0 . So we may assume, without loss of generality, that $\left|B_{1}\right|<k$.

Let $C:=\left\{\ell \in[3 k]: \sigma\left(y p_{\ell}\right)=0\right\}$. We claim $|C|<k$. Suppose to the contrary that $|C| \geqslant k$. Then there is a monochromatic $K_{1, k}$ with root y and leaves in C of color 0 . Since $\sigma\left(u_{1} p\right)=0$ for all $p \in N\left(u_{1}\right)$ inside $u_{1} v w$, there is also a monochromatic $K_{1, k}$ with root u_{1} and leaves inside $u_{1} x y z u_{1}$ of color 0 . Now these two $K_{1, k} \mathrm{~S}$ and $u_{1} x y z u_{1}$ form a monochromatic B_{k} of color 0 .

So $\left|B_{1}\right|<k$ and $|C|<k$. Then there exist p_{h}, p_{s} with $h, s \in[3 k]$ such that $\sigma\left(p_{h} x\right)=$ $\sigma\left(p_{h} y\right)=\sigma\left(p_{s} x\right)=\sigma\left(p_{s} y\right)=1$. Because $x p_{0} p_{1} x$ bounds an inner face of $\operatorname{Tr}(2 k+30)$, it also bounds the outer face of a $\operatorname{Tr}(4 k)$. As $\left|B_{1}\right|<k$, there exists a monochromatic $K_{1, k}$ of color 1 with the root x and k leaves inside $x p_{0} p_{1} x$. Similarly, as $|C|<k$, there exists a monochromatic $K_{1, k}$ of color 1 with root y and k leavers inside $y p_{0} p_{1} y$. Now these two $K_{1, k} \mathrm{~s}$ and the 4 -cycle $x p_{h} y p_{s} x$ form a monochromatic B_{k} of color 1 . This proves that $\operatorname{Tr}(6 k+30) \rightarrow B_{k}$ and thus completes the proof of Theorem 1.2.

References

[1] I. Algor and N. Alon, The star arboricity of graphs, Discrete Math. 75 (1989) 11-22.
[2] K. Appel and W. Haken, Every planar map is four colorable. I. Discharging, Illinois J. Math. 21 (3) (1977) 429-490.
[3] K. Appel, W. Haken and J. Koch, Every planar map is four colorable. II. Reducibility, Illinois J. Math. 21 (3) (1977) 491-567.
[4] M. Axenovich, U. Schade, C. Thomassen and T. Ueckerdt, Planar Ramsey graphs, Electron. J. Combin. 26 (4) (2019) \#P4.9.
[5] D. Gonçalves, Edge partition of planar graphs into two outerplanar graphs, in STOC05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 504-512, 2005. Also see http://www.lirmm.fr/~goncalves/pmwiki/ uploads/outer.pdf
[6] L. J. Cowen, R. H. Cowen and D. R. Woodall, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory 10 (1986) 187-195.
[7] S. Hakimi, On the degrees of the vertices of a directed graph, J. Franklin Institute 279 (1865) 290-308.
[8] S. Hakimi, J. Mitchem and E. Schmeichel, Star arboricity of graphs, Discrete Math. 149 (1996) 93-98.
[9] K. S. Poh, On the linear vertex arboricity of a planar graph, J. Graph Theory 14 (1990) 73-75.
[10] N. Robertson, D. Sanders, P. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1) (1997) 2-44.

[^0]: *Partially supported by NSFC grant 11622110, the project "Analysis and Geometry on Bundles" of Ministry of Science and Technology of the People's Republic of China, and Anhui Initiative in Quantum Information Technologies grant AHY150200.
 ${ }^{\dagger}$ Partially supported by NSF grants DMS-1600738 and DMS-1954134.

[^1]: ${ }^{1}$ This is fair because $\operatorname{Tr}(n+1) \nrightarrow C_{k}$ implies $\operatorname{Tr}(n) \nrightarrow C_{k}$.

