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Abstract

For integers n > 0, an iterated triangulation Tr(n) is defined recursively as
follows: Tr(0) is the plane triangulation on three vertices and, for n > 1, Tr(n) is
the plane triangulation obtained from the plane triangulation Tr(n−1) by, for each
inner face F of Tr(n− 1), adding inside F a new vertex and three edges joining this
new vertex to the three vertices incident with F .

In this paper, we show that there exists a 2-edge-coloring of Tr(n) such that Tr(n)
contains no monochromatic copy of the cycle Ck for any k > 5. As a consequence,
the answer to one of two questions asked by Axenovich et al. is negative. We
also determine the radius 2 graphs H for which there exists n such that every 2-
edge-coloring of Tr(n) contains a monochromatic copy of H, extending a result of
Axenovich et al. for radius 2 trees.

Mathematics Subject Classifications: 05C55, 05C10, 05D10

1 Introduction

For graphs G and H, we write G→ H if, for any 2-edge-coloring of G, there is a monochro-
matic copy of H. Otherwise, we write G 6→ H. We say that H is planar unavoidable if
there exists a planar graph G such that G→ H. Otherwise, we say H is planar avoidable.
This notion is introduced and studied in [4].

Deciding if G 6→ H is clearly equivalent to asking whether a graph G admits a decom-
position (i.e., an edge-decomposition) such that none of the two graphs in the decomposi-
tion contains the given graph H. The well-known Four Color Theorem [2,3] (also see [10])
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implies that every planar graph admits a decomposition into two bipartite graphs; so pla-
nar unavoidable graphs must be bipartite. A result of Gonçalves [5] says that every planar
graph admits a decomposition into two outer planar graphs; so planar unavoidable graphs
must be also outer planar. There are a number of interesting results about decomposing
planar graphs, see [1, 6–9].

For any positive integer n, let Pn denote the path on n vertices, Kn denote the complete
graph on n vertices, and Kn,m denote the complete bipartite graph with two parts of sizes
n and m. For integer n > 3, we use Cn to denote the cycle on n vertices. It is shown in [4]
that Pn, C4, and all trees with radius at most 2 are planar unavoidable. This is done by
analyzing several sequences of graphs.

In this paper, we investigate one such sequence – the iterated triangulations, which is of
particular interest as suggested in [4]. Let n > 0 be an integer. An iterated triangulation
Tr(n) is a plane graph defined as follows: Tr(0) ∼= K3 is the plane triangulation with
exactly two 3-faces. For each i > 0, let Tr(i+ 1) be obtained from the plane triangulation
Tr(i) by adding a new vertex in each of the inner faces of Tr(i) and connecting this vertex
with edges to the three vertices in the boundary of their respective face. The authors
of [4] asked whether for any planar unavoidable graph H there is an integer n such that
Tr(n) → H. They also asked whether there exists an integer k > 3 such that the even
cycle C2k is planar-unavoidable.

Our first result indicates that a positive answer to one of the above questions implies
a negative answer to the other. Let H+ be the graph with vertex set {v1, v2, v3, v4, v5, v6}
and edge set {v1v2, v2v3, v3v4, v4v1, v1v5, v2v6}.

Theorem 1.1. For all positive integers n, Tr(n) 6→ Ck for k > 5, Tr(n) 6→ H+, and
Tr(n) 6→ K2,3

v1

v4 v3

v2

v6v5

Figure 1: H+

As another direct consequence, we see that if B is a bipartite graph and Tr(n) → B
for some n, then every block of B must be a C4 or K2. This can be used to characterize
all radius 2 graphs B for which there exists n such that Tr(n)→ B, generalizing a result
in [4] for radius 2 trees. Before we state this characterization, it is worth mentioning
that the authors in [4] show that there is a planar avoidable tree of radius 3. We need
some additional notation. A flower Fk is a collection of k copies of C4s sharing a common
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vertex, which is called the center. A k-ary tree of radius 2 means a rooted tree such that
every non-leaf vertex has degree k and every leaf has depth 2. A jellyfish Jk is obtained
from Fk and a k-ary tree of radius 2 by identifying the center of Fk with the root of the
k-ary tree. A bistar Bk is obtained from one C4 and two disjoint K1,ks by identifying the
roots of the K1,ks with two non-adjacent vertices of C4, respectively.

Figure 2: J3 and B3

Theorem 1.2. Let L be a graph with radius 2. Then there exists n such that Tr(n)→ L
if, and only if, L is a subgraph of a jellyfish or bistar.

We organize this paper as follows. In Section 2, we prove Tr(n) 6→ Ck for k > 5
and Tr(n) 6→ H+ by finding a special edge-coloring scheme for Tr(n). In Section 3, we
complete the proof of Theorem 1.1 by using another edge-coloring scheme on Tr(n). From
Theorem 1.1, we can derive the following: if L has radius 2 and Tr(n) → L for some n,
then L is a subgraph of a jellyfish or bistar. Hence to prove Theorem 1.2, it suffices to
show that for any k > 1 there exists some n such that Tr(n)→ Jk and Tr(n)→ Bk. We
prove the former statement in Section 4 and the latter one in Section 5 by showing that
we can choose n to be linear in k.

2 H+ and Ck for k > 5

In this section, we prove Theorem 1.1 for H+ and Ck, with k > 5. First, we describe the
2-edge-coloring of Tr(n) that we will use. Let σ : E(Tr(n))→ {0, 1} be defined inductively
for all n > 1 as follows:

(i) Fix an arbitrary triangle T bounding an inner face of Tr(1), and let σ(e) = 0 if
e ∈ E(T ) and σ(e) = 1 if e ∈ E(Tr(1)) \ E(T ).

(ii) Suppose for some 1 6 i < n, we have defined σ(e) for all e ∈ E(Tr(i)). We extend
σ to E(Tr(i + 1)) as following. Let x ∈ V (Tr(i)) \ V (Tr(i − 1)) be arbitrary, let
v0v1v2v0 denote the triangle bounding the inner face of Tr(i− 1) containing x, and
fix a labeling so that σ(xv1) = σ(xv2).
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(iii) Let xj ∈ V (Tr(i+ 1)) \ V (Tr(i)) be such that xj is inside the face of Tr(i) bounded
by the triangle xvjvj+1x, where j = 0, 1, 2 and the subscripts are taken modulo
3. Define σ(xv0) = σ(x0v0) = σ(x2v0) = σ(xjx) for all j = 0, 1, 2, and σ(xv1) =
σ(x0v1) = σ(x1v1) = σ(x1v2) = σ(x2v2).

v0

v2 v1

x

x0x2

x1

Figure 3: 2 edge-coloring scheme

We now proceed by a sequence of claims to show that σ has no monochromatic Ck for
k > 5 nor monochromatic H+, thereby proving Tr(n) 6→ Ck for k > 5 and Tr(n) 6→ H+.
The first claim is immediate from (iii) so we omit its proof.

Claim 1. For 1 6 i 6 n and x ∈ V (Tr(i))\V (Tr(i−1)), |{σ(xv) : v ∈ V (Tr(i−1))}| = 2.

Claim 2. Let v0v1v2v0 be a triangle bounding an inner face of Tr(i), where 0 6 i < n, let
v ∈ V (Tr(i+ 1)) \ V (Tr(i)) with v inside v0v1v2v0. Then, for any v0w ∈ E(Tr(n)) with w
inside v0v1v2v0, σ(v0w) = σ(v0v).

Proof. Let v0w ∈ E(Tr(n)) with w inside v0v1v2v0. Then there exists k > 0 with i+k+1 6
n, such that w ∈ V (Tr(i+k+1))\V (Tr(i+k)). We prove Claim 2 by applying induction
on k. The basis case is trivial because k = 0 implies w = v.

So assume k > 1. Let v0v3v4v0 be the triangle bounding an inner face of Tr(i+ k− 1)
with w inside v0v3v4v0, and let v5 ∈ V (Tr(i+k))\V (Tr(i+k−1)) that is inside v0v3v4v0.
By symmetry, assume w is inside v0v5v4v0. By induction hypothesis, σ(v0v5)=σ(v0v).

Suppose σ(v4v5) = σ(v0v5). Hence by (ii) and (iii), σ(v0w) = σ(wv4) = σ(v0v5).
Thus σ(v0w) = σ(v0v). Now assume σ(v4v5) 6= σ(v0v5). Then σ(v3v5) = σ(v0v5) or
σ(v3v5)=σ(v4v5). It follows from (iii) that σ(v0w) = σ(v0v5). Hence, σ(v0w) = σ(v0v).
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Claim 3. Let v0v1v2v0 be a triangle bounding an inner face of Tr(i) with 0 6 i 6 n−2, and
let v ∈ V (Tr(i+1))\V (Tr(i)) such that v is inside v0v1v2v0 and σ(vv0) 6= σ(vv1) = σ(vv2).
Then for any vw ∈ E(Tr(n)) with w inside v0v1v2v0, σ(vw) = σ(vv0).

Proof. To prove Claim 3, let {w0, w1, w2} ⊆ V (Tr(i+2))\V (Tr(i+1)) such that wj is inside
vvjvj+1v for j = 0, 1, 2, with subscripts modulo 3. By (ii) and (iii), σ(vw0) = σ(vw2) =
σ(vw1) = σ(vv0). By Claim 2, there exists some j ∈ {0, 1, 2} with σ(vw) = σ(vwj).
Hence, σ(vw) = σ(vv0).

Claim 4. Let v0v1v2v0 be a triangle bounding an inner face of Tr(i), where 0 6 i 6
n − 2, and let v ∈ V (Tr(i + 1)) \ V (Tr(i)) such that v is inside v0v1v2v0 and σ(vv0) ∈
{σ(vv1), σ(vv2)}. Then for any w ∈ (N(v) ∩N(v0)) \ {v1, v2}, σ(wv0) 6= σ(wv).

Proof. To prove Claim 4, we may assume by symmetry and Claim 1 that σ(vv2) 6=
σ(vv0) = σ(vv1). Then σ(wv0) = σ(vv0) by Claim 2, and σ(wv) = σ(vv2) by Claim
3. Hence, σ(wv0) 6= σ(wv).

Claim 5. Suppose upv is a monochromatic path of length two in Tr(n) with uv ∈
E(Tr(i + 1)) and p ∈ V (Tr(n)) \ V (Tr(i + 1)). Then any monochromatic path in Tr(n)
between u and v and of the color σ(up) has length at most two.

Proof. Consider any monochromatic path P = a0a1 . . . ar of the color σ(up) with a0 = v
and ar = u. First, suppose uv ∈ E(Tr(0)). Let Tr(0) = uvwu and x ∈ V (Tr(1))\V (Tr(0)).
By Claim 2, σ(ux) = σ(up) and σ(vx) = σ(vp); so σ(xu) = σ(xv). Thus, by (i),
σ(wx) = σ(wu) = σ(wv) 6= σ(xu). Let v0v1 . . . vn be a path in Tr(n) with v0 = w,
v1 = x and for 1 6 i 6 n, vi ∈ V (Tr(i)) \ V (Tr(i − 1)) is inside vi−1uvvi−1. By (ii) and
(iii), σ(viu) = σ(viv) = σ(vx) for 1 6 i 6 n, and σ(vivi+1) = σ(xw) for 0 6 i 6 n − 1.
By planarity, P is contained in the closed region bounded by uvwu. So either P = uv
or there exists some 1 6 k 6 r − 1 such that ak ∈ {v0, . . . , vn}. We may assume the
latter case occurs. If {ak−1, ak+1} = {u, v}, then r = 2. Hence without loss of generality,
let ak−1 /∈ {u, v}. Then by Claim 2 and Claim 3, σ(ak−1ak) = σ(vivi+1) 6= σ(pu) for
i ∈ {0, 1, . . . , n − 1}, a contradiction. Hence r 6 2. We remark that this paragraph also
shows that such uv in E(Tr(0)) cannot be in a monochromatic C4.

Thus, we may assume uv /∈ E(Tr(0)). By symmetry, we may assume that v ∈ V (Tr(i+
1)) \ V (Tr(i)) for some 0 6 i < n and v is inside the triangle u1u2u3u1 bounding an inner
face of Tr(i) and u1 = u. By Claim 4, σ(u1v) 6= σ(u2v) = σ(u3v).

If a1 is inside vu2u3v then there exists 1 6 k < r such that ak is inside vu3u2v and
ak+1 ∈ {u2, u3}; so by Claim 2, σ(akak+1) = σ(vu2) = σ(vu3) 6= σ(u1v) = σ(pu), a
contradiction.

Therefore, suppose that P 6= uv, by symmetry, we may assume that a1 is inside
u1vu2u1. Let v0 = u2 and let v1v2 . . . vn−i−1 be the path in Tr(n) such that, for 1 6 ` 6
n− i− 1, v` ∈ V (Tr(i+ `+ 1)) \ V (Tr(i+ `)) is inside u1v`−1vu1.

By (ii) and (iii), σ(v`u1) = σ(v`v) = σ(u1v) for 1 6 ` 6 n − i − 1, and σ(v`v`+1) =
σ(vu2) 6= σ(vu1) for 0 6 ` 6 n − i − 2. If a1 is inside v`v`+1vv` for some ` with 0 6 ` 6
n − i − 2, then exists 1 6 k 6 r such that ak is inside v`v`+1vv` and ak+1 ∈ {v`, v`+1};
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so by Claim 3 σ(akak+1) = σ(v`v`+1), a contradiction. So a1 = v` for some ` with
1 6 ` 6 n− i−1. Then as σ(a1a2) = σ(u1v) and by Claim 3, we have a2 = u1. Therefore,
r = 2, proving Claim 5.

Claim 6. If Ck is monochromatic in Tr(n) then k 6 4.

Proof. Let Ck = a1a2 . . . aka1 be a monochromatic cycle in Tr(n). By (i), E(Ck) 6⊆
E(Tr(0)). So we may assume that there exists some 1 6 i 6 k such that ai+1 ∈ V (Tr(`+
1)) \ V (Tr(`)) is inside the triangle aiuvai which bounds an inner face of some Tr(`). We
may further assume that ` 6 n− 2, as otherwise, we could consider Tr(n + 1) instead of
Tr(n).1

Suppose σ(aiai+1) ∈ {σ(ai+1u), σ(ai+1v)}. By symmetry, we may assume σ(aiai+1) =
σ(ai+1u). Then ai+2 = u by Claim 3. Hence, by Claim 5, any monochromatic path in Ck

between ai and ai+2 = u has length at most 2. So k 6 4.
Thus, we may assume σ(aiai+1) /∈ {σ(ai+1u), σ(ai+1v)}; hence, σ(ai+1u) = σ(ai+1v).

Let w ∈ V (Tr(` + 2)) \ V (Tr(` + 1)) be inside the triangle aiuai+1ai. By (ii) and (iii),
σ(wai) = σ(wai+1) = σ(aiai+1). Hence, by Claim 5, the monochromatic path Ck − aiai+1

in Tr(n) of the color σ(aiai+1) = σ(wai) has length at most 2; so k = 3.

Claim 7. There is no monochromatic H+ in Tr(n).

Proof. Suppose that there is a monochromatic copy of H+ on {vi : 1 6 i 6 6} in which
v1v2v3v4v1 is a 4-cycle and v1v5, v2v6 are edges. If v1v2 ∈ E(Tr(0)), then v1v2 satisfies
the conditions of Claim 5 and by the footnote from the proof of Claim 5, there is no
monochromatic C4 containing v1v2, a contradiction. So v1v2 /∈ E(Tr(0)). By symmetry,
we may assume that v2 ∈ V (Tr(i + 1)) \ V (Tr(i)) for some i and that v1uwv1 is the
triangle bounding the inner face of Tr(i) containing v2. Again as before we may assume
that 0 6 i 6 n− 2.

If σ(v2u) = σ(v2w), then there exists some p ∈ V (Tr(n))\V (Tr(i+1)) such that v1pv2
has the same color as σ(v1v2). But v1v4v3v2 is a monochromatic path of length 3 in Tr(n)
between v1 and v2 and of the color σ(v1v2), a contradiction to Claim 5.

Hence, σ(v1v2) ∈ {σ(v2u), σ(v2w)} and by symmetry, we may assume σ(v1v2) =
σ(v2u). Then by Claim 1, σ(v1v2) 6= σ(v2w) and thus σ(v2v3) = σ(v2v6) 6= σ(v2w). This
shows w /∈ {v3, v6}. So there exists y ∈ {v3, v6} \ {u,w}. By Claim 3, σ(v2y) = σ(v2w), a
contradiction.

This completes the proof of Theorem 1.1 for H+ and Ck, with k > 5.

3 Monochromatic K2,3

In this section, we prove Theorem 1.1 for K2,3 using a different coloring scheme on Tr(n)
described below. Let σ : E(Tr(n))→ {0, 1} be defined inductively as follows:

1This is fair because Tr(n + 1) 6→ Ck implies Tr(n) 6→ Ck.
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(i) Fix a triangle T bounding an inner face of Tr(1), and let σ(e) = 0 if e ∈ E(T ) and
σ(e) = 1 if e ∈ E(Tr(1)) \ E(T ).

(ii) Suppose for some 1 6 i < n, we have defined σ(e) for all e ∈ E(Tr(i)). We now
extend σ to E(Tr(i+ 1)). Let x ∈ V (Tr(i)) \ V (Tr(i− 1)) be arbitrary, let v0v1v2v0
denote the triangle bounding the inner face of Tr(i− 1) containing x, with v0, v1, v2
on the triangle in clockwise order, and let σ(xv1) = σ(xv2).

(iii) Let xj ∈ V (Tr(i + 1)) \ V (Tr(i)) such that xj is inside the face of Tr(i) bounded
by the triangle xvjvj+1x, where j = 0, 1, 2 and the subscripts are taken modulo 3.
Define σ(v0x) = σ(v0x0) = σ(v0x2) = σ(xx2) = σ(x1v1), and σ(v2x) = σ(v2x1) =
σ(v2x2) = σ(xx1) = σ(xx0) = σ(x0v1).

v0

v2 v1

x

x0x2

x1

Figure 4: 2 edge-coloring scheme

Note that in (ii) we have |{σ(xvj) : j = 0, 1, 2}| = 2 and that in (iii) we have σ(xjvj) 6=
σ(xjvj+1) for j = 0, 1, 2. Hence, inductively, we have

(1) For 1 6 i 6 n and x ∈ V (Tr(i)) \ V (Tr(i− 1)), |{σ(xv) : v ∈ V (Tr(i− 1))}| = 2.

(2) If x1x2x3x1 is a triangle which bounds an inner face of Tr(i) for some 1 6 i 6 n− 2,
and if x ∈ V (Tr(n))\V (Tr(i+1)) is inside x1x2x3x1 with xx1, xx2 ∈ E(Tr(n)), then
σ(xx1) 6= σ(xx2).

These two claims are straightforward so we omit their proofs.
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(3) For any x1x2 ∈ E(Tr(n)), |{x ∈ N(x1) ∩ N(x2) : σ(xx1) = σ(xx2) = 0}| 6 2 and
|{x ∈ N(x1) ∩N(x2) : σ(xx1) = σ(xx2) = 1}| 6 2.

First, suppose x1x2 ∈ E(Tr(0)). Then by (i) and (2), |{x ∈ N(x1) ∩ N(x2) : σ(xx1) =
σ(xx2) = 0}| 6 1 and |{x ∈ N(x1) ∩N(x2) : σ(xx1) = σ(xx2) = 1}| 6 1.

So we may assume that x1vwx1 bounds an inner face of Tr(i) and x2 ∈ V (Tr(i +
1)) \ V (Tr(i)) inside x1vwx1. Let v1 ∈ Tr(i + 2) be inside x1vx2x1 and w1 ∈ Tr(i + 2)
be inside x1wx2x1. By (iii), σ(w1x1) 6= σ(w1x2) or σ(v1x1) 6= σ(v1x2). By (2), for any
x ∈ V (Tr(n)) \ V (Tr(i + 2)) inside x1vwx1 with xx1, xx2 ∈ E(Tr(n)), we have σ(xx1) 6=
σ(xx2). Hence, if (3) fails, then we may assume by symmetry between w1 and v1 that
σ(vx1) = σ(vx2) = σ(wx1) = σ(wx2) = σ(v1x1) = σ(v1x2), and σ(w1x1) 6= σ(w1x2).
Then, by (1), σ(x1x2) 6= σ(x2v) = σ(x2w). Now by (iii), at least one of the two edges
v1x1 and v1x2 has the same color as x1x2, a contradiction. This proves (3).

(4) If x1x2x3x4x1 is a 4-cycle in Tr(n), then x1x3 ∈ E(Tr(n)) or x2x4 ∈ E(Tr(n)).

We may assume that {x1, x2, x3, x4} ⊆ V (Tr(i+ 1)) and xj ∈ V (Tr(i+ 1)) \ V (Tr(i)) for
some 0 6 i < n and j ∈ [4]. Let uvwu be the triangle bounding an inner face of Tr(i) such
that xj is inside it. Then {xj−1, xj+1} ⊆ {u, v, w}, implying that xj−1xj+1 ∈ E(Tr(n)). 2

(5) There is no monochromatic K2,3 in Tr(n).

For, suppose Tr(n) has a monochromatic copy of K2,3 on {v1, v2, v3, v4, v5} with v4vi, v5vi ∈
E(Tr(n)) for all i = 1, 2, 3. Then v4v5 /∈ E(Tr(n)) by (3) and, hence, it follows from (4)
that v1v2, v2v3, v3v1 ∈ E(Tr(n)). By planarity, v1v2v3v1 bounds an inner face of Tr(i) for
some i with 1 6 i < n and, by the symmetry between v4 and v5, we may assume that v4
is inside v1v2v3v1. Then v4 ∈ V (Tr(i + 1)) \ V (Tr(i)). However, this contradicts (1), as
σ(v4v1) = σ(v4v2) = σ(v4v3). We have completed the proof of Theorem 1.1.

4 Monochromatic Jk

In this section we prove that Tr(100k)→ Jk holds for any positive integer k.
We need the following result, which is Lemma 9 in [4]. The original statement in [4]

states Tr(16)→ C4, but the same proof in [4] actually gives the following stronger version.

Lemma 4.1. If xyzx bounds the outer face of Tr(16), then any 2-edge-coloring of Tr(16)
gives a monochromatic C4 that intersects {x, y}.

Note that if the triangle xyzx bounds the outer face of Tr(n) and v ∈ V (Tr(1)) \
V (Tr(0)) then the subgraph of Tr(n) contained in the closed disc bounded by vxyv is
isomorphic to Tr(n− 1). Hence, the following is an easy consequence of Lemma 4.1.

Corollary 4.2. If xyzx bounds the outer face of Tr(17) then any 2-edge-coloring of Tr(17)
gives a monochromatic C4 that intersects {x, y} and avoids z.
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Lemma 4.3. For any positive integer k, Tr(38k)→ Fk

Proof. Let σ : E(Tr(38k)) → {0, 1} be an arbitrary 2-edge coloring. Let uvwu be the
triangle bounding the outer face of Tr(38k). Let x0 := w and, for 1 6 ` 6 2k, let
xl ∈ V (Tr(`)) \ V (Tr(` − 1)) such that x` is inside x`−1uvx`−1. Let yi,0 := xi for i ∈
{0, 1, . . . , 2k − 1} and, for ` ∈ {1, . . . , 36k}, let yi,` ∈ V (Tr(i+ 1 + `)) \ V (Tr(i+ `)) such
that yi,` is inside yi,`−1uxi+1yi,`−1.

Suppose for each 0 6 i 6 2k − 1 there exists a monochromatic C4 inside xiuxi+1xi
that contains u and avoids xi. By pigeonhole principle, at least k of these C4s are of the
same color, which form a monochromatic Fk centered at u.

Hence, we may assume that there exists some i ∈ {0, 1, . . . , 2k − 1} such that no
monochromatic C4 inside xiuxi+1xi contains u and avoids xi. Since i 6 2k− 1, xiuxi+1xi
bounds the outer face of a Tr(36k) that is contained in Tr(38k).

Now for each h ∈ {0, 1, . . . , 2k − 1}, we view the region enclosed by u, xi+1 and yi,18h
without the closed region enclosed by u, xi+1 and yi,18(h+1) as a Tr(17). Note that these
copies of Tr(17) share u, xi+1 as the only common vertices. Taking yi,18h to be the vertex
z in Corollary 4.2, we conclude from Corollary 4.2 that there is a monochromatic C4 in
the Tr(17). We denote this C4 by Gh. Then xi+1 ∈ V (Gh) and {u, yi,18h} ∩ V (Gh) = ∅.
By pigeonhole principle, at least k of these C4s are of the same color, which clearly form
a monochromatic Fk centered at xi+1.

w(x0)

u v

x1

xi(yi,0)

xi+1

yi,18

yi,36

yi,54

Figure 5: Lemma 4.3

w(x0)

u v

xi

xi+1

xi+2

xr−1(zr,0)

xr

zr,1

zr,k

Figure 6: Lemma 4.4

Lemma 4.4. Let k be a positive integer and let uvwu bound the outer face of Tr(9k+ 2).
Suppose σ : E(Tr(9k+2))→ {0, 1} is a 2-edge-coloring such that |{σ(ux) : x ∈ V (Tr(9k+
2))}| = 1 and there is no monochromatic C4 containing u. Then Tr(9k + 2) contains
monochromatic Jk centered at v.
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Proof. Without loss of generality, assume σ(uv) = 0. Then σ(uy) = 0 for all y ∈ N(u).
Let x0 := w and, for 1 6 i 6 8k+ 1, let xi ∈ V (Tr(i)) \V (Tr(i− 1)) such that xi is inside
xi−1uvxi−1. Since no monochromatic C4 in Tr(9k + 2) contains u, there is at most one
i ∈ {0, 1, 2, . . . , 8k + 1} such that σ(xiv) = 0. Hence, there exists i ∈ {0, 1, . . . , 4k + 2}
such that σ(vxj) = 1 for j ∈ {i, i+ 1, . . . , i+ 4k − 1}. We now make the following claim.

Claim. The subgraph of Tr(9k+2) contained in the closed disc bounded by vxi . . . xi+3k−1v
has a monochromatic Fk of color 1 and centered at v, which we denote by Fv.

To show this, it suffices to show that for each r with 0 6 r 6 k − 1, the subgraph of
Tr(9k+2) inside vxi+3rxi+3r+1xi+3r+2v (inclusive) contains a monochromatic C4 of color 1
and containing v, as the union of such C4 is an Fk centered at v. So fix an arbitrary r, with
0 6 r 6 k− 1. Note that σ(xi+3rxi+3r+1) = 1 or σ(xi+3r+1xi+3r+2) = 1, for 0 6 r 6 k− 1;
for, otherwise, xi+3rxi+3r+1xi+3r+2uxi+3r is a monochromatic C4 of color 0 and containing
u, a contradiction. Without loss of generality, assume σ(xi+3rxi+3r+1) = 1.

Let y ∈ V (Tr(i+ 3r + 2)) \ V (Tr(i+ 3r + 1)) such that y is inside xi+3rxi+3r+1vxi+3r.
If there are two edges in {yxi+3r, yxi+3r+1, yv} of color 0, then one can easily find a
monochromatic C4 of color 0 and containing u, a contradiction. Hence, at least two of
{σ(yxi+3r), σ(yxi+3r+1), σ(yv)} are 1. So {y, xi+3r, xi+3r+1, v} induces a subgraph which
contains a monochromatic C4 of color 1. This proves the claim. 2

Note that for i+ 3k 6 r 6 i+ 4k − 1, uxrxr−1u bounds the outer face of a Tr(k + 1).
Let zr,0 := xr−1 and, for r ∈ {i + 3k, i + 3k + 1, . . . , i + 4k − 1} and ` ∈ {1, 2, . . . , k},
let zr,` ∈ V (Tr(r + `)) \ V (Tr(r + `− 1)) such that zr,` is inside zr,`−1xruzr,`−1. Because
σ(uzr,j) = 0 (by assumption) and Tr(9k+2) has no monochromatic C4 containing u, there
is at most one y ∈ {zr,1, zr,2, . . . , zr,k} such that σ(yxr) = 0. So there exists k− 1 vertices
in {zr,1, . . . , zr,k} which together with xrv form a monochromatic K1,k of color 1 centered
at xr, which we denote by Hr. Now Hi+3k, Hi+3k+1, . . . , Hi+4k−1 form a monochromatic
k-ary radius 2 tree rooted at v of color 1. This radius 2 tree and Fv form a monochromatic
Jk of color 1, completing the proof of Lemma 4.4.

Now we are ready to prove the main result of this section, that is Tr(100k)→ Jk. Let
σ : E(Tr(100k))→ {0, 1} be arbitrary. We show that σ always contains a monochromatic
Jk. By Lemma 4.3, Tr(76k) contains monochromatic copy of F2k, say F , and, without
loss of generality, assume it is of color 1. Let the C4s in F be xai,1ai,2ai,3x for i ∈ [2k].
For i ∈ [2k], let bi ∈ V (Tr(76k + 1)) \ V (Tr(76k)) such that bi is inside xai,1ai,2ai,3x and
ai,1ai,2biai,1 bounds an inner face of Tr(76k + 1). Let Ai be the family of all vertices
a ∈ N(ai,1) inside ai,1ai,2biai,1 and satisfying σ(aai,1) = 1.

(1) There exists some i ∈ {k + 1, k + 2, . . . , 2k} such that |Ai| < k.

Otherwise, suppose that |Ai| > k for all i ∈ {k + 1, k + 2, . . . , 2k}. Then let Zi :=
{zi,1, zi,2, . . . , zi,k−1} ⊆ Ai. Now, for each i ∈ {k + 1, . . . , 2k}, {x, ai,1} ∪ Zi induces a
graph containing a monochromatic K1,k. Those K1,ks form a monochromatic radius-two
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Figure 7

k-ary tree of color 1 and rooted at x, which we denote by Tx. The k four-cycles xai,1ai,2ai,3x
for i ∈ [k] form a monochromatic Fk. Now Fk ∪ Tx is a monochromatic Jk. 2

Let u := ai,1. By (1), there exists an edge vw ∈ Tr(78k) such that uvwu bounds an
inner face of Tr(78k) and σ(uy) = 0 for any y ∈ N(u) in the closed disc bounded by
uvwu.

Let G be the subgraph of Tr(78k) contained in the closed disc bounded by uvwu (see
Figure 5). Clearly G is isomorphic to a copy of Tr(22k). In the rest of the proof, we
should only discuss the graph G and all Tr(i) will be referred to this copy of Tr(22k). Let
x0 := w and for i ∈ [4k], let xi ∈ V (Tr(i)) \ V (Tr(i− 1)) such that xi is inside uxi−1vu.

(2) G contains a monochromatic copy of Fk, say F ′, which has color 0 and center u and is
disjoint from the union of closed regions bounded by uxixi+1u over all 0 6 i 6 2k−1.

If for each i ∈ {k, k+1, . . . , 2k−1} there exists a monochromatic C4 inside ux2ix2i+1u and
containing u, then these k monochromatic C4s of color 0 form a desired monochromatic
Fk centered at u and thus (2) holds. Otherwise, since ux2ix2i+1u bounds the outer face
of a Tr(9k+ 2), it follows from Lemma 4.4 that there exists a monochromatic Jk in G. 2

For j ∈ {0, 1, . . . , 2k−1}, let Bj be the family of all vertices x ∈ N(xj) inside uxjxj+1u
and satisfying σ(xxj) = 0.

(3) There exists some j ∈ {0, 1, . . . , k − 1} such that |Bj| < k.

Suppose to the contrary that there exist subsets Zj ⊆ Bj of size k for all j ∈ {0, 1, . . . , k−
1}. Then each Zj ∪ {u, xj} induces a graph containing a monochromatic K1,k which is
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centered at xj and has color 0. These K1,ks together with F ′ form a monochromatic Jk
of color 0. This proves (3). 2

Let p0 := xj+1 and for 1 6 ` 6 4k, let p` ∈ V (Tr(j + ` + 1)) \ V (Tr(j + `)) such that
p` is inside uxjp`−1u. By (3), there exists some 0 6 ` 6 4k − 1 such that σ(zxj) = 1 for
any z ∈ N(xj) in the closed disc bounded by xjp`p`+1xj.

(4) There is a monochromatic Fk inside xjp`p`+1xj, say F ′′, with color 1 and center xj.

Let z0 := p`+1 and for s ∈ [2k+ 1], let zs ∈ V (Tr(j+ `+ s+ 2)) \V (Tr(j+ `+ s+ 1)) such
that zs is inside xjzs−1p`xj. Note that each xjz2sz2s+1xj bounds a Tr(9k + 3). If for each
s ∈ [k] there exists a monochromatic C4 of color 1 inside xjz2sz2s+1xj and containing xj,
then these monochromatic copies of C4 form the desired monochromatic Fk centered at
xj. Otherwise, it follows from Lemma 4.4 that there exists a monochromatic Jk. 2

As |Bj| < k, there exists a subset A ⊆ {p1, p2, . . . , p4k} of size 2k such that σ(αxj) = 1
for each α ∈ A and moreover, there is no neighbors of A belonging to V (F ′′). Let
A := {α1, . . . , α2k}. Note that for each h ∈ [2k], we have σ(αhu) = 0 and σ(αhxj) = 1.

It is easy to see that there exist pairwise disjoint sets Nh ⊆ N(αh) of size 2k for
h ∈ [2k]. Then there exists Mh ⊆ Nh such that |Mh| = k − 1 and σ(xαh) is the same for
all x ∈ Mh. This gives 2k monochromatic copies of K1,k−1 with centers αh for h ∈ [2k].
At least k of them (say with centers αh for h ∈ [k]) have the same color. If this color is 0,
these copies together with {uαh : h ∈ [k]} and F ′ give a monochromatic Jk with color 0
and center u. Otherwise, this color is 1. Then these copies together with {xjαh : h ∈ [k]}
and F ′′ give a monochromatic Jk with color 1 and center u. This proves Tr(100k)→ Jk.

5 Monochromatic bistar

In this section we prove Tr(6k + 30)→ Bk. We first establish the following lemma.

Lemma 5.1. Let uvwu be the triangle bounding the outer face of Tr(k + 10). Let σ :
E(Tr(k + 10)) → {0, 1} such that |{σ(ux) : x ∈ V (Tr(k + 10))}| = 1 and there is no
monochromatic C4 containing u. Then Tr(k + 10) contains a monochromatic Bk.

Proof. Without loss of generality, let σ(uv) = 0. Let x0 := w and, for i ∈ [6], let
xi ∈ V (Tr(i)) \ V (Tr(i− 1)) such that xi is inside uvxi−1u.

Since Tr(k + 10) has no monochromatic C4 containing u, we see that |{0 6 i 6 6 :
σ(vxi) = 0}| 6 1. So there exists some i ∈ {0, 1, 2, 3, 4} such that σ(vxi) = σ(vxi+1) =
σ(vxi+2) = 1. We have either σ(xixi+1) = 1 or σ(xi+1xi+2) = 1; as otherwise uxixi+1xi+2u
is a monochromatic C4 of color 0 and containing u, a contradiction. We consider two
cases.

Case 1. σ(xixi+1) = σ(xi+1xi+2).
In this case, we have σ(xixi+1) = σ(xi+1xi+2) = 1. So xixi+1xi+2vxi is a monochro-

matic C4 of color 1. Let y0 := xi+1 and for ` ∈ [k+1], let y` ∈ V (Tr(i+1+`))\V (Tr(i+`))
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such that y` is inside uy`−1xiu. Similarly let z0 := xi+1 and for ` ∈ [k + 1], let z` ∈
V (Tr(i+ 2 + `)) \ V (Tr(i+ 1 + `)) such that z` is inside uz`−1xi+2u.

Since Tr(k+10) has no monochromatic C4 containing u, this shows that |{` ∈ [k+1] :
σ(xiy`) = 0}| 6 1 and |{` ∈ [k + 1] : σ(xi+2z`) = 0}| 6 1. Therefore, there exist
Y ⊆ {y` : ` ∈ [k + 1]} and Z ⊆ {z` : ` ∈ [k + 1]} such that |Y | = |Z| = k, σ(yxi) = 1 for
each y ∈ Y and σ(zxi+2) = 1 for each z ∈ Z. Hence, Tr(k + 10) has two monochromatic
K1,ks of color 1 with centers xi, xi+1 and leave sets Y, Z, respectively. These two K1,ks
together with vxixi+1xi+2v form a monochromatic Bk of color 1.

Case 2. σ(xixi+1) 6= σ(xi+1xi+2).
Without loss of generality, let σ(xixi+1) = 0 and σ(xi+1xi+2) = 1. Let y ∈ V (Tr(i+2))\

V (Tr(i+1)) be inside uxixi+1u. Because σ(uy) = 0 and Tr(k+10) has no monochromatic
C4 containing u, σ(yxi) = σ(yxi+1) = 1. Therefore, yxi+1vxiy is a monochromatic C4 of
color 1. Let y0 := y and, for ` ∈ [k+1], let y` ∈ V (Tr(i+2+`))\V (Tr(i+1+`)) such that y`
is inside uy`−1xiu. Let z0 := y and, for ` ∈ [k+1], let z` ∈ V (Tr(i+2+`))\V (Tr(i+1+`))
such that z` is inside uz`−1xi+1u.

The remaining proof is similar as in Case 1. We observe that |{` ∈ [k + 1] : σ(xiy`) =
0}| 6 1 and |{` ∈ [k+1] : σ(xi+1z`) = 0}| 6 1. Therefore, there exist Y ⊆ {y` : ` ∈ [k+1]}
and Z ⊆ {z` : ` ∈ [k + 1]} such that |Y | = |Z| = k, σ(yxi) = 1 for y ∈ Y , and
σ(zxi+1) = 1 for z ∈ Z. Hence, Tr(k + 10) has two monochromatic K1,ks of color 1 with
centers xi, xi+1 and leave sets Y, Z, respectively. These two K1,ks together with yxi+1vxiy
form a monochromatic Bk of color 1. This proves Lemma 5.1.

We are ready to prove Tr(6k + 30) → Bk. Let σ : E(Tr(6k + 30)) → {0, 1}. By
Lemma 4.1, each copy of Tr(16) with the same outer face as of Tr(6k + 30) contains a
monochromatic C4, say u1u2u3u4u1 of color 1 (see Figure 6). For each i ∈ {1, 3}, let viwi

be an edge in Tr(18) such that uiviwiui is a triangle inside u1u2u3u4u1. Note that uiviwiui
bounds the outer face of a Tr(6k + 12). Let Ai be the family of all vertices x ∈ N(ui)
inside uiviwiui and satisfying σ(xui) = 1. If |A1| > k and |A3| > k, then together with
the monochromatic 4-cycle u1u2u3u4u1, it is easy to form a monochromatic Bk of color 1.

Hence by symmetry, we may assume that |A1| < k. Then there exists an edge vw
in Tr(18 + k) such that u1vwu1 bounds an inner face of Tr(18 + k) and σ(u1x) = 0
for all x ∈ N(u1) in the closed disc bounded by u1vwu1. We may assume that the
induced subgraph contained in the closed disc bounded by u1vwu1 has a monochromatic
C4 say u1xyzu1 (as otherwise, it contains a Bk by Lemma 5.1). Furthermore, we have
{x, y, z} ⊆ V (Tr(2k + 28)).

Let {p0, q0} ⊆ V (Tr(2k+29))\V (Tr(2k+28)) such that both xyp0x and yzq0y bound
two inner faces of Tr(2k+29). For ` ∈ [3k], let p` ∈ V (Tr(2k+29+`))\V (Tr(2k+28+`))
such that p` is inside xp`−1yx. Similarly, for ` ∈ [3k], let q` ∈ V (Tr(2k+29+`))\V (Tr(2k+
28 + `)) such that q` is inside yq`−1zy. Moreover, let

B1 := {p ∈ N(x) : p is inside xp0yx and σ(xp) = 0},

B2 := {q ∈ N(z) : q is inside yq0zy and σ(zq) = 0}.
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If |B1| > k and |B2| > k, we can find two monochromatic K1,ks of color 0, one inside
xp0yx rooted at x and one inside yq0zy rooted at z; these two K1,ks and u1xyzu1 form a
monochromatic Bk of color 0. So we may assume, without loss of generality, that |B1| < k.

Let C := {` ∈ [3k] : σ(yp`) = 0}. We claim |C| < k. Suppose to the contrary that
|C| > k. Then there is a monochromatic K1,k with root y and leaves in C of color 0.
Since σ(u1p) = 0 for all p ∈ N(u1) inside u1vw, there is also a monochromatic K1,k with
root u1 and leaves inside u1xyzu1 of color 0. Now these two K1,ks and u1xyzu1 form a
monochromatic Bk of color 0.

So |B1| < k and |C| < k. Then there exist ph, ps with h, s ∈ [3k] such that σ(phx) =
σ(phy) = σ(psx) = σ(psy) = 1. Because xp0p1x bounds an inner face of Tr(2k + 30), it
also bounds the outer face of a Tr(4k). As |B1| < k, there exists a monochromatic K1,k

of color 1 with the root x and k leaves inside xp0p1x. Similarly, as |C| < k, there exists
a monochromatic K1,k of color 1 with root y and k leavers inside yp0p1y. Now these two
K1,ks and the 4-cycle xphypsx form a monochromatic Bk of color 1. This proves that
Tr(6k + 30)→ Bk and thus completes the proof of Theorem 1.2.
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