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Abstract

We study lattice-theoretical extensions of the celebrated Sauer–Shelah–Perles
Lemma. We conjecture that a general Sauer–Shelah–Perles Lemma holds for a
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lattice if and only if the lattice is relatively complemented, and prove partial results
towards this conjecture.

Mathematics Subject Classifications: 06B99, 68Q32

1 Introduction

Vapnik–Chervonenkis dimension [VČ68, VC71], or VC dimension for short, is a combi-
natorial parameter of major importance in discrete and computational geometry [HW87,
CW89, KPW92], statistical learning theory [VC71, BEHW89], and other areas [FP94,
KNR99,AMY17,HQ18]. The VC dimension of a family F of binary vectors, F ⊆ {0, 1}n,
is the largest cardinality of a set shattered by the family. In many of its applications, the
power of this notion boils down to the Sauer–Shelah–Perles lemma [VC71,Sau72,She72],
which states that the largest cardinality of a family on n points with VC dimension d is(

n

0

)
+ · · ·+

(
n

d

)
, (1)

a bound achieved by the family {S : |S| ⩽ d}. This lemma follows easily from the
strengthening due to Pajor [Paj85] and Aharoni and Holzman [AH], which states that
every family of binary vectors shatters at least as many sets as it has:

|F | ⩽
∣∣{X : X is shattered by F}

∣∣ (2)

This latter version will be of our primary concern and, for the sake of compliance with
existing terminology, we will call it the SSP lemma.

VC dimension and corresponding lemmas have been extended to various settings,
such as non-binary vectors [Ste78,KM78,Alo83,HL95], integer vectors [Ver05], Boolean
matrices with forbidden configurations [Ans85,AF10], multivalued functions [HL95], con-
tinuous spaces [Nat89], graph powers [CBH98], and ordered variants [ARS02]. Babai and
Frankl [FB92] generalized shattering and VC dimension to meet-semilattices, and proved
that the SSP lemma holds for lattices with nonvanishing Möbius function, a rich class,
which includes the lattice of subspaces of a finite vector space as well as all geometric
lattices (flats of matroids). In this paper we prove that there are lattices with Möbius
function vanishing almost everywhere, which satisfy the SSP lemma. This shows that
Babai and Frankl result is far from being a characterization. Moreover, we identify a
necessary condition for a lattice to satisfy the SSP lemma: it must be relatively comple-
mented (RC), that is, should not contain a 3-element interval. We conjecture that this is
the only obstruction; namely that a lattice satisfies the lemma if and only if it is RC.

VC dimension for ranked lattices. The definition of shattering for binary vectors is
easier to formulate in terms of sets, where we identify an n-bit string with its set of 1’s
and vice versa. A family F of subsets of {1, . . . , n} shatters a set S if for all T ⊆ S, the
family F contains a set A with A ∩ S = T . This definition readily generalizes to lattices
(indeed, to meet-semilattices): a family F of elements in a lattice L shatters an element
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s ∈ L if for all t ⩽ s, the family F contains an element a such that a∧ s = t. If the lattice
is ranked, it is natural to define the VC dimension of a family as the maximum rank of
an element it shatters.

Given a ranked lattice L, the family Fd consisting of all elements of rank at most
d, has VC dimension d. This family contains

[
L
0

]
+ · · · +

[
L
d

]
elements, where

[
L
d

]
is the

number of elements in L of rank d. The classical Sauer–Shelah–Perles lemma states that
when L is the lattice of all subsets of {1, . . . , n}, the family Fd has maximum size among
all families of VC dimension d.

The following generalization of Equation (1) appears in an unpublished (but well
circulated) manuscript of Babai and Frankl [FB92].

Theorem 1 (Babai and Frankl [FB92]). Let L be a ranked lattice of rank r with non-
vanishing Möbius function, i.e. µ(x, y) ̸= 0 for all x ⩽ y. Then for all 0 ⩽ d ⩽ r, any
family F ⊆ L of VC dimension d contains at most

[
L

⩽VC(F )

]
=

[
L
0

]
+ · · · +

[
L
d

]
elements.

Furthermore, for every d ⩽ r the inequality is tight for some F ⊆ L of VC dimension d.

A good example of lattices with nonvanishing Möbius function are geometric lattices,
that is, lattices whose elements are the flats of a finite matroid. Boolean lattices, which
are the focus of the classical VC theory, also fall under this category. Another particularly
compelling example of a geometric lattice is the lattice of all subspaces of Fn

q , where Fq is
the finite field of order q.

Just as in the classical case, Theorem 1 follows from the next inequality corresponding
to Equation (2):

Theorem 2 (Babai and Frankl [FB92]). If L has nonvanishing Möbius function then
every family F ⊆ L shatters at least |F | elements.

For completeness, we provide a proof of Theorem 2 in Section 3.

1.1 Towards a Characterization of Sauer-Shelah-Perles Lattices

We will call a lattice satisfying the conclusion of Theorem 2 an SSP lattice. The main
goal of this manuscript is to characterize such lattices. Note that the SSP property makes
sense even for lattices which are not ranked. Having a nonvanishing Möbius function is
sufficient for a lattice to be SSP, but this condition is not necessary. Two examples are
given in Figure 1 and Figure 2. Both lattices are SSP, but the Möbius function vanishes
on the interval consisting of the entire lattice. (The first example is simpler, but the
lattice is not ranked.)

On the other hand, we can identify a large class of lattices which are not SSP:

Theorem 3. Let L be a lattice which is not relatively complemented, that is, which con-
tains a 3-element interval. Then there exists a family F ⊂ L shattering strictly fewer
than |F | elements. Thus, SSP implies RC.

The lattices in Figure 1 and Figure 2 are both relatively complemented. Indeed, we
conjecture that 3-element intervals are the only obstructions for the SSP property:
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Figure 1: SSP lattice with vanishing Möbius function: µ(0, 1234) = 0

Conjecture 4 (SSP = RC). A lattice is SSP if and only if it is RC.

Note that, due to Theorem 3, the problematic part of Conjecture 4 is to prove that
relatively complemented lattice is SSP.

Figure 3b on page 13 gives an example of a non-RC (and thus non-SSP) ranked lattice,
which nevertheless satisfies the conclusion of Theorem 1. Characterization of such lattices
is thus a separate problem, which we do not address in this paper.

As partial progress towards Conjecture 4, we prove it for lattices such that µ(x, y) ̸= 0
for all x ⩽ y except possibly when x is the minimal element and y is the maximal element:

Theorem 5. Let L be an RC lattice with minimal element 0 and maximal element e. If
µ(x, y) ̸= 0 whenever x ⩽ y and (x, y) ̸= (0, e) then L is SSP.

We also show that the SSP property is preserved under product:

Theorem 6. If two lattices L and K are SSP, then so is L×K.

This theorem implies, via a structural result of Dilworth [Dil50], that it suffices to
prove Conjecture 4 for simple relatively complemented lattices (see Dilworth’s paper for
a definition).

If we take a large power of any RC lattice satisfying the prerequisites of Theorem 5
(such as the ones in Figures 1 and 2) then we get an SSP lattice whose Möbius function
vanishes almost everywhere. This is a striking indication that the condition of nonvan-
ishing Möbius function is far from being necessary for a lattice to be SSP.

We also verify the SSP property for specific families in RC lattices:

Theorem 7. If L is an RC lattice and F ⊆ L is a family for which a set of non-shattered
elements contains exactly one minimal element, then F shatters at least |F | elements.

On the proof. All the results are stated for lattices, but they are true for meet-
semilattices as well. Note that a meet-semilattice with a maximal element is a lattice, so
Theorem 5 is still true in the meet-semilattice setting. The proofs of the other theorems
also work in the meet-semilattice setting.

The original proofs of the Sauer–Shelah–Perles Lemma used induction on n. Alon
[Alo83] and Frankl [Fra83] gave an alternative proof using combinatorial shifting, and
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∅

1 2 3 4 5 6

12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

123 124 135 146 156 236 245 256 345 346

[6]

Figure 2: SSP lattice with vanishing Möbius function: µ(0, [6]) = 0

Frankl and Pach [FP83], Anstee [Ans85], Babai and Frankl [FB92], Gurvits [Gur97],
Smolensky [Smo97], and Moran and Rashtchian [MR16] gave other proofs using the poly-
nomial method, which the presented proof also employs. In fact, the proof presented here
can be seen as a “dual” variant to the one given by Babai and Frankl [FB92], in the sense
that it utilizes a lower bound on the size of minimal spanning sets, whereas Babai and
Frankl utilize an upper bound on the size of maximal independent sets. (This analogy is
not complete, though, since the two proofs consider different vector spaces.) It is inter-
esting to note that the other techniques used to derive the Sauer–Shelah–Perles Lemma
— induction and shifting — seem to fail even for the particular case of subspace lattices.

2 Preliminaries

Posets. A poset is a partially ordered set. Unless mentioned otherwise, all posets we
discuss are finite. We will use ⩽ to denote the partial order. An antichain is a collection
of elements which are pairwise incomparable. An element x is covered by y, denoted
x ⋖ y, if x < y and no element z satisfies x < z < y. We can describe a poset using its
Hasse diagram, which is a graph drawn in the plane, in which the vertices correspond to
the elements of the poset, and edges are represented by curves, where a curve is going
upwards from x to y if and only if x⋖ y.

A meet-semilattice is a poset in which for any two elements x, y there is an element
z ⩽ x, y such that w ⩽ z whenever w ⩽ x, y. The element z is denoted x ∧ y, and is
called the meet of x, y. The dual operation is the join x ∨ y. A poset in which any two
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elements have both a meet and a join is known as a lattice. The meet of all elements in
a meet-semilattice is called the minimal element, denoted by 0. The join of all elements
in a lattice (or join-semilattice) is called the maximal element, denoted by e. An atom of
a lattice is an element covering 0.

A poset P with 0 is ranked if it can be equipped with a rank function r(x) : P → N,
subject to the following two constraints (uniquely specifying it): r(0) = 0, and r(y) =
r(x) + 1 if x ⋖ y. An easiest example of a non-ranked lattice, that is, lattice for which
such r cannot be consistently defined, is a pentagon lattice N5. For a ranked poset P ,
the rank of P is the maximum rank of its element. We write

[
P
d

]
(alternatively,

[
P
⩽d

]
) to

denote the number of elements of P of rank d (at most d).
The standard example of a lattice is the Boolean lattice of all subsets of {1, . . . , n}

ordered by inclusion. The meet of two elements is their intersection, and the join of two
elements is their union. The rank of a subset is its cardinality.

The product L ×K of two lattices L,K is a lattice whose elements are the elements
of a Cartesian product of L and K, with the order relation (ℓ1, k1) ⩽ (ℓ2, k2) if and only
if ℓ1 ⩽ ℓ2 and k1 ⩽ k2.

Möbius function. The Möbius function of a finite poset is a function µ(x, y) defined
for any two elements x ⩽ y in the following way: µ(x, x) = 1, and for x < y,

µ(x, y) = −
∑

z : x⩽z<y

µ(x, z) = −
∑

z : x<z⩽y

µ(z, y),

where both definitions turn out to be equivalent. For example, on the Boolean lattice the
Möbius function is µ(x, y) = (−1)|y\x|, and on the integer lattice (the divisors of n ordered
by divisibility) the Möbius function is µ(x, y) = µ(y/x), where µ(·) is the number-theoretic
Möbius function.

The Möbius function is important due to the two Möbius inversion formulas :

Lemma 8 (Möbius inversion). If f, g are two real-valued functions on a poset then

f(x) =
∑
y⩾x

g(y) for all x ⇐⇒ g(x) =
∑
y⩾x

µ(x, y)f(y) for all x,

and
f(y) =

∑
x⩽y

g(x) for all y ⇐⇒ g(y) =
∑
x⩽y

µ(x, y)f(x) for all y.

We say that a poset has nonvanishing Möbius function if µ(x, y) ̸= 0 for all x ⩽ y in
the poset. For example, the Boolean lattice has nonvanishing Möbius function, and the
integer lattice has nonvanishing Möbius function if and only if n is squarefree.

Relatively complemented lattices. In a lattice, the complement of an element y is
an element z for which z∧y = 0 and z∨y = e. A complemented lattice is a lattice with in
which every element has a complement. A lattice or meet-semilattice is called relatively
complemented (RC) if every interval [x, y] = {z | x ⩽ z ⩽ y}, considered as a sublattice,
is complemented. In particular, an RC lattice is complemented. We will mostly use the
following equivalent characterization by Björner [Bjö81]:
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Lemma 9 (Björner). A finite lattice is RC if and only if it does not contain a 3-element
interval, i.e. there are no two elements x < y such that there is a unique z satisfying
x < z < y.

In the same paper, Björner proves another simple yet useful property of RC lattices:

Lemma 10 (Björner). Finite RC lattices are atomic, that is, e is the join of all atoms.
Equivalently, for any x < e there is an atom a such that a ̸⩽ x.

Deeper structural results on RC lattices can be found in [Dil50].

Matroids and geometric lattices. A matroid over a finite set U is a finite non-empty
collection of subsets of U called indepedent sets, satisfying the following two axioms:

1. If a set is independent, then so are all its subsets;

2. If A,B are independent and |A| > |B|, then there exists an element x ∈ A \B such
that B ∪ {x} is also independent.

The rank of a subset S ⊆ U is the maximum cardinality of a subset of S which is
independent. The rank of a matroid is the rank of U . A flat is a subset of U whose
supersets all have higher rank.

Given a matroid, we can construct a poset whose elements are all flats of the matroid,
ordered by inclusion. This poset forms a ranked lattice, and a lattice formed in this way
is called a geometric lattice. The rank of an element in the lattice is the rank of the
corresponding flat in the matroid. Weisner’s theorem implies that geometric lattices have
nonvanishing Möbius functions:

Theorem 11 (Weisner). The Möbius function of a geometric lattice satisfies

(−1)r(y)−r(x)µ(x, y) > 0

for all x ⩽ y.

For a proof, see [God18, Corollary 16.3].
The collection of all subsets of {1, . . . , n} forms a matroid of rank n whose flats are all

subsets of {1, . . . , n}. The corresponding geometric lattice is the Boolean lattice described
above. A more interesting example of a matroid is the collection of all subsets of Fn

q which
are linearly independent, which forms a matroid of rank n whose flats are all subspaces
of Fn

q . The corresponding geometric lattice is called the subspace lattice of Fn
q .

3 VC theory for lattices

3.1 Definitions

The first step in extending VC theory to the language of lattices is to extend the basic
concept of shattering :
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Definition 12 (Shattering). Let L be a meet-semilattice. A set F ⊆ L shatters an
element y ∈ L if

(∀x ⩽ y)(∃z ∈ F ) : z ∧ y = x.

We comment that the definition can be extended further to general posets: in this
case, the condition z ∧ y = x should be understood as follows: z ∧ y exists, and equals x.

The set of all elements of L, shattered by F , is denoted by Str(F ). The following
property of Str(F ) is quite useful:

Lemma 13. Let L be a meet-semilattice and F ⊆ L. Then Str(F ) is downward-closed,
that is, if z ∈ Str(F ) and y ⩽ z, then y ∈ Str(F ).

Proof. Let x ⩽ y. Since F shatters z and x ⩽ z, there exists an element w ∈ F satisfying
w ∧ z = x. Since y ⩽ z, the same element satisfies w ∧ y = w ∧ (y ∧ z) = (w ∧ z) ∧ y =
x ∧ y = x.

Having defined shattering, the definition of VC dimension is obvious:

Definition 14. Let L be a ranked meet-semilattice. The VC dimension of a non-empty
set F ⊆ L, denoted VC(F ), is the maximum rank of an element shattered by F .

These definitions specialize to the classical ones in the case of the Boolean lattice.

3.2 Proof of Theorem 2

Let F be an arbitrary field of characteristic zero. We will prove Theorem 2 by giving
a spanning set of size | Str(F )| for the |F |-dimensional vector space F[F ] of F-valued
functions on F . Theorem 2 then follows, since the cardinality of any spanning is at least
the dimension. The spanning set we construct will consist of functions of the form given
by the following definition:

Definition 15. For x ∈ L, the function χx : L → F is given by

χx(y) = 1{y⩾x},

that is, χx(y) = 1 if y ⩾ x, and otherwise χx(y) = 0.
For a set G ⊆ L,

X(G) = {χx : x ∈ G}.

In the case of the Boolean lattice, we can think of the elements of the lattice as encoded
by sets S ⊆ {1, . . . , n} as well as by Boolean variables x1, . . . , xn. The reader can verify
that

χS =
∏
i∈S

xi.

Definition 15 extends this idea to general posets.
We will show that F[F ] is spanned by X(Str(F )). The first step is showing that X(L)

is a basis for F[L], which for the Boolean lattice just states that every function on {0, 1}n
can be expressed uniquely as a multilinear polynomial:
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Lemma 16. The set X(L) is a basis for F[L].

Proof. Since |X(L)| = |L| = dimF[L], it suffices to show that X(L) is linearly indepen-
dent. Consider any linear dependency of the form ℓ :=

∑
x cxχx = 0. We will show that

cx = 0 for all x ∈ L, and so X(L) is linearly independent.
Arrange the elements of L in an order x1, . . . , x|L| such that xi < xj implies i < j.

We prove that cxi
= 0 by induction on i. Suppose that cxj

= 0 for all j < i. Then in
particular, cxj

= 0 for all xj < xi, and therefore

0 = ℓ(xi) =
∑
j

cxj
χxj

(xi) =
∑

j : xj⩽xi

cxj
= cxi

.

The crucial step of the proof of Theorem 2 is an application of (generalized) inclusion-
exclusion, which shows that if F does not shatter z then χz|F can be expressed as a
linear combination of χw|F for w < z. In the case of the Boolean lattice the argument
is as follows. Suppose that F does not shatter S, that is, there exists T ⊆ S such that
A ∩ S ̸= T , for all A ∈ F . Then all elements of F satisfy∏

i∈T

xi

∏
j∈S\T

(1− xj) = 0,

which implies that over F ,∏
i∈S

xi =
∑

R⊊S\T

(−1)|S\(T∪R)|+1
∏

j∈T∪R

xj.

The argument for general posets is very similar, and uses Möbius inversion:

Lemma 17. Suppose that z /∈ Str(F ). There exist coefficients γy such that for all p ∈ F ,

χz(p) =
∑
y<z

γyχy(p).

Proof. For an element p ∈ F , define the following two functions:

fp(x) = 1{x⩽p∧z}, gp(y) = 1{y=p∧z}.

Clearly fp(x) =
∑

y⩾x gp(y), and so Lemma 8 shows that gp(x) =
∑

y⩾x µ(x, y)fp(y). Since
fp(y) = 0 unless y ⩽ z, we can restrict the sum to the range x ⩽ y ⩽ z. When y ⩽ z, the
condition y ⩽ p ∧ z is equivalent to the condition y ⩽ p, and so we conclude that

gp(x) =
∑

x⩽y⩽z

µ(x, y)fp(y) =
∑

x⩽y⩽z

µ(x, y)χy(p).

Since z /∈ Str(F ), there exists an element x ⩽ z such that p ∧ z ̸= x for all p ∈ F . In
other words, gp(x) = 0 for all p ∈ F . Therefore, all p ∈ F satisfy

χz(p) = −
∑

x⩽y<z

µ(x, y)

µ(x, z)
χy(p),

using the nonvanishing of the Möbius function.
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We can now complete the proof, employing exactly the same argument used for the
Boolean lattice.

Theorem 2. If L has nonvanishing Möbius function then every family F ⊆ L shatters at
least |F | elements.

Proof. Lemma 16 shows that X(L) is a basis for F[L], and so the functions χx, restricted
to the domain F , span F[F ]. We will show that every function in F[F ] can be expressed
as a linear combination of functions in X(Str(F )).

Consider any function f ∈ F[F ]. Since X(L) spans F[F ], there exist coefficients cx
such that f =

∑
x cxχx. Define the potential function

Φ(c⃗) =
∑

x/∈Str(F ) :
cx ̸=0

N r(x),

where N = |L| + 1, and choose a representation which minimizes Φ(c⃗). If Φ(c⃗) > 0 then
choose z /∈ Str(F ) satisfying cz ̸= 0 of maximal rank. Lemma 17 shows that

f =
∑
x ̸=z

cxχx +
∑
y<z

γyczχy.

The corresponding coefficient vector d⃗ satisfies Φ(d⃗) < Φ(c⃗), contradicting the choice of c⃗.
We conclude that Φ(c⃗) = 0, and so f is a linear combination of functions in X(Str(F )).

Concluding, we have shown that X(Str(F )) spans F[F ]. Hence

| Str(F )| = |X(Str(F ))| ⩾ dimF[F ] = |F |.

3.3 Some corollaries

Theorem 2 immediately implies Theorem 1.

Theorem 1. Let L be a ranked lattice of rank r with nonvanishing Möbius function, i.e.
µ(x, y) ̸= 0 for all x ⩽ y. Then for all 0 ⩽ d ⩽ r, any family F ⊆ L of VC dimension d
contains at most

[
L

⩽VC(F )

]
=

[
L
0

]
+ · · · +

[
L
d

]
elements. Furthermore, for every d ⩽ r the

inequality is tight for some F ⊆ L of VC dimension d.

Proof. Suppose that VC(F ) = d. If |F | >
[
L
⩽d

]
then, according to Theorem 2, also

| Str(F )| >
[
L
⩽d

]
. However, this implies that Str(F ) must contain a set of rank larger than

d, contradicting the assumption VC(F ) = d. This proves the inequality.
To show that the inequality is tight for all d ⩽ r(L), consider the set Fd = {x : r(x) ⩽

d}. This is a set containing
[
L
⩽d

]
elements which shatters all elements of rank d but no

element of rank d+ 1, and so satisfies VC(Fd) = d.

We can generalize Theorem 1 to arbitrary antichains to obtain a further corollary.
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Corollary 18. Let L be a ranked lattice with nonvanishing Möbius function and let A ⊆ L
be a maximal antichain. If F ⊆ L does not shatter any element of A then

|F | ⩽ |FA|, where FA = {x ∈ L : x < y for some y ∈ A}.

Furthermore, the inequality is tight, as FA does not shatter any element of A.

Theorem 1 is the special case of Corollary 18 in which A consists of all elements of
rank VC(F ) + 1.

Proof of Corollary 18. Let us start by showing that |F | ⩽ |FA|. If |F | > |FA| then,
according to Theorem 2, also | Str(F )| > |FA|. Therefore F shatters some element x such
that x ̸< y for all y ∈ A. Since A is a maximal antichain, y ⩽ x for some y ∈ A, and,
according to Lemma 13, F shatters y, a contradiction.

Next, let us show that FA does not shatter any element of A. Suppose that FA shatters
some element a ∈ A. Then some x ∈ FA satisfies x ∧ a = a, that is, x ⩾ a. Since x ∈ FA,
we know that x < y for some y ∈ A. Put together, this implies that a < y, contradicting
the fact that A is an antichain.

A final corollary is a dichotomy theorem, a direct consequence of the Sauer–Shelah–
Perles lemma which is the source of many of its applications. Before describing our
generalized dichotomy theorem, let us briefly describe the classical one. Let F ⊆ {0, 1}X ,
where X is infinite. For every finite I ⊆ X, we can consider the projection of F to the
coordinates of I, denoted F |I .

The growth function of F is

ΠF (n) = max
I⊂X
|I|=n

∣∣F |I
∣∣.

The Sauer–Shelah–Perles lemma immediately implies the following polynomial versus
exponential dichotomy for the growth function:

• Either VC(F ) = ∞, in which case ΠF (n) = 2n;

• or VC(F ) = d < ∞, in which case ΠF (n) ⩽
(

n
⩽d

)
⩽ 2nd.

For example, it implies that there is no F for which πF (n) = Θ(2log
2 n).

We can extend this result to vector spaces (we leave extensions to more general domains
to the reader). Let Fq be a finite field, let X be an infinite set, let V denote the linear
space of all functions v : X → Fq with a finite support (i.e. v(x) = 0 for all but finitely
many x ∈ X), and let L denote the (infinite) lattice of all finite dimensional subspaces of
V . Let F ⊆ L be a family of subspaces. For every I ∈ L, we can consider the projection
F |I = {V ∩ I : V ∈ F}. The growth function of F is defined as in the classical case, with
dimension replacing cardinality:

ΠF (n) = max
I∈L

dim(I)=n

∣∣F |I
∣∣.

the electronic journal of combinatorics 27(4) (2020), #P4.19 11



Theorem 1 immediately implies a dichotomy as in the classical case. In order to
understand the resulting orders of growth, we need to be able to estimate

[
L
d

]
for subspace

lattices L.

Lemma 19. Let L = Fn
q . For all d ⩽ n,

qd(n−d) ⩽

[
L

⩽ d

]
⩽ 2ndqdn.

In particular, |L| ⩾ q(n
2−1)/4.

Proof. The number of elements of L of rank d is the q-binomial coefficient
[
n
d

]
q
. There

are many formulas for
[
n
d

]
q
. The one we use is[

n

d

]
q

=
∑

A⊆{1,...,n}
|A|=d

q
∑

i∈A i−d(d+1)/2.

Calculation shows that the summand with highest exponent, corresponding to A = {n−
d+ 1, . . . , n}, has exponent d(n− d). Therefore

qd(n−d) ⩽

[
n

d

]
q

⩽

(
n

d

)
qd(n−d) ⩽ ndqdn.

This implies that [
L

⩽ d

]
⩽

d∑
e=0

neqen ⩽ ndqdn
d∑

e=0

(nqn)−e.

We can assume that n ⩾ 1, and so nqn ⩾ 2, implying that
∑∞

e=0(nq
n)−e ⩽ 2. This proves

the main inequalities. The lower bound on |L| follows from taking d = ⌊n/2⌋.

Combining the lemma with Theorem 1 specialized to the subspace lattice, we imme-
diately obtain the following dichotomy theorem:

Theorem 20. For every family F ⊆ L, exactly one of the following holds:

• Either VC(F ) = ∞, in which case ΠF (n) ⩾ q(n
2−1)/4;

• or VC(F ) = d < ∞, in which case ΠF (n) ⩽ 2ndqdn.

4 Partial results towards the SSP=RC conjecture

4.1 Proof of Theorem 3

We start by showing that an SSP lattice must be RC.

Theorem 3. Let L be a lattice which is not relatively complemented. Then there exists a
family F ⊂ L shattering strictly fewer than |F | elements.
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Proof. Since L is not relatively complemented, there exist two elements x, y in L such
that there is a unique element z satisfying x < z < y. Let F = {w | w ⩽ y}\{x}. It is
easy to check that Str(F ) ⊆ {w | w ⩽ y}. On the other hand, y, z are not shattered since
x /∈ F . Therefore |Str(F )| ⩽ |F | − 1.

Figure 3 shows two examples of ranked lattices that are not relatively complemented,
only one of the two satisfying the conclusion of Theorem 1.

The first example L1 is the path lattice 0 < 1 < 2, appearing in Figure 3a. The family
F = {1, 2} shatters only 0 and hence has VC dimension 0, while |F | >

[
L1

0

]
.

The second example L2, appearing in Figure 3b, is more complex. One can check that
|Str(F )| ⩾ |F | unless F = L2 \ 4, L2 \ 5. Both of these families shatter 12, and so have
VC dimension 2. Since

[
L2

⩽2

]
= |L2| − 1, the lattice satisfies the conclusion of Theorem 1.

The lattice L2 thus separates the SSP condition from the weaker condition given by
Theorem 1. It seems hard to characterize the lattices that are “weakly SSP”, that is,
satisfy | Str(F )| ⩽

(
L

⩽VC(F )

)
for all F ⊆ L.

A simple generalization of the first example shows that |F |−| Str(F )| can be arbitrarily
large. Consider the path lattice 0 < 1 < · · · < n. The family F = {1, . . . , n} shatters
only 0, and so |F | − | Str(F )| = n − 1. This also shows that the families constructed in
the proof of Theorem 3 are not the only ones satisfying | Str(F )| < |F |.

0

1

2

(a) Path lattice

45231312

54321

∅

[5]

(b)

Figure 3: Lattices that are not RC

4.2 Proof of Theorem 5

In this subsection we prove Theorem 5, which concerns RC lattices for which µ(x, y) ̸= 0
holds whenever (x, y) ̸= (0, e) (recall that 0 is the minimal element and e is the maximal
element). Such lattices do exist, for example the two lattices given in the introduction
(Figures 1 and 2).

The crucial tool for the proof will be the following analog of Lemma 17 for this case.
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Lemma 21. Let F ⊂ L be a family different from L and L \ {0}. Let z ∈ L be such that
z ̸∈ Str(F ). There exist coefficients λy such that for all p ∈ F we have

χz(p) =
∑
y<z

λyχy(p).

Proof. If µ is nonvanishing or z ̸= e then µ(x, z) ̸= 0 for all x ⩽ z, and so the original proof
of Lemma 17 still applies. It therefore suffices to handle the case z = e and µ(0, e) = 0.

For every p ∈ L, define a function vp on L \ {e} by vp(y) = χy(p) (in other words, if
we think of the functions χy for y < e as the rows of a matrix, then the functions vp are
its columns); so vp(y) indicates the condition “y ⩽ p”. We will show that the space of
linear dependencies of {vp : p ∈ L} is one-dimensional. More explicitly, we show that if∑

a∈L cava = 0 (that is, if
∑

a∈L cava(y) = 0, for all y ∈ L \ {e}) then ca = µ(a, e)ce for all
a ∈ L.

The proof is by backwards induction. The base case, a = e, is trivial. Now suppose
that cb = µ(b, e)ce for all b > a. Then

0 =
∑
b∈L

cbvb(a) = ca +
∑
b>a

µ(b, e)ce = ca − µ(a, e)ce,

by definition of the Möbius function.
As F /∈ {L,L \ {0}}, there must be some element a ̸= 0 missing from F . We claim

that the functions {vp : p ∈ F} are linearly independent as functions on L \ {e}. Indeed,
any linear dependency

∑
p∈F cpvp = 0 lifts to a linear dependency of {vp : p ∈ L}, with

cp = 0 for p /∈ F . In this linear dependency, ca = 0. Since a ̸= 0, we have µ(a, e) ̸= 0, and
so ce = ca/µ(a, e) = 0, which implies that the linear dependency is trivial.

Since the functions {vp : p ∈ F} are linearly independent, the |L \ {e}| × |F | matrix
whose columns are vp has full rank |F |, and so its rows (which are just the functions χy|F
for y < e) span F[F ]. In particular, some linear combination of the rows equals χe|F .

Theorem 5 follows by a straightforward adaptation of the proof of Theorem 2.

Theorem 5. Let L be an RC lattice with minimal element 0 and maximal element e.
If µ(x, y) ̸= 0 whenever (x, y) ̸= (0, e) then every family F ⊆ L shatters at least |F |
elements.

Proof. When F is different from L and L\{0}, the conclusion holds exactly as in the proof
of Theorem 2 in Section 3.2, by using Lemma 21 instead of Lemma 17. When F = L,
we obviously have |F | ⩽ |Str(F )| as F = Str(F ). We argue that when F = L\{0}, then
Str(F ) = L\{e}. Indeed, take y ∈ L\{e}. Any s ⩽ y different from 0 belongs to F , and
y∧ s = s. By Lemma 10, there is an atom a ∈ F such that a ̸⩽ y. Thus y∧ a = 0, and so
y is shattered. It is also clear that e is not shattered, as y∧ e = y ̸= e for every y ̸= e.

4.3 Proof of Theorem 6

In this subsection we prove that the SSP property is closed under taking products.
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Theorem 6. If two lattices K and L are SSP, then K × L is SSP.

Proof. Let F ⊆ K × L. We want to show that | Str(F )| ⩾ |F |. For k ∈ K and ℓ ∈ L,
define Fk, Ik ⊆ L and Gℓ, Jℓ ⊆ K as follows:

Fk = {ℓ ∈ L | (k, ℓ) ∈ F};
Ik = StrL(Fk);

Gℓ = {k ∈ K | ℓ ∈ Ik};
Jℓ = StrK(Gℓ).

Construction of these sets is illustrated in Figure 4 below.

K L

{1} × F1

{0} × F0

K L

{1} × I1

{0} × I0

K L

G1 × {1}

G0 × {0}

K L

J1 × {1}

J0 × {0}

Figure 4: Construction of Fk, Ik, Gℓ and Jℓ. In this example, L = K is a two-element
lattice 0 < 1. The arrows indicate the order in which the sets are defined through each
other.

Now, by SSP of K and L, |Ik| ⩾ |Fk| and |Jℓ| ⩾ |Gℓ|, for all k ∈ K, ℓ ∈ L. Also, by
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definition,
⊔

k∈K{k} × Ik =
⊔

ℓ∈LGℓ × {ℓ}. Let us define J =
⊔

ℓ∈L Jℓ × {ℓ}. Then

|J | =
∑
ℓ∈L

|Jℓ| ⩾
∑
ℓ∈L

|Gℓ| =
∑
k∈K

|Ik| ⩾
∑
k∈K

|Fk| = |F |.

To conclude the proof, we show that F shatters all elements of J .
Take any (k, ℓ) ∈ J , and let k′ ⩽ k and ℓ′ ⩽ ℓ. By construction, k ∈ Jℓ, and so k

is shattered by Gℓ. In particular, some u ∈ Gℓ satisfies k ∧K u = k′. Since u ∈ Gℓ, by
construction ℓ ∈ Iu, that is, ℓ is shattered by Fu. In particular, some v ∈ Fu satisfies
ℓ ∧L v = ℓ′. In total, (u, v) ∈ F satisfies (k, ℓ) ∧ (u, v) = (k′, ℓ′).

4.4 Proof of Theorem 7

We close by identifying a class of families which satisfies the SSP property in any RC
lattice.

Theorem 7. If L is an RC lattice and F ⊆ L is a family for which a set of non-shattered
elements contains exactly one minimal element, then F shatters at least |F | elements.

Proof. Denote the set of elements not shattered by F by N = L\ Str(F ). The set N is
closed upwards: if F does not shatter u then it also does not shatter any v ⩾ u. Therefore,
if x is a unique minimal element of N , then N = [x) = {u ∈ L | x ⩽ u}.

Since x is not shattered by F , there exists some y ⩽ x such that no u ∈ F satisfies
u ∧ x = y, that is, D = {u ∈ L | x ∧ u = y} and F are disjoint. We will show that
|N | ⩽ |D|. This implies the lemma since

|F | = |L| − |L\F | ⩽ |L| − |D| ⩽ |L| − |N | = |L| − |L\ Str(F )| = | Str(F )|.

Now, to prove |N | ⩽ |D|, let us take an arbitrary a ∈ N = [x), that is, an arbitrary a
satisfying x ⩽ a. Then y ⩽ x ⩽ a, but, as L is RC, the interval [y, a] is complemented,
and we can pick a complement c(a) of x in [y, a]. Note that this applies, in particular,
when y = x = a, in which case c(a) = a.

By definition, c(a)∧x = y, that is, c(a) ∈ D. Also, c(a)∨x = a. This implies that the
map a 7→ c(a) is one-to-one on N . Indeed, if c(a) = c(b) then a = x∨ c(a) = x∨ c(b) = b.
The existence of a one-to-one mapping from N to D proves that |N | ⩽ |D|, finishing the
argument.

5 Conclusion and open problems

VC dimension and shattering were extensively studied in the classical case. Theorem 2
and, if true, Conjecture 4, enable us to ask related questions in an extended setting of
lattices with nonvanishing Möbius function, or of RC lattices. We end the paper by
outlining a list of possible questions, which we consider to be interesting.

Families with small VC dimension and inclusion-maximality. An explicit descrip-
tion of all families of VC dimension 1 exists in the classical case: they correspond to
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forests [MR13,BD15]. Having an exhaustive description of these families in the extended
setup would be desirable. A subset of an SSP-lattice of VC dimension k is called inclusion-
maximal if adding an element to it increases its VC dimension. Naturally, study of sets
with small VC dimension boils down to study of inclusion-maximal sets of small VC
dimension.

Question 22. Give a description of inclusion-maximal sets of VC dimension 1 for SSP
lattices.

It is known that, in a classical setup, every family of VC dimension 1 over a base set
of size n can be extended to a family of size n + 1 without increasing its VC dimension.
For an SSP, and hence RC, lattice L (which is atomic by Lemma 10), n corresponds to
a number of atoms and n + 1 =

[
L
⩽1

]
. And, in contrast, there are SSP lattices with an

inclusion-maximal subset of VC dimension 1, which is strictly smaller than
[
L
⩽1

]
:

Lemma 23. Let L be the subspace lattice Fd
q, where d ⩾ 2. Let U be a subspace of Fd

q

of dimension d − 1. The set F = {0,Fd
q} ∪ {⟨x⟩ : x /∈ U} is an inclusion-maximal set

of VC dimension 1, and it contains qd−1 + 2 subspaces; in comparison,
[
L
⩽1

]
= 1 + qd−1

q−1
,

which is larger by a factor of roughly q
q−1

.

Question 24. Is there a “nice” characterization of SSP lattices for which all inclusion-
maximal sets of VC dimension 1 have

[
L
⩽1

]
elements? Are Boolean lattices the only ones

satisfying this condition?

Shattering-extremality. A subset of an SSP-lattice is called shattering-extremal if it
shatters as many elements as it has, that is, if it obtains equality in the SSP inequality. A
number of results exists for shattering-extremal families in the classical setup, and they
are known to have a rich structure, see e.g. [Law83, ARS02, BR95, BCDK06, BCDK12,
Dre96,Wie86,Mor12,MR13,MR14].

Question 25. Explore shattering-extremal sets of small VC dimension for SSP lattices.
Do they exhibit a rich structure like in the boolean case?

In the classical setting there is a notion of strong shattering, which is in some sense
dual to shattering. The analog of the SSP lemma for strong shattering states that a
family strongly shatters at most as many elements as it has. Thus the size of the family
is sandwiched between the number of elements it strongly shatters and the number of
elements it shatters [BR95]. It turns out that equality holds in the SSP lemma if and
only if it holds in the strong SSP lemma.

Question 26. Can strong shattering be reasonably defined in the lattice setting? Will
shattering-extremality be equivalent to strong shattering-extremality, as in the classical
setting?

Shattering-extremal families which are closed under intersection are precisely convex
geometries [Cho18].
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Question 27. Characterize the class of shattering-extremal meet-subsemilattices of SSP
lattices. Matroids and their duals, being SSP, are in this class, as are duals of antimatroids,
which are convex geometries.

Matroids and antimatroids are known examples of greedoids [KLS12]. Are shattering-
extremal families precisely duals of greedoids, or is there some other connection?

It is well-known that for antimatroids there is a characterization in terms of forbid-
den projections, also called circuits [Die87]. This characterization can be recast, in a
straightforward manner, for convex geometries. A similar characterization also exists for
shattering-extremal families in general [Cho20].

Question 28. Is there a “forbidden projections” characterization of shattering-extremal
families of SSP lattices?
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[FP94] Zoltán Füredi and János Pach. Traces of finite sets: extremal problems and
geometric applications. In Extremal problems for finite sets (Visegrád, 1991),
volume 3 of Bolyai Soc. Math. Stud., pages 251–282. János Bolyai Math. Soc.,
Budapest, 1994.

[Fra83] Peter Frankl. On the trace of finite sets. J. Combin. Theory Ser. A, 34(1):41–
45, 1983. doi:10.1016/0097-3165(83)90038-9.

[God18] Chris Godsil. An introduction to the Moebius function. ArXiv e-prints, March
2018. arXiv:1803.06664.

[Gur97] Leonid Gurvits. Linear algebraic proofs of VC-dimension based inequalities.
In Computational Learning Theory, pages 238–250. Springer, 1997.

[HL95] David Haussler and Philip M. Long. A generalization of Sauer’s lemma. J.
Combin. Theory Ser. A, 71(2):219–240, 1995. doi:10.1016/0097-3165(95)
90001-2.

the electronic journal of combinatorics 27(4) (2020), #P4.19 19

https://doi.org/10.1016/S0166-218X(98)00012-2
https://doi.org/10.1016/S0166-218X(98)00012-2
https://hal.archives-ouvertes.fr/hal-02869292
https://hal.archives-ouvertes.fr/hal-02869292
https://doi.org/10.1007/BF02187743
https://doi.org/10.1007/BF02187743
https://doi.org/10.2307/1969328
https://doi.org/10.1090/dimacs/037/19
https://doi.org/10.1090/dimacs/037/19
https://doi.org/10.1016/S0195-6698(83)80004-3
https://doi.org/10.1016/0097-3165(83)90038-9
http://arxiv.org/abs/1803.06664
https://doi.org/10.1016/0097-3165(95)90001-2
https://doi.org/10.1016/0097-3165(95)90001-2


[HQ18] Hamed Hatami and Yingjie Qian. Teaching dimension, VC dimension, and
critical sets in Latin squares. J. Comb., 9(1):9–20, 2018. doi:10.4310/JOC.
2018.v9.n1.a2.

[HW87] David Haussler and Emo Welzl. ϵ-nets and simplex range queries. Discrete
Comput. Geom., 2(2):127–151, 1987. doi:10.1007/BF02187876.
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