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Abstract
For a positive integer n, let [n] denote {1, . . . , n}. For a 2-dimensional integer

lattice point b and positive integers k > 2 and n, a k-sum b-free set of [n] × [n]
is a subset S of [n] × [n] such that there are no elements a1, . . . ,ak in S satisfying
a1 + · · ·+ ak = b. For a 2-dimensional integer lattice point b and positive integers
k > 2 and n, we determine the maximum density of a k-sum b-free set of [n]× [n].
This is the first investigation of the non-homogeneous sum-free set problem in higher
dimensions.

Mathematics Subject Classifications: 11B75, 11B30, 05D05

1 Introduction

Let Z>0 and R>0 denote the sets of positive integers and positive real numbers, respec-
tively. For a positive integer n, let [n] = {1, . . . , n}. Throughout this paper, a bold letter
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such as n,x, and y stands for a single vector in Rd
>0 for some integer d > 2. For a positive

integer d and a d-dimensional integer lattice point n = (n1, . . . , nd) ∈ Zd
>0, let [n] denote

the set [n1]× · · · × [nd] and let |n| = n1 · · ·nd.
For an abelian group (G, +), a set S ⊆ G is sum-free if there are no elements x, y, z in

S satisfying x+y = z. Sum-free sets were investigated by Schur [20] in 1917 as an attempt
to prove Fermat’s Last Theorem. Ever since, sum-free sets received a significant amount
of attention over the years, aiding the growth of the field of additive combinatorics. In
particular, understanding sum-free subsets of the additive group on the positive integers
has been considered an important topic in the area. Given a set S, two natural questions
arise: the maximum size of a sum-free subset of S and the number of sum-free subsets
of S. It is easy to see that a sum-free subset of [n] has size at most

⌈
n
2

⌉
, which is tight

as demonstrated by taking all integers of [n] that are either odd or greater than
⌊
n
2

⌋
.

Conjectures by Cameron and Erdős [4, 5] concerning the number of sum-free subsets or
maximal sum-free subsets of [n] were settled in [1, 11, 21]. Other structural aspects of a
sum-free subset of [n] were also studied in [6, 10,22].

There is a vast literature on generalizations and variations of sum-free subsets of [n].
Among them, we emphasize the following two directions. The first is by Ruzsa [18, 19],
who generalized the above classical problem to linear equations. For a positive integer
k > 2 and integers a1, . . . , ak, b, let L : a1x1 + · · · + akxk = b be a linear equation. An
L-solution-free set (or L-free set for short) is a subset S of [n] such that no elements
x1, . . . , xk in S satisfy the equation L. The case when b = 0, which is also referred to
as “L is homogeneous”, was actively studied due to its close ties to other subjects such
as Sidon sets, progression-free sets, and Rado’s boundedness conjecture. See [12–14] for
recent results on L-free sets where L is a homogeneous linear equation, and see [9, 17]
for details regarding Rado’s boundedness conjecture. Also, the complexity of finding a
maximum L-free set is known to be NP-complete in almost all cases, see [7,16] for recent
results.

The second is a direction in [3], which generalizes the problem to finding a sum-free
subset of the d-dimensional integer lattice Zd

>0. To be precise, for a d-dimensional integer
lattice point n ∈ Zd

>0, a sum-free set of [n] is a subset S of [n] such that there are no
elements a1, a2, a3 in S satisfying a1 + a2 = a3. Regarding the question of the maximum
density of a sum-free subset of [n], Cameron [2] and Katz [15] provided some partial
results, and Elsholtz and Rackham [8] resolved the 2-dimensional case as follows.

Theorem 1 ( [8]). As n goes to infinity, the density of a sum-free subset of [n] × [n] is
at most 3

5
+O

(
1
n

)
.

We initiate an investigation that lies at the intersection of the two aforementioned
research directions. Namely, we consider the following problem: given a positive integer
n and a linear equation L, find the maximum size of a subset of the integer lattice
[n]d that does not contain a solution to L. This is the first investigation of the non-
homogeneous sum-free set problem in higher dimensions. To this extent, we make the
following definition: for a d-dimensional integer lattice point b and positive integers k > 1
and n, a k-sum b-free set is a subset S of [n]d such that there are no elements a1, . . . , ak
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in S satisfying a1 + · · · + ak = b. For simplicity, let n denote the d-dimensional vector
(n, . . . , n), and recall that [n] = [n]d. Let µk,b(n) denote the maximum size of a k-sum
b-free set of [n]. We are interested in finding the value of µk,b(n) where each coordinate
of n is a positive integer. Note that we may further assume that each coordinate of b is
also a positive integer, as otherwise µk,b(n) = |n| = nd.

It turns out that our problem boils down to finding the value of µk,n(n). This is
because each coordinate of a point of [n] is positive, and hence if n is sufficiently large so
that b ∈ [n], then

µk,b(n) = nd − |b|+ µk,b(b)

as one can see by taking all elements x = (x1, . . . , xd) ∈ [n] such that xi is greater than
the ith coordinate of b for every i, and all elements of a maximum k-sum b-free subset
of [b]. Furthermore, the problem is easy when k = 2, as we know

µ2,n(n) = nd −
⌈

(n− 1)d

2

⌉

by the following simple argument: vectors x and n − x cannot both be in a 2-sum
n-free set for some x ∈ [n], and equality can be obtained by taking all elements of
{(x1, . . . , xd) ∈ [n] | x1 + · · ·+ xd >

dn
2
}.

When d = 2, we succeed in finding the maximum density of a k-sum n-free set of [n]
for every positive integer k > 2. For brevity, let µk(n) denote µk,n(n), and define

νk(n) :=
µk(n)

|n| .

Theorem 2. Let k > 2 be a positive integer and let n = (n, n). As n goes to infinity,

νk(n) =
k2 − 2

k2
+O

(
1

n

)
.

Theorem 2 is tight, as explained in Remark 5. We suspect that the 1-dimensional
version of Theorem 2 is already known, yet, we could not find any references. As we use
some ideas of the 1-dimensional case in the proof of the 2-dimensional case, we include
the proof of the 1-dimensional case in Section 2 for completeness. We actually prove a
stronger statement (Theorem 4) that implies Theorem 2, whose proof is in Section 3. We
end the paper with some remarks and open questions in Section 4.

2 The 1-dimensional case

In this section, we provide the 1-dimensional analogue of Theorem 2. As mentioned before,
we suspect this result is known, yet, we include a proof for completeness.

Proposition 3. Let k > 2 be a positive integer and let n = (n). If n is a positive integer,
then

1− 1

k
6 νk(n) 6 1− 1

k
+

1

n
.
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Proof. As n is a 1-dimensional vector, we will use n to denote n. As {x ∈ [n] | x > n
k
}

is a k-sum n-free set of [n], we know νk(n) >
n−bnkc

n
>

n−n
k

n
= 1 − 1

k
. We prove the

other inequality by induction on k. When k = 2, since x and n− x cannot both be in a
2-sum n-free set for some x ∈ [n], we know µ2(n) =

⌈
n
2

⌉
. (Furthermore, this is tight as

demonstrated by taking all integers of [n] that are either odd or greater than
⌊
n
2

⌋
.) Note

that this implies ν2(n) 6 1
2

+ 1
n
.

Suppose k > 3. Let S be a k-sum n-free set and let m be the minimum element of S.
If m > n

k
, then |S| 6 n−

⌊
n
k

⌋
6 n− n

k
+ 1, which implies the conclusion we seek. So let

us assume m 6 n
k
. Since m ∈ S, we know S is also a (k − 1)-sum (n−m)-free set of [n].

This further implies S ′ := S ∩ [n −m] is a (k − 1)-sum (n −m)-free set of [n −m]. By
the induction hypothesis, νk−1(n

′) 6 1− 1
k−1 + 1

n′ for every positive integer n′, hence

|S ′|
n−m 6 1− 1

k − 1
+

1

n−m.

Since |S| 6 |S ′|+m, we have

|S|
n

6
n−m− n−m

k−1 + 1 +m

n
= 1− n−m

n(k − 1)
+

1

n
6 1− n− n

k

n(k − 1)
+

1

n
= 1− 1

k
+

1

n
,

where the second inequality follows from the fact that m 6 n
k
. Hence,

|S|
n

6 1− 1

k
+

1

n
.

3 The 2-dimensional case

In this section, we will prove the following statement, which is a stronger statement
implying Theorem 2.

Theorem 4. Let k > 2 be a positive integer and let n = (n1, n2) ∈ Z2
>0. As both n1 and

n2 go to infinity,

νk(n) =
k2 − 2

k2
+O

(
1

min{n1, n2}

)
.

We first provide an example demonstrating the sharpness of Theorem 4. In Subsec-
tion 3.1 we show Theorem 4, whose proof is by induction on k, except the case when
k = 3, which we deal with in Subsection 3.2.

Remark 5. Let k > 2 be a positive integer and let n = (n1, n2) be a 2-dimensional integer
lattice point where both n1 and n2 are sufficiently large. The inequality νk(n) > k2−2

k2
can

be verified by considering the following set:

S =

{
x = (x1, x2) ∈ [n] | n2x1 + n1x2 >

2n1n2

k

}
.

See Figure 1 for an illustration of S.
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n = (n1, n2)

2n2
k

2n1
k

Figure 1: The shaded region corresponds to a k-sum n-free set.

Suppose there are elements a1, . . . , ak in S satisfying a1 + · · · + ak = n. Let ai =
(ai1, ai2) for each i ∈ [k]. Then a11 + · · · + ak1 = n1 and a12 + · · · + ak2 = n2. Moreover,
by the definition of S, we have n2ai1 + n1ai2 >

2n1n2

k
for each i ∈ [k]. By adding up the k

inequalities, each corresponding to one ai, we obtain

n2(a11 + · · ·+ ak1) + n1(a12 + · · ·+ ak2) > 2n1n2,

which is a contradiction since the left side is also 2n1n2. Hence,

νk(n) >
|S|
|n| >

|n| − 2n1n2

k2

|n| =
k2 − 2

k2
.

Before starting the proof, we introduce some notation that will be used throughout
the remaining two subsections. For r = (r1, r2) ∈ R2, let m(r) := min{r1, r2} and
M(r) := max{r1, r2}, and for a real number α, let αr = (αr1, αr2). Note that |αr| = α2|r|.
Also, let brc and dre denote the integer points (br1c, br2c) and (dr1e, dr2e), respectively.
For r = (r1, r2) and r′ = (r′1, r

′
2) in R2, let r 6 r′ and r < r′ denote ri 6 r′i and ri < r′i,

respectively, for each i ∈ [2].

3.1 Proof of Theorem 4

In this subsection, we prove Theorem 4, except the case when k = 3, whose proof is in
Subsection 3.2. To prove Theorem 4, it is sufficient to prove that for every k-sum n-free
subset S of [n], the following:

|S| 6
(
k2 − 2

k2

)
|n|+O(M(n)). (1)

To see why, suppose that |S| 6 α|n| + cM(n) for a k-sum n-free set S of [n] and some
constants α and c. Since |n| = M(n)m(n),

|S|
|n| 6 α +

cM(n)

M(n)m(n)
= α +

c

m(n)
,
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which implies that νk(n) 6 k2−2
k2

+ O
(

1
m(n)

)
. Tightness is shown by the example in

Remark 5.
In the following, let S be a maximum k-sum n-free set of [n]. We prove (1) by induction

on k, with two base cases, k = 2 and k = 3. When k = 2, since both integer lattice points
x and n− x cannot both be in S, the following holds:

µ2,n(n) =

⌊ |n|+ n1 + n2 − 1

2

⌋
6
|n|
2

+M(n). (2)

Thus, (1) is true when k = 2. When k = 3, Theorem 6, whose proof is postponed to
Subsection 3.2, implies that (1) is true when k = 3.

Theorem 6. Let n = (n1, n2) ∈ Z2
>0. As both n1 and n2 go to infinity,

µ3(n) 6
7

9
|n|+O(M(n)).

For the induction step, suppose k > 4. Let a = 2
⌊
n
k

⌋
. Suppose that S ∩ [a] is a 2-sum

a-free set of [a]. By (2), we have |S ∩ [a]| 6 1
2
|a|+M(a). Then,

|S| 6 |n| − |a|+ 1

2
|a|+M(a) = |n| − 1

2
|a|+M(a) 6 |n| − 1

2
|a|+M(n).

Also,

1

4
|a| =

∣∣∣
⌊n
k

⌋∣∣∣ >
M(n)− (k − 1)

k
· m(n)− (k − 1)

k

>
M(n)m(n)

k2
− 2(k − 1)M(n)

k2
=
|n|
k2
− 2(k − 1)M(n)

k2
.

Hence,

|S| 6 |n| − 2|n|
k2

+
4(k − 1)

k2
·M(n) +M(n) =

(
k2 − 2

k2

)
|n|+

(
1 +

4(k − 1)

k2

)
M(n),

which implies that (1) holds.
Suppose that S ∩ [a] is not a 2-sum a-free set of [a]. Then, there are two elements x

and y in S ∩ [a] such that x + y = a. Let b = n− a, and now we consider S ′ = S ∩ [b].
Now, S ′ is a (k − 2)-sum b-free set. Since k > 4, by induction hypothesis, we know

|S ′| 6 (k − 2)2 − 2

(k − 2)2
|b|+O (M(b)) 6

(k − 2)2 − 2

(k − 2)2
|b|+ cM(b)

for some constant c not depending on b. Since |S| 6 |n| − |b|+ |S ′|, we obtain

|S| 6 |n| − 2

(k − 2)2
|b|+ cM(b).

By the definitions of a and b, we have |b| =
∣∣n− 2

⌊
n
k

⌋∣∣ > (k−2)2
k2
|n|. It follows that

|S| 6 |n| − 2

k2
|n|+O(M(n)).
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3.2 Proof of Theorem 6

In this subsection, we prove Theorem 6, which is the crucial part of the proof.
Assume S is a 3-sum n-free set of [n]. For simplicity, let

A =

{
(x1, x2) ∈ [n] | n2x1 + n1x2 <

2n1n2

3

}
.

As shown in Remark 5, if A∩ S = ∅, namely, S belongs to the shaded region of Figure 1,
then we have the desired conclusion. Thus, we may assume A ∩ S 6= ∅ in the following.

For a 2-dimensional integer lattice point x, let

Sx = S ∩ [n− x].

We often use the fact that if x ∈ S, then Sx is a 2-sum (n− x)-free set. By (2), we know

|Sx| 6 |n−x|
2

+M(n− x). Since M(n− x) 6M(n), we obtain

|Sx| 6
|n− x|

2
+M(n). (3)

If S contains an element x where x 6 n
3
, which is equivalent to n− x > 2

3
n, then we

know |n− x| > 4
9
|n|. Since |S| 6 |n| − |n− x|+ |Sx|, by (3), we obtain

|S| 6 |n| − |n− x|
2

+M(n) 6
7

9
|n|+M(n),

which is the desired conclusion.

Now suppose S has no element x where x 6 n
3
. For convenience, let a =

(
n1

3
, 2n2

3

)
,

b =
(
n1

3
, n2

3

)
, and c =

(
2n1

3
, n2

3

)
. See Figure 2.

Since A∩S 6= ∅, we know S contains some point in A\
{
x ∈ [n] | x 6 n

3

}
. By symmetry,

we may assume that there exists x = (x1, x2) ∈ S ∩ A where x2 >
n2

3
and 0 < x1 6 n1

3
.

Let `x be the line defined by the two points x and b. We may further assume that S
does not contain a point of A below `x where the 2nd coordinate is greater than n2

3
; this

is the hatched region of Figure 2. Let p be the 2nd coordinate of the intercept of the line
`x and the vertical line passing through the origin, that is,

p =
n1x2 − n2x1
n1 − 3x1

.

We consider two cases, depending on the larger value of p and the 2nd coordinate of
n− x.

Case (i): Suppose p < n2 − x2.
Since x1 <

n1

3
is equivalent to n1− 3x1 > 0, it follows that p < n2−x2 is equivalent to

−3x1x2 < n1n2 − 2n1x2 − 2n2x1. (4)
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Now,

|n| − |n− x|
2

=
n1n2 + (n2x1 + n1x2)− x1x2

2

<
3n1n2 + 3(n2x1 + n1x2) + (n1n2 − 2n1x2 − 2n2x1)

6

=
4n1n2 + (n2x1 + n1x2)

6

<
4n1n2 + 2n1n2

3

6
=

7

9
|n|

where the first inequality comes from (4) and the second inequality follows from the fact
that x ∈ A. Thus, since |S| 6 |n| − |n− x|+ |Sx|, by (3), we obtain

|S| 6 |n| − |n− x|
2

+M(n) <
7

9
|n|+M(n),

which is the desired conclusion.

Case (ii): Now suppose p > n2 − x2.
This means that S contains no integer lattice points in the following set:

R := {(z1, z2) ∈ [n] | z1 > 0, z2 > n2 − x2, and (z1, z2) is below the line `x}

See Figure 3 for an illustration. In other words, R ∩ S = ∅, and so

|S| 6 |n| − |n− x| − |R|+ |Sx|.

By (3), we obtain

|S| 6 |n| − |n− x|
2

− |R|+M(n).

A

n = (n1, n2)

2n2
3

n2
3

n1
3

2n1
3

a =
(
n1
3 , 2n2

3

)

b =
(
n1
3 , n2

3

)
c =

(
2n1
3 , n2

3

)
`xx

p

Figure 2: A is the shaded region and no element of S is in the hatched region.
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n = (n1, n2)

p

n2 − x2

2n2
3

2n1
3

n2
3

n1
3

a =
(
n1
3 , 2n2

3

)

b =
(
n1
3 , n2

3

)
c =

(
2n1
3 , n2

3

)
R

`x
x

n− x

Figure 3: An illustration for Case (ii), when p > n2 − x2.

By Pick’s Theorem, the number of integer lattice points in the interior of a triangular
region T is exactly A − B

2
+ 1 where A is the area of T and B is the number of integer

lattice points on the boundary of T . Let R′ denote the triangular region corresponding
to R. Since the slope of `x is −3x2−n2

n1−3x1
and the height of R′ is p − n2 + x2, the length of

the base of R′ is (p−n2+x2)(n1−3x1)
3x2−n2

. Thus, the area of R′ is (p−n2+x2)2(n1−3x1)
2(3x2−n2)

. Note that

both 1
|n|(p− n2 + x2) and 1

|n| ·
(p−n2+x2)(n1−3x1)

3x2−n2
go to 0 as n1, n2 go to infinity. Therefore,

in order to prove our theorem, it suffices to show that

1

|n|

(
|n| − |n− x|

2
− (p− n2 + x2)

2(n1 − 3x1)

2(3x2 − n2)

)
6

7

9
. (5)

Let
α =

x1
n1

and β =
x2
n2

.

Then, the left side of (5) is equal to

1− (1− α)(1− β)

2
− (2α + 2β − 1− 3αβ)2

2(1− 3α)(3β − 1)
.

Suppose to the contrary that (5) does not hold, that is,

1− (1− α)(1− β)

2
− (2α + 2β − 1− 3αβ)2

2(1− 3α)(3β − 1)
>

7

9
,

or
2

9
>

(1− α)(1− β)

2
+

(2α + 2β − 1− 3αβ)2

2(1− 3α)(3β − 1)
.

Note that (1 − 3α)(1 − 3β) is negative since the slope of `x is negative. Now, by
multiplying 2(1− 3α)(1− 3β) to both sides, we obtain

4(1− 3α)(1− 3β)

9
< (1− α)(1− β)(1− 3α)(1− 3β)− (2α + 2β − 1− 3αβ)2.

the electronic journal of combinatorics 27(4) (2020), #P4.2 9



The right side of the above is equal to

(1− α− β + αβ)(1− 3α− 3β + 9αβ)

−(4α2 + 4β2 + 1 + 9α2β2 + 8αβ − 4α− 4β − 12α2β − 12αβ2 + 6αβ)

= −α2 − β2 + 2αβ.

Thus,
4(1− 3α− 3β + 9αβ)

9
< −α2 − β2 + 2αβ,

or
9α2 + 9β2 + 18αβ − 12α− 12β + 4 < 0.

This is equivalent to (3α + 3β − 2)2 < 0, which is a contradiction. This completes the
proof.

4 Remarks

We found the maximum density of a k-sum n-free set in the 2-dimensional integer lattice
for all positive integers k and all 2-dimensional integer lattice points n; this is equivalent
to an L-free set where L is an equation of the form x1+ · · ·+xk = n. Several fundamental
questions remain unsolved regarding this topic, and we list a few.

Problem 7. Determine the minimum real number α such that for a k-sum (n, n)-free set
S, |S| > αn2 is a subset of the extremal example in Remark 5.

Problem 8. What is the number of k-sum (n, n)-free sets in [n]× [n]? Among them, how
many are maximal?

Of course it would be interesting to obtain a higher dimension analogue to the question
of k-sum n-free sets.

Problem 9. For an integer d > 3, determine νk(n) for a d-dimensional integer lattice
point n in Zd

>0.

In a slightly different avenue, it would be interesting to consider a more general linear
equation L. However, we do not have a complete answer even for the 1-dimensional case
regarding this question. That is, determine the maximum size of an L-free set of [n],
where L : a1x1 + · · · + akxk = b for some integer coefficients ai and b. It was recently
revealed that the problem is ]P-complete, see [7].
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