
Volumes of flow polytopes related to caracol graphs

Jihyeug Jang Jang Soo Kim∗

Department of Mathematics
Sungkyunkwan University (SKKU)

Suwon, Gyeonggi-do 16419, South Korea

{ab4242,jangsookim}@skku.edu

Submitted: Dec 16, 2019; Accepted: Sep 15, 2020; Published: Oct 30, 2020

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Recently, Benedetti et al. introduced an Ehrhart-like polynomial associated to a
graph. This polynomial is defined as the volume of a certain flow polytope related
to a graph and has the property that the leading coefficient is the volume of the
flow polytope of the original graph with net flow vector (1, 1, . . . , 1). Benedetti et
al. conjectured a formula for the Ehrhart-like polynomial of what they call a caracol
graph. In this paper their conjecture is proved using constant term identities, labeled
Dyck paths, and a cyclic lemma.

Mathematics Subject Classifications: 05A15, 05C21, 52B20

1 Introduction

The main objects in this paper are flow polytopes, which are certain polytopes associ-
ated to acyclic directed graphs with net flow vectors. Flow polytopes have interesting
connections with representation theory, geometry, analysis, and combinatorics. A well
known flow polytope is the Chan–Robbins–Yuen polytope, which is the flow polytope of
the complete graph Kn+1 with net flow vector (1, 0, . . . , 0). Chan, Robbins, and Yuen
[4] conjectured that the volume of this polytope is a product of Catalan numbers. Their
conjecture was proved by Zeilberger [15] using the Morris constant term identity [11],
which is equivalent to the famous Selberg integral [12].

Since the discovery of the Chan–Robbins–Yuen polytope, researchers have found many
flow polytopes whose volumes have nice product formulas, see [3, 5, 6, 8, 9, 10, 14] and
references therein. In this paper we add another flow polytope to this list by proving a
product formula for the volume of the flow polytope coming from a caracol graph, which
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Figure 1: The Pitman-Stanley graph PSn+1.
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Figure 2: The caracol graph Carn+1.

was recently conjectured by Benedetti et al. [3]. In order to state our results we introduce
necessary definitions.

We let [n] := {1, 2, . . . , n}. Throughout this paper, we only consider connected di-
rected graphs in which every vertex is an integer and every directed edge is of the form
(i, j) with i < j.

Let G be a directed graph on vertex set [n + 1] with m directed edges. We allow
G to have multiple edges but no loops. Let a = (a1, a2, . . . , an) ∈ Zn. An m-tuple
(bij)(i,j)∈E ∈ Rm

>0 is called an a-flow of G if

∑
(i,j)∈E

bij(ei − ej) =

(
a1, . . . , an,−

n∑
i=1

ai

)
,

where ei is the standard basis vector in Rn+1 with a one in the ith entry and zeroes
elsewhere. The flow polytope FG(a) of G with net flow a is defined as the set of all a-flows
of G.

In this paper we consider the following two graphs, see Figures 1 and 2:

• The Pitman-Stanley graph PSn+1 is the graph with vertex set [n+ 1] and edge set

{(i, i+ 1) : i = 1, 2, . . . , n} ∪ {(i, n+ 1) : i = 1, 2, . . . , n− 1}.

• The caracol graph Carn+1 is the graph with vertex set [n+ 1] and edge set

{(i, i+1) : i = 1, 2, . . . , n}∪{(1, i) : i = 3, 4, . . . , n}∪{(i, n+1) : i = 2, 3, . . . , n−1}.

We note that the flow polytope FPSn+1(a1, . . . , an) is affinely equivalent to the polytope

Πn−1(a1, . . . , an−1) := {(x1, . . . , xn−1) : xi > 0, x1 + · · ·+xi 6 a1 + · · ·+ai, 1 6 i 6 n−1},

considered in [13]. Pitman and Stanley [13] found volume formulas for certain polytopes,
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which can be restated as normalized volumes of flow polytopes as follows:

volFPSn+1(a, b
n−2, d) = a(a+ (n− 1)b)n−2, (1)

volFPSn+1(a, b
n−3, c, d) = a(a+ (n− 1)b)n−2 + (n− 1)a(c− b)(a+ (n− 2)b)n−3,

(2)

volFPSn+1(a, b
n−m−2, c, 0m−1, d) = a

m∑
j=0

(
n

j

)
(c− (m+ 1− j)b)j(a+ (n− 1− j)b)n−j−2,

(3)

where bk means the sequence b, b, . . . , b of k b’s. We note that volFPSn+1(a1, . . . , an) is
independent of an.

In [3], Benedetti et al. introduced combinatorial models called gravity diagrams and
unified diagrams to compute volumes of flow polytopes. Using these models they showed

volFCarn+1(a
n) = Cn−2a

nnn−2, (4)

volFCarn+1(a, b
n−1) = Cn−2a

n−2(a+ (n− 1)b)n−2, (5)

where Ck := 1
k+1

(
2k
k

)
is the kth Catalan number.

For a positive integer k and a directed graph G on [n + 1], let Ĝ(k) be the directed
graph obtained from G by adding a new vertex 0 and k multiple edges (0, i) for each
1 6 i 6 n. Then we define

EG(k) = volFĜ(k)(1, 0
n). (6)

In [3], Benedetti et al. showed that EG(k) is a polynomial function in k. Therefore we
can consider the polynomial EG(x). They also showed that these polynomials EG(x) have
similar properties as Ehrhart polynomials. For example, the leading coefficient of EG(x)
is the normalized volume of FG(1n). For this reason, they called EG(x) an Ehrhart-like
polynomial. In the same paper they proved the following theorem.

Theorem 1. We have

EPSn+1(k) =
1

kn− 1

(
(k + 1)n− 2

n

)
.

Our main result is the following theorem, which was conjectured in [3].

Theorem 2. We have

ECarn+1(k) =
1

kn+ n− 3

(
kn+ 2n− 5

n− 1

)(
n+ k − 3

k − 1

)
.

In this paper we prove Theorem 2 and give an alternative proof of Theorem 1.
The remainder of this paper is organized as follows. In Section 2 we use the Lidskii

volume formula to interpret ECarn+1(k) as a Kostant partition function, which is equal
to the constant term of a Laurent series. In Section 3 we introduce labeled Dyck paths
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and show that the constant term is equal to the number of certain labeled Dyck paths.
In Section 4 we enumerate these labeled Dyck paths using a cyclic lemma. In Section 5
using our combinatorial models we show the following volume formulas:

volFPSn+1(a, b, c
n−2) = (a+ b− c)(a+ b+ (n− 2)c)n−2 + (−b+ c)(b+ (n− 2)c)n−2,

(7)

volFPSn+1(a, b, c, d
n−3) = (a+ b+ c− 2d)(a+ b+ c+ (n− 3)d)n−2 (8)

− (b+ c− 2d)(b+ c+ (n− 3)d)n−2

− (n− 1)a(c− d)(c+ (n− 3)d)n−3,

volFCarn+1(a, b, c
n−2) = Cn−2a

n−1(a+ b(n− 1))(a+ b+ c(n− 2))n−3, (9)

where (9) was conjectured by Benedetti et al. in [3].

2 Constant term identities

In this section we review the Lidskii volume formula and restate Theorems 1 and 2 as
constant term identities.

Let G be a directed graph on [n + 1] and define a′ = (a1, . . . , an,−
∑n

i=1 ai) for a =
(a1, . . . , an) ∈ Zn. The Kostant partition function KG(a′) of G at a′ is the number of
integer points of FG(a), i.e., if G has m edges,

KG(a′) = |FG(a) ∩ Zm|.

We denote by G|n the restriction of G to the vertices in [n]. Let outdegG(i) denote the
out-degree of vertex i in G. The following formula, known as the Lidskii volume formula,
allows us to express the (normalized) volume of the flow polytope FG(a) in terms of
Kostant partition functions, see [2, Theorem 38].

Theorem 3 (Lidskii volume formula). Let G be a connected directed graph on [n+1] with
m directed edges, where every directed edge is of the form (i, j) with i < j and let a =
(a1, a2, . . . , an) ∈ Zn. Denoting t = (t1, . . . , tn) := (outdegG(1) − 1, . . . , outdegG(n) − 1),
we have

volFG(a) =
∑

|s|=m−n
s>t

(
m− n

s1, s2, . . . , sn

)
as11 . . . asnn KG|n(s− t),

where the sum is over all sequences s = (s1, . . . , sn) of nonnegative integers such that
|s| = s1 + · · · + sn = m − n and s > t in dominance order, i.e.,

∑k
i=1 si >

∑k
i=1 ti for

k = 1, 2, . . . , n.

In this paper, we use both expressions KG|n(a1, . . . , an) and KG(a1, . . . , an, 0) together.
Note that if a = (1, 0n−1) in Theorem 3 there is only one nonzero term in the sum giving
the following corollary, see [2], [13], or [7, Corollary 1.4].
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Corollary 4. For a directed graph G on [n+ 1], we have

volFG(1, 0n−1) = KG(p, 1− outdegG(2), 1− outdegG(3), . . . , 1− outdegG(n), 0), (10)

where p = outdegG(2) + outdegG(3) + · · ·+ outdegG(n)− n+ 1.

For a multivariate rational function f(x1, x2, . . . , xn) we denote by CTxi
f the constant

term of the Laurant series expansion of f with respect to xi by considering other variables
as constants. Since CTx1 f is a rational function in x2, . . . , xn, we can apply CTx2 to
it. Repeating in this way the constant term CTxn . . .CTx1 f is defined. We also define
[xann . . . xa11 ]f to be the coefficient of the monomial xann . . . xa11 in the Laurent expansion of
f when expanded in the variables x1, x2, . . . , xn in this order. Note that we have

[xann . . . xa11 ]f = CTxn . . .CTx1

(
x−ann . . . x−a11 f

)
. (11)

Let G be a directed graph on [n + 1]. Then for a = (a1, . . . , an) ∈ Zn and an+1 =
−(a1 + · · ·+ an), the Kostant partition function KG(a′) can be computed by

KG(a′) = [x
an+1

n+1 · · ·xa11 ]
∏

(i,j)∈E(G)

(
1− xi

xj

)−1
. (12)

Now we are ready to express EPSn+1(k) and ECarn+1(k) as constant terms of Laurent
series. Throughout this paper the factor (xj − xi)

−1, where i < j, means the Laurent
expansion

(xj − xi)−1 =
1

xj

(
1− xi

xj

)−1
=

1

xj

∑
l>0

(
xi
xj

)l

.

Proposition 5. We have

EPSn+1(k) = CTxn . . .CTx1

n∏
i=1

(1− xi)−k
n−1∏
i=1

(xi+1 − xi)−1, (13)

ECarn+2(k) = CTxn . . .CTx1

1

x1

n∏
i=1

(1− xi)−k
n−1∏
i=1

(xn − xi)−1
n−2∏
i=1

(xi+1 − xi)−1. (14)

Proof. We will only prove (14) since (13) can be proved similarly. Let G = Carn+1 and

H = Ĝ(k). Then H is a graph with vertices 0, 1, 2, . . . , n+ 1, and by (6) and (10),

ECarn+1(k) = KH(p, 1− outdegH(1), 1− outdegH(2), . . . , 1− outdegH(n), 0),

where p = outdegH(1) + outdegH(2) + · · · + outdegH(n)− n. Since outdegH(1) = n− 1,
outdegH(n) = 1, and outdegH(i) = 2 for 2 6 i 6 n−1, we can rewrite the above equation
as

ECarn+1(k) = KH(2n− 4, 2− n, (−1)n−2, 0, 0).
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Then, by (12), we obtain

ECarn+1(k) = [x−1n−1 · · ·x−12 x2−n1 x2n−40 ]
∏

(i,j)∈E(H)

(
1− xi

xj

)−1
. (15)

Since every term in the expansion of

∏
(i,j)∈E(H)

(
1− xi

xj

)−1
=

n∏
i=1

(
1− x0

xi

)−k( n∏
i=2

(
1− x1

xi

)(
1− xi

xn+1

) n−1∏
i=2

(
1− xi

xi+1

))−1

is homogeneous of degree 0 in the variables x0, x1, . . . , xn+1, we can set x0 = 1 in (15).
Moreover, since every term in the expansion of (1 − xi/xn+1)

−1 has a negative power of
xn+1 except for the constant term 1, we can omit the factors involving xn+1 in (15). Then,
by the same argument, we can also omit the factors involving xn in (15) to obtain

ECarn+1(k) = [x2−n1 x−12 · · ·x−1n−1]
n−1∏
i=1

(
1− 1

xi

)−k n−1∏
i=2

(
1− x1

xi

)−1 n−2∏
i=2

(
1− xi

xi+1

)−1
.

By replacing xj by x−1n−j for each 1 6 j 6 n− 1 we have

ECarn+1(k) = [xn−2n−1xn−2 · · ·x1]
n−1∏
i=1

(1− xi)−k
n−2∏
i=1

(
1− xi

xn−1

)−1 n−3∏
i=1

(
1− xi

xi+1

)−1
,

which is equivalent to (14) by (11).

By Proposition 5, we can restate Theorems 1 and 2 as follows.

Theorem 6. We have

CTxn . . .CTx1

n∏
i=1

(1− xi)−k
n−1∏
i=1

(xi+1 − xi)−1 =
1

kn− 1

(
(k + 1)n− 2

n

)
.

Theorem 7. We have

CTxn . . .CTx1

1

x1

n∏
i=1

(1− xi)−k
n−1∏
i=1

(xn − xi)−1
n−2∏
i=1

(xi+1 − xi)−1

=
1

k(n+ 1) + n− 2

(
kn+ k + 2n− 3

n

)(
n+ k − 2

k − 1

)
.
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Figure 3: A 5-labeled Dyck path of length 20. The labels of every consecutive down-steps
must be in weakly decreasing order.

0

5 3

0

4

2

0

0 1

11 1 1

1

2

3 3

3 4

4

5

5

5 5

(0, 0) (20, 0)

Figure 4: A doubly 5-labeled Dyck path of length 20. The down-steps labeled 0 and the
up-steps are the red steps and their additional labels are written in red. The red labels
must be in weakly increasing order.

3 Labeled Dyck Paths

In this section we give combinatorial meanings to the constant terms in Theorems 6 and
7 using labeled Dyck paths.

A Dyck path of length 2n is a lattice path from (0, 0) to (2n, 0) consisting of up-steps
(1, 1) and down-steps (1,−1) lying on or above the line y = 0. The set of Dyck paths of
length 2n is denoted by Dyckn.

Let k be a positive integer. A k-labeled Dyck path is a Dyck path with a labeling
on the down-steps such that the label of each down-step is an integer 0 6 i 6 k and
the labels of any consecutive down-steps are in weakly decreasing order, see Figure 3. A
doubly k-labeled Dyck path is a k-labeled Dyck path together with an additional labeling
on the down-steps labeled 0 and the up-steps with integers from {1, 2, . . . , k} such that
the additional labels on these steps are weakly increasing, see Figure 4.

We denote by Dyckn(k) (resp. Dyck(2)
n (k)) the set of k-labeled Dyck paths (resp. doubly

k-labeled Dyck paths) of length 2n. We also denote by Dyckn(k, d) the set of k-labeled
Dyck paths of length 2n with exactly d down-steps labeled 0.

A multiset is a set with repetitions allowed. Let
((

n
m

))
:=
(
n+m−1

m

)
. Then

((
n
m

))
is the

number of multisets with m elements taken from [n]. Equivalently,
((

n
m

))
is the number of
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nonnegative integer solutions (a1, a2, . . . , an) to a1+a2+ · · ·+an = m and also the number
of m-tuples (i1, i2, . . . , im) of nonnegative integers satisfying 1 6 i1 6 i2 6 . . . 6 im 6 n.
The following proposition is immediate from the definitions of Dyck(2)

n (k) and Dyckn(k, d).

Proposition 8. We have

|Dyck(2)
n (k)| =

n∑
d=0

|Dyckn(k, d)|
((

k

n+ d

))
.

We now show that the constant terms in Theorems 6 and 7 have the following combi-
natorial interpretations.

Theorem 9. We have

CTxn . . .CTx1

n∏
i=1

(1− xi)−k
n−1∏
i=1

(xi+1 − xi)−1 = |Dyckn−1(k, 0)|.

Proof. Consider that we choose xai1i xai2i · · ·x
aik
i in (1− xi)−k = (1 + xi + x2i + · · · ) · · · (1 +

xi + x2i + · · · ) for i = 1, 2, . . . , n and we choose xbii /x
bi+1
i+1 in (xi+1 − xi)

−1 = 1/xi+1 +

xi/x
2
i+1 + x2i /x

3
i+1 + · · · for i = 1, 2, . . . , n− 1. Then

∏n
i=1(1− xi)−k

∏n−1
i=1 (xi+1 − xi)−1 =∑∏n

i=1(x
ai1+···+aik+bi−bi−1−1
i ), where the sum is over all nonnegative integers aij, bi for

1 6 i 6 n and 1 6 j 6 k with b0 = −1 and bn = 0. Hence the left-hand side is the
number of the nonnegative integer solutions to the equations ai1 + · · ·+aik = bi−1− bi + 1
for i = 1, 2, . . . , n with b0 = −1, bn = 0. If we set ri = bi−1−bi+1, so that r1+r2+· · ·+rj =
j + b0 − bj 6 j − 1, then the number of solutions is

∑∏n
i=1

((
k
ri

))
, where the sum is over

all nonnegative integers r1, . . . , rn with r1 + · · · + rj 6 j − 1 for j = 1, 2, . . . , n − 1 and
r1 + · · ·+ rn = n− 1. For such an n-tuple (r1, . . . , rn), let D be the Dyck path of length
2(n− 1) such that the number of consecutive down-steps after the ith up-step is ri+1 for
i = 1, . . . , n−1. The map (r1, . . . , rn) 7→ D is a bijection from the set of n-tuples satisfying
the above conditions to Dyckn−1. Under this correspondence,

∏n
i=1

((
k
ri

))
is the number

of k-labeled Dyck paths in Dyckn−1(k, 0) whose underlying Dyck path is D. Therefore we
obtain the result.

Theorem 10. We have

CTxn . . .CTx1

1

x1

n∏
i=1

(1− xi)−k
n−1∏
i=1

(xn − xi)−1
n−2∏
i=1

(xi+1 − xi)−1 = |Dyck
(2)
n−1(k)|.

Proof. Similarly to the previous theorem, considering xai1i xai2i · · ·x
aik
i in (1 − xi)

−k and
xbii /x

bi+1
i+1 in (xi+1−xi)−1 and xcii /x

ci+1
n in (xn−xi)−1, we get that the left-hand side is the

number of the nonnegative integer solutions to the equations ai1+· · ·+aik+bi+ci = 1+bi−1
for i = 1, 2, . . . , n − 1 and an1 + · · · + ank + bn + cn = n − 1 + c1 + · · · + cn−1 with
b0 = bn−1 = bn = cn = 0. If we set ri = bi−1 − bi + 1 for i = 1, 2, . . . , n − 1, then
the number of solutions is

∑
ri,ci

∏n−1
i=1

((
k

ri−ci

))((
k

n−1+c1+···+cn−1

))
where the sum is over all

nonnegative integers ri, ci for i = 1, 2, . . . , n−1 with r1+ · · ·+rj 6 j for j = 1, 2, . . . , n−2
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and r1 + · · · + rn−1 = n− 1. For such an n-tuple (r1, . . . , rn), let D be the Dyck path of
length 2(n − 1) such that the number of consecutive down-steps after the ith up-step is
ri for i = 1, . . . , n − 1. The map (r1, . . . , rn) 7→ D is a bijection from the set of n-tuples
satisfying the above conditions to Dyckn−1. Regard

((
k

r−c

))
as the number of r-tuples

(i1, . . . , ir) of integers with k > i1 > . . . > ir−c > 1 and ir−c+1 = · · · = ir = 0. Then∑
ci

∏n−1
i=1

((
k

ri−ci

))((
k

n−1+c1+···+cn−1

))
, where the sum is over all nonnegative integers ci for

i = 1, 2, . . . , n − 1 with ci 6 ri, is the number of doubly k-labeled Dyck paths whose
underlying Dyck path is D. Therefore we obtain the result.

Note that by Proposition 8, we can compute the constant terms in Theorems 9 and
10 if we have a formula for the cardinality |Dyckn(k, d)|. Therefore our next step is to
find this number.

4 A cyclic lemma

Let Dyckn(k; a0, a1, . . . , ak) denote the set of k-labeled Dyck paths of length 2n such that
the number of down-steps with label i is ai for 0 6 i 6 k. In this section we prove the
following theorem using a cyclic lemma.

Theorem 11. We have

|Dyckn(k; a0, a1, . . . , ak)| = 1

n+ 1

k∏
i=0

((
n+ 1

ai

))
.

Remark 12. A parking function of length n is a tuple (p1, p2, . . . , pn) ∈ Zn
>0 with a

condition that qi 6 i for i = 1, 2, . . . , n where (q1, q2, . . . , qn) is the rearrangement of
(p1, p2, . . . , pn) in weakly increasing order. Let PFn be the set of parking function of
length n. There is a well-known bijection between PFn and n-labeled Dyck paths of
length 2n which the number of each label from 1 to n equals 1. Thus, using Theorem 11,
we have

|PFn| = |Dyckn(n; 0, 1, 1, . . . , 1)| = (n+ 1)n−1.

Remark 13. Recently, Yip [14, Theorem 3.18] considered a set Tk(n, i) of certain labeled
Dyck paths and found a simple formula for its cardinality using a cyclic lemma. Using
our notation, this set can be written

Tk(n, i) =
⋃

a0+···+ak−1=n−i

Dyckn(k + i− 1; a0, . . . , ak−1, 1
i).

The proof of Theorem 11 in this section is essentially the same as that in [14, Theorem
3.18].

A k-labeled Dyck word of length 2n is defined as a sequence w = w1 . . . w2n of letters
in {U,D0, D1, . . . , Dk} satisfying the following conditions:

• The number of U ’s is equal to n.
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• For any prefix w1 . . . wj, the number of U ’s is greater than or equal to the total
number of Di’s for 0 6 i 6 k.

• The labels of any consecutive Di’s are in weakly decreasing order, i.e., if wi = Da

and wi+1 = Db, then a > b.

Replacing each up step by U and each down step labeled i by Di is an obvious bijection
from k-labeled Dyck paths to k-labeled Dyck words. For example, the k-labeled Dyck
word corresponding to the k-labeled Dyck path in Figure 3 is

UD0UUUUD5UD3D0UUUD4D2D0D0UD1D1. (16)

From now on, we will identify k-labeled Dyck paths with k-labeled Dyck words using
this bijection. Note that Dyckn(k; a0, a1, . . . , ak) is then the set of k-labeled Dyck words
of length 2n in which the number of Di’s is equal to ai for 0 6 i 6 k. We can count such
words by using a well-known cyclic argument. We first need another definition.

An extended k-labeled word of length 2n + 1 is a sequence w = w1 . . . w2n+1 of letters
in {U,D0, D1, . . . , Dk} satisfying the following conditions:

• w1 = U .

• The number of U ’s is equal to n+ 1.

• The labels of any consecutive Di’s are in weakly decreasing order, i.e., if wi = Da

and wi+1 = Db, then a > b.

Define EWn(k) to be the set of all extended k-labeled words of length 2n + 1. For
w = w1 . . . w2n+1 ∈ EWn(k), we define the integer index(w) using the following algorithm.
Here, w = w1 . . . w2n+1 is cyclically ordered, which means that w1 is followed by w2, w2 is
followed by w3, and so on, and w2n+1 is followed by w1.

• Find a letter U followed by a Di for some 0 6 i 6 k in cyclic order and delete this
pair U and Di from w. Repeat this until there is only one letter left, which must
be U .

• If the remaining U is the jth U in the original word w then define index(w) = j.

We also define the shifting operator s : EWn(k)→ EWn(k) by

s(w) := wiwi+1 · · ·w2n+1w1 . . . wi−1,

where i is the largest integer with wi = U .

Example 14. Let w = UD1D0UUD1U ∈ EW3(1). Then by the algorithm,

UD1D0UUD1U → D0UUD1U → D0UU → U,

we get index(w) = 2 since the remaining U is the second U in w.
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Since the above algorithm treats the word w cyclically one can easily see that the
following lemma holds.

Lemma 15. For any element w ∈ EWn(k), we have

index(s(w)) ≡ index(w) + 1 mod n+ 1.

Observe that for w = w1w2 . . . w2n+1 ∈ EWn(k) we have w1 . . . w2n ∈ Dyckn(k) if and
only if index(w) = n + 1. Therefore, by Lemma 15, for each w ∈ EWn(k) there is a
unique integer 0 6 j 6 n such that sj(w) = w′U for some k-labeled Dyck word w′ of
length 2n. This defines a map p : EWn(k) → Dyckn(k) sending w to p(w) = w′. Again,
by Lemma 15, this is a (n+ 1)-to-1 map. Note that w and w′ have the same the number
of steps Di for each 0 6 i 6 k. We have proved the following proposition.

Proposition 16. There is an (n + 1)-to-1 map p : EWn(k) → Dyckn(k) preserving the
number of Di’s for 0 6 i 6 k.

We now can prove Theorem 11 easily.

Proof of Theorem 11. By Proposition 16, (n + 1)|Dyckn(k; a0, a1, . . . , ak)| is the number
of elements w ∈ EWn(k) in which Di appears ai times for 0 6 i 6 k. Since consecutive
Di’s are always ordered according to their subscripts, such elements w are obtained from
the sequence U . . . U of n+1 U ’s by inserting ai Di’s after U ’s in

((
n+1
ai

))
ways for 0 6 i 6 k

independently. Thus we have

(n+ 1)|Dyckn(k; a0, a1, . . . , ak)| =
k∏

i=0

((
n+ 1

ai

))
,

which completes the proof.

As corollaries we obtain formulas for |Dyckn(k, d)| and |Dyck
(2)
n−1(k)|.

Corollary 17. We have

|Dyckn(k, d)| = 1

n+ 1

((
n+ 1

d

))((
k(n+ 1)

n− d

))
.

Proof. By Theorem 11,

|Dyckn(k, d)| = 1

n+ 1

((
n+ 1

d

)) ∑
a1+···+ak=n−d

k∏
i=1

((
n+ 1

ai

))
.

The above sum is equal to the number of k-tuples (A1, . . . , Ak) of multisets such that
each element x ∈ Ai satisfies (n + 1)(i − 1) + 1 6 x 6 (n + 1)i and

∑k
i=1 |Ai| = n − d.

Since such a k-tuple is completely determined by A := A1 ∪ · · · ∪Ak, the sum is equal to((
k(n+1)
n−d

))
, the number of multisets of size n − d whose elements are in [k(n + 1)]. Thus

we obtain the formula.

the electronic journal of combinatorics 27(4) (2020), #P4.21 11



Corollary 18. We have

|Dyck
(2)
n−1(k)| = 1

k(n+ 1) + n− 2

(
kn+ k + 2n− 3

n

)(
n+ k − 2

k − 1

)
.

Proof. We will use the following standard notation in hypergeometric series:

2F1

(
a, b
c

; z

)
=
∑
i>0

(a)i(b)i
(c)i

zi

i!
,

where (a)i = a(a+ 1) . . . (a+ i− 1). By Proposition 8 and Corollary 17,

|Dyck
(2)
n−1(k)| =

n−1∑
d=0

|Dyckn−1(k, d)|
((

k

d+ n− 1

))

=
n−1∑
d=0

1

n

((
kn

n− d− 1

))((
n

d

))((
k

d+ n− 1

))
=

(kn+ n− 2)!(k + n− 2)!

n!(kn− 1)!(n− 1)!(k − 1)!
2F1

(
−n+ 1, k + n− 1
−kn− n+ 2

; 1

)
. (17)

By the Vandermonde summation formula [1, Corollary 2.2.3]

2F1

(
−n, b
c

; 1

)
=

(c− b)n
(c)n

,

we have

2F1

(
−n+ 1, k + n− 1
−kn− n+ 2

; 1

)
=

(−kn− 2n− k + 3)n−1
(−kn− n+ 2)n−1

=
(kn+ 2n+ k − 3)!

(kn+ n+ k − 2)!

(kn− 1)!

(kn+ n− 2)!
.

By (17) and the above equation, we obtain the result.

The constant term identities in Theorems 6 and 7 follow immediately from Theorems 9,
10 and Corollary 18. This completes the proof of Theorems 1 and 2 in the introduction.

5 More Properties of Labeled Dyck Paths

In this section we find volumes of flow polytopes of Pitman–Stanley graph PSn+1 and
caracol graph Carn+1 for certain flow vectors using Lidskii’s formula and k-labeled Dyck
prefixes.

A k-labeled Dyck prefix is the part of a k-labeled Dyck path from (0, 0) to (a, b) for
some point (a, b) in the path. The set of k-labeled Dyck prefixes from (0, 0) to (2n− i, i) is
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0

3 1

1

2

2

0 1

(0, 0)

(18, 2)

Figure 5: An element of Dyck20,2(3; 2, 3, 2, 1) whose steps are drawn in solid seg-
ments. By appending it with the two dashed down-steps, this element can be con-
sidered as an element in Dyck20(3). This labeled Dyck path can be expressed as
UD0UUUUD3UD1D1UUUD2D2D0UD1D0D0, where the last two D0 steps correspond
to the dashed down-steps.

denoted by Dyckn,i. We also denote by Dyckn,i(k; a0, a1, . . . , ak) the set of k-labeled Dyck
prefixes in Dyckn,i such that the number of down-steps labeled j is aj for 0 6 j 6 k.

Recall that Dyckn(k) is in bijection with the set of k-Dyck words of length 2n. There-
fore one can consider an element in Dyckn,i as a k-Dyck word of length 2n whose last i
letters are D0’s. See Figure 5.

Now we find the cardinality of Dyckn,i(k; a0, a1, . . . , ak).

Lemma 19. We have

|Dyckn,i(k; a0, a1, . . . , ak)| = i+ 1

n+ 1

k∏
j=0

((
n+ 1

aj

))
.

Proof. Let EWn,i(k) be the set of words w = w1 . . . w2n−i+1 of letters in {U,D0, . . . , Dk}
with w1 = U and exactly n+ 1 U ’s that satisfies the third condition of a k-labeled Dyck
word: the labels of any consecutive Di’s are in weakly decreasing order, i.e., if wi = Da

and wi+1 = Db, then a > b. For w ∈ EWn,i(k), an index candidate of w is an integer j
satisfying the following condition:

• Find a letter U followed by a Di for some 0 6 i 6 k in cyclic order and delete this
pair U and Di from w. Repeat this until there are i+ 1 letters left, which must be
all U ’s. Then the jth U in the original word w is one of the remaining U ’s.

Note that there are i+ 1 index candidates for any w ∈ EWn,i(k).
Let EW′

n,i(k) be the set of words obtained from a word w ∈ EWn,i(k) by adding i D0’s
to the left of the jth U in w for an index candidate j of w. Note that EW′

n,i(k) is a subset
of EWn(k) which is defined in Section 4. Thus every w′ ∈ EW′

n,i(k) has length 2n+1 and
the unique index index(w′) exists. Then by the map p defined in Proposition 16, there is
an (n+ 1)-to-1 map from EW′

n,i(k) to Dyckn,i(k). Since there are (i+ 1) ways to choose
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an index candidate for w ∈ EWn,i(k), we have

(i+ 1)
k∏

j=0

((
n+ 1

aj

))
= (n+ 1)|Dyckn,i(k; a0, a1, . . . , ak)|,

which completes the proof.

5.1 Volumes of flow polytopes for the Pitman–Stanley graph.

Recall that volFPSn+1(a
n) and volFPSn+1(a, b

n−1) were computed in [3] and [13]. In this
subsection using Lemma 19 we compute volFPSn+1(a1, . . . , ak, b

n−k) for 0 6 k 6 3. For
simplicity, we will consider PSn+2 instead of PSn+1.

Note that PSn+2 has 2n + 1 edges and t := (outdeg(1)− 1, . . . , outdeg(n + 1)− 1) =
(1, 1, . . . , 1, 0). Since PSn+2 |n+1 is the path graph on [n + 1] with edges (i, i + 1) for
1 6 i 6 n, one can easily see that KPSn+2 |n+1(s−t) = 1 for any sequence s > t. Moreover,
if s = (s1, . . . , sn+1) > t, then sn+1 = 0. Thus Lidskii’s formula (Theorem 3) implies

volFPSn+2(a1, . . . , an+1) =
∑

s1+···+sn=n
(s1,...,sn)>(1n)

(
n

s1, s2, . . . , sn

)
as11 . . . asnn .

Thus, we have

volFPSn+2(a1, . . . , ak, b
n−k+1)

=
∑

s1+···+sn=n
(s1,...,sn)>(1n)

(
n

s1, s2, . . . , sn

)
as11 . . . askk b

sk+1+···+sn

=
n∑

m=0

∑
s1+···+sk=m
(s1,...,sk)>(1k)

∑
sk+1+···+sn=n−m

(m,sk+1,...,sn)>(k,1n−k)

(
n

s1, s2, . . . , sn

)
as11 . . . askk b

n−m

=
n∑

m=0

(
n

m

)
bn−mAk,m(a1, . . . , ak)Bn,k,m, (18)

where

Ak,m(a1, . . . , ak) =
∑

s1+···+sk=m
(s1,...,sk)>(1k)

(
m

s1, s2, . . . , sk

)
as11 . . . askk ,

Bn,k,m =
∑

sk+1+···+sn=n−m
(m,sk+1,...,sn)>(k,1n−k)

(
n−m

sk+1, . . . , sn

)
.

The following lemma shows that Bn,k,m has a simple formula.

the electronic journal of combinatorics 27(4) (2020), #P4.21 14



Lemma 20. We have

Bn,k,m = (m− k + 1)(n− k + 1)n−m−1.

Proof. For a sequence (sk+1, . . . , sn) of nonnegative integers, we have sk+1 + · · · + sn =
n−m and (m, sk+1, . . . , sn) > (k, 1n−k) if and only if UDsnUDsn−1 . . . UDsk+1UkDm is a
Dyck path from (0, 0) to (2n, 0), or equivalently, UDsnUDsn−1 . . . UDsk+1 is a Dyck prefix
from (0, 0) to (2n −m − k,m − k). Moreover, if such a sequence (sk+1, . . . , sn) is given,(

n−m
sk+1,...,sn

)
is the number of ways to label the down steps of this Dyck prefix with labels

from {0, 1, . . . , n − m − 1} such that there is exactly one down step labeled j for each
0 6 j 6 n−m− 1 and the labels of consecutive down steps are in decreasing order. Thus

Bn,k,m = |Dyckn−k,m−k(n−m− 1; 1n−m)|.

By Lemma 19 we obtain the formula.

By (18) and Lemma 20, we obtain the following proposition.

Proposition 21. We have

volFPSn+2(a1, . . . , ak, b
n−k+1)

=
n∑

m=0

(
n

m

)
bn−m(m− k + 1)(n− k + 1)n−m−1Ak,m(a1, . . . , ak),

where

Ak,m(a1, . . . , ak) =
∑

s1+···+sk=m
(s1,...,sk)>(1k)

(
m

s1, s2, . . . , sk

)
as11 . . . askk .

By Proposition 21, in order to compute volFPSn+2(a1, . . . , ak, b
n−k+1), it is enough to

find Ak,m(a1, . . . , ak). For k = 0, 1, using this method we can easily recover the following
formulas in [3, 13]:

volFPSn+2(a
n+1) = an(n+ 1)n−1,

volFPSn+2(a, b
n) = a(a+ nb)n−1.

We now find a formula for this volume for volFPSn+2(a1, . . . , ak, b
n−k+1) for k = 2, 3.

Proposition 22. For positive integers a, b, and c, we have

volFPSn+2(a, b, c
n−1) = (a+ b− c)(a+ b+ (n− 1)c)n−1 − (b− c)(b+ (n− 1)c)n−1.

Proof. By Proposition 21,

volFPSn+2(a, b, c
n−1) =

n∑
m=0

(
n

m

)
cn−m(m− 1)(n− 1)n−m−1A2,m(a, b),
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where A2,0(a, b) = A2,1(a, b) = 0 and for m > 2,

A2,m(a, b) =
∑

i+j=m
(i,j)>(1,1)

(
m

i, j

)
aibj = (a+ b)m − bm.

Thus

volFPSn+2(a, b, c
n−1) =

n∑
m=2

(
n

m

)
cn−m ((a+ b)m − bm) (m− 1)(n− 1)n−m−1

=
1

n− 1

(
gn(a+ b, c(n− 1))− gn(b, c(n− 1))

− fn(a+ b, c(n− 1)) + fn(b, c(n− 1))
)
, (19)

where

fn(x, y) =
n∑

m=0

(
n

m

)
xmyn−m = (x+ y)n,

gn(x, y) =
n∑

m=0

m

(
n

m

)
xmyn−m = nx(x+ y)n−1.

Simplifying (19) we obtain the result.

In a similar way one can check A3,m(a, b, c) = (a + b + c)m − (b + c)m − acm−1 and
obtain the following proposition. We omit the details.

Proposition 23. For positive integers a, b, c, and d, we have

volFPSn+2(a, b, c, d
n−2) = (a+ b+ c− 2d)(a+ b+ c+ (n− 2)d)n−1

− (b+ c− 2d)(b+ c+ (n− 2)d)n−1 − na(c− d)(c+ (n− 2)d)n−2.

5.2 Volumes of flow polytopes for the caracol graph.

In [3], Benedetti et al. computed volFCarn+1(a
n) and volFCarn+1(a, b

n−1) using unified
diagrams and conjectured a formula for volFCarn+1(a, b, c

n−2), see Proposition 26 below.
In this subsection we prove their conjecture. As before, for simplicity, we consider Carn+2

instead of Carn+1.
The caracol graph Carn+2 has 3n− 1 edges and t′ := (outdeg(1)− 1, . . . , outdeg(n +

1)− 1) = (n− 1, 1, 1, . . . , 1, 0). Note that s = (s1, . . . , sn+1) > t′ implies sn+1 = 0. Thus,
by Lidskii’s formula,

volFCarn+2(a1, . . . , an+1)

=
∑

s1+···+sn=2n−2
(s1,...,sn)>(n−1,1n−1)

(
2n− 2

s1, . . . , sn

)
as11 . . . asnn KCarn+2 |n((s1, . . . , sn)− (n− 1, 1n−1)).
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Our goal is to find a formula for X := volFCarn+2(a, b, c
n−1). By the above equation,

X =
∑

s1+···+sn=2n−2
(s1,...,sn)>(n−1,1n−1)

(
2n− 2

s1, s2, . . . , sn

)
as1bs2cs3+···+sn

×KCarn+2 |n(s1 − n+ 1, s2 − 1, . . . , sn − 1).

By replacing s1 by s1 + n− 2, we obtain

X =
∑

s1+···+sn=n
(s1,...,sn)>(1n)

(
2n− 2

s1 + n− 2, s2, . . . , sn

)
as1+n−2bs2cs3+···+sn

×KCarn+2 |n(s1 − 1, . . . , sn − 1).

Considering p = s1, q = s2, and r = s3 + · · · + sn separately, we can rewrite the above
equation as

X =
∑

p+q+r=n
(p,q)>(1,1)

(
2n− 2

p+ n− 2, q, r

)
ap+n−2bqcrA(p, q, r), (20)

where

A(p, q, r) =
∑

s3+···+sn=r
(p,q,s3,...,sn)>(1n)

(
r

s3, . . . , sn

)
KCarn+2 |n(p− 1, q − 1, s3 − 1, . . . , sn − 1).

In the next two lemmas we find a formula for A(p, q, r) using labeled Dyck paths.
Note that every Dyck path of length 2n can be expressed uniquely as a sequence

UDdnUDdn−1 . . . UDd1 of up steps U and down steps D for some n-tuple (d1, . . . , dn) ∈ Zn
>0

such that d1 + · · · + dn = n and (d1, . . . , dn) > (1n). For nonnegative integers a1, . . . , an
whose sum is at most n, let

Dn(a1, . . . , an) := {UDdnUDdn−1 . . . UDd1 ∈ Dyckn : di > ai}.

Lemma 24. Let (s1, . . . , sn) ∈ Zn
>0 with

∑n
i=1 si = n and (s1, . . . , sn) > (1n). Then

KCarn+2 |n(s1 − 1, . . . , sn − 1) = |Dn−1(s2, . . . , sn)|.

Proof. Note that Carn+2 |n is a directed graph on [n] with edges (1, i) for 2 6 i 6
n and (j, j + 1) for 2 6 j 6 n − 1. By definition of Kostant partition function,
KCarn+2 |n((s1, . . . , sn) − (1n)) is the number of nonnegative integer solutions {b1,i, bj,j+1 :
2 6 i 6 n, 2 6 j 6 n− 1} satisfying

b1,2 + b1,3 + · · ·+ b1,n = s1 − 1,

b2,3 − b1,2 = s2 − 1,

bj,j+1 − bj−1,j − b1,j = sj − 1, (3 6 j 6 n),
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where bn,n+1 = 0. The above equations are equivalent to

b1,2 + b1,3 + · · ·+ b1,n = s1 − 1,

bj,j+1 = (s2 + · · ·+ sj) + (b1,2 + · · ·+ b1,j)− (j − 1), (2 6 j 6 n).

Thus the integers bj,j+1 for 2 6 j 6 n − 1 are completely determined by the integers b1,i
for 2 6 i 6 n. Moreover, the condition bj,j+1 > 0 for 2 6 j 6 n − 1 is equivalent to
(s2, . . . , sn) + (b12, . . . , b1n) > (1n−1) in dominance order. Hence KCarn+2 |n((s1, . . . , sn) −
(1n)) is the number of (n−1)-tuples (b12, b13, . . . , b1n) ∈ Zn−1

>0 such that b12+b13+· · ·+b1n =
s1 − 1 and (s2, . . . , sn) + (b12, . . . , b1n) > (1n−1).

Now let di = si+1+b1,i+1 for 1 6 i 6 n−1. Then we can expressKCarn+2 |n((s1, . . . , sn)−
(1n)) as the number of (n − 1)-tuples (d1, . . . , dn−1) ∈ Zn−1

>0 such that d1 + · · · + dn−1 =
n − 1, (d1, . . . , dn−1) > (1n−1) and di > si+1 for 1 6 i 6 n − 1. Since the condition
(d1, . . . , dn−1) > (1n−1) is equivalent to the condition UDdn−1UDdn−2 · · ·UDd1 ∈ Dyckn−1,
we obtain the desired result.

Lemma 25. Let p, q and r be fixed nonnegative integers with p + q + r = n and (p, q) >
(1, 1). Then

A(p, q, r) = (p+ q − 1)

(
n+ p− 2

n− 1

)
(n− 1)r−1 −

(
n+ p− 2

n

)
(n− 1)r.

Proof. By Lemma 24,

A(p, q, r) =
∑

s3+···+sn=r
(p,q,s3,...,sn)>(1n)

(
r

s3, . . . , sn

)
|Dn−1(q, s3, . . . , sn)|.

We will give a combinatorial interpretation of each summand in the above formula
using labeled Dyck paths. Let s3, . . . , sn be nonnegative integers satisfying s3 + · · ·+sn =
r and (p, q, s3, . . . , sn) > (1n). Consider a Dyck path π = UDdn−1UDdn−2 . . . UDd1 ∈
Dn−1(q, s3, . . . , sn). Then d1 > q and di > si+1 for 2 6 i 6 n− 1. Now we label the down
steps of π except the last consecutive down steps Dd1 as follows:

• Distribute the r labels 1, 2, . . . , r, each label occurring exactly once, to the sequences
Ddn−1 , Ddn−2 , . . . , Dd2 consecutive down steps of π so that the sequence Ddi gets si+1

labels. There are
(

r
s3,...,sn

)
ways to do this.

• Add di − si+1 zero labels to the sequence Ddi and arrange the labels in weakly
decreasing order.

By this process, we obtain that
(

r
s3,...,sn

)
|Dn−1(q, s3, . . . , sn)| is the number of Dyck paths

π = UDdn−1UDdn−2 . . . UDd1 together with a labeling on the down steps except the last
consecutive down steps Dd1 satisfying the following conditions:

1. di > si+1 for 2 6 i 6 n− 1.
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2. q 6 d1 6 n− 1− r.

3. The number of down steps labeled i is 1 for 1 6 i 6 r.

4. The number of down steps labeled 0 is n− 1− r − d1.

5. The labels of any consecutive down steps are weakly decreasing.

Summing over all possible s3, . . . , sn we obtain that A(p, q, r) is the number of Dyck
paths π = UDdn−1UDdn−2 . . . UDd1 together with a labeling on the down steps of its
prefix UDdn−1UDdn−2 . . . UDd2 from (0, 0) to (2n − 3 − d1, d1 − 1) satisfying the above
conditions except (1). This implies

A(p, q, r) =
n−1−r∑
d1=q

|Dyckn−2,d1−1(r;n− 1− r − d1, 1r)|.

By Lemma 19,

A(p, q, r) =
n−1−r∑
d1=q

d1
n− 1

((
n− 1

n− 1− r − d1

))
(n− 1)r

= (n− 1)r−1
n−1−r∑
d1=q

d1

(
2n− 3− r − d1

n− 2

)
.

Replacing d1 by n− 1− r − i, we have

A(p, q, r) = (n− 1)r−1
p−1∑
i=0

(n− 1− r − i)
(
n− 2 + i

n− 2

)
.

Since

(n− 1− r − i)
(
n− 2 + i

n− 2

)
= ((2n− 2− r)− (n− 1 + i))

(
n− 2 + i

n− 2

)
= (2n− 2− r)

(
n− 2 + i

n− 2

)
− (n− 1)

(
n− 1 + i

n− 1

)
= (n− 1− r)

(
n− 2 + i

n− 2

)
− (n− 1)

(
n− 2 + i

n− 1

)
,

we have

A(p, q, r) = (n− 1)r−1

(
(p+ q − 1)

p−1∑
i=0

(
n− 2 + i

n− 2

)
− (n− 1)

p−2∑
i=0

(
n− 1 + i

n− 1

))
.

Finally the identity
∑k

i=0

(
m+i
m

)
=
(
m+k+1
m+1

)
finishes the proof.
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Now we are ready to compute X = volFCarn+2(a, b, c
n−1).

Proposition 26. [3, Conjecture 6.16] For positive integers a, b, and c, we have

volFCarn+2(a, b, c
n−1) = Cn−1a

n−1(a+ nb)(a+ b+ (n− 1)c)n−2.

Proof. By (20) and Lemma 25, we have

volFCarn+2(a, b, c
n−1) = X = Y − Z,

where

Y =
∑

p+q+r=n
(p,q)>(1,1)

(
2n− 2

p+ n− 2, q, r

)
ap+n−2bqcr(p+ q − 1)

(
n+ p− 2

n− 1

)
(n− 1)r−1,

Z =
∑

p+q+r=n
(p,q)>(1,1)

(
2n− 2

p+ n− 2, q, r

)
ap+n−2bqcr

(
n+ p− 2

n

)
(n− 1)r.

Note that in the above two sums, the condition (p, q) > (1, 1) can be omitted since the
summand is zero if p = 0 or (p, q) = (1, 0). Thus

Y =
an−1

n− 1

(
2n− 2

n− 1

) ∑
p+q+r=n

(p+ q − 1)

(
n− 1

p− 1, q, r

)
ap−1bq(c(n− 1))r,

Z =
∑

p+q+r=n

(
2n− 2

p+ n− 2, q, r

)
ap+n−2bqcr

(
n+ p− 2

n

)
(n− 1)r

= an
(

2n− 2

n

) ∑
p+q+r=n

(
n− 2

p− 2, q, r

)
ap−2bq(c(n− 1))r.

Using the multinomial theorem∑
i+j+k=m

(
m

i, j, k

)
xiyjzkti+j = (xt+ yt+ z)m,

and its derivative with respect to t, i.e,∑
i+j+k=m

(i+ j)

(
m

i, j, k

)
xiyjzkti+j−1 = m(x+ y)(xt+ yt+ z)m−1,

we obtain

Y = Cn−1a
n−1n(a+ b)(a+ b+ (n− 1)c)n−2,

Z = Cn−1a
n(n− 1)(a+ b+ (n− 1)c)n−2,

and the proof follows.
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[7] K. Mészáros and A. H. Morales. Volumes and Ehrhart polynomials of flow polytopes.
arXiv:1710.00701.
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