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Abstract

A graph on 2k + 1 vertices consisting of k triangles which intersect in exactly
one common vertex is called a k−friendship graph and denoted by Fk. This paper
determines the graphs of order n that have the maximum (adjacency) spectral radius
among all graphs containing no Fk, for n sufficiently large.
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1 Introduction

In this paper, we consider only simple and undirected graphs. Let G be a simple connected
graph with vertex set V (G) = {v1, . . . , vn} and edge set E(G) = {e1, . . . , em}. Let d(vi)
(or dG(vi)) be the degree of a vertex v in G. The adjacency matrix of G is A(G) = (aij)n×n
with aij = 1 if two vertices vi and vj are adjacent in G, and aij = 0 otherwise. The largest
eigenvalue of A(G), denoted by λ(G) or λ1(G), is called the spectral radius of G. The
spectral radius of a graph gives some information about how dense the graph is. For
example, it is well-known that the average degree of G is at most λ1(G) which is at most
the maximum degree of G.

In spectral graph theory, Brualdi and Solheid [5] proposed the following problem:
Given a set of graphs, try to find a tight upper bound for the spectral radius in this set
and characterize all extremal graphs. This problem is widely studied in the literature for
many classes of graphs, such as graphs with a given number of cut vertices [3], diameter
[8, 18], radius [18], domination number [29], size [28], Euler genus [9], and clique or
independence number [30], and additionally for subgraphs of the hypercube [4].

The following problem regarding the adjacency spectral radius was proposed in [25]:
What is the maximum spectral radius of a graph G on n vertices without a subgraph
isomorphic to a given graph F? Fiedler and Nikiforov [13] obtained tight sufficient condi-
tions for graphs to be Hamiltonian or traceable. Additionally, Nikiforov obtained spectral
strengthenings of Turán’s theorem [24] and the Kővari-Sós-Turán theorem [22] when the
forbidden graphs are complete or complete bipartite respectively. This motivates further
study for such question, see [12, 13, 20, 23, 25].

The Turán number of a graph F is the maximum number of edges that may be in
an n-vertex graph without a subgraph isomorphic to F , and is denoted by ex(n, F ). A
graph on n vertices with no subgraph F and with ex(n, F ) edges is called an extremal
graph for F and we denote by Ex(n, F ) the set of all extremal graphs on n vertices for F .
Understanding ex(n, F ) and Ex(n, F ) for various graphs F is a cornerstone of extremal
graph theory (see [2, 7, 11, 14, 15, 17, 27] for surveys).

A graph on 2k + 1 vertices consisting of k triangles which intersect in exactly one
common vertex is called a k−friendship graph (also known as a k-fan) and denoted by Fk.

In [10], the following result is proved.

Theorem 1. [10] For every k > 1, and for every n > 50k2, if a graph G of order n
satisfies e(G) > ex(n, Fk), then G contains a copy of a k−friendship graph, where

ex(n, Fk) =

⌊
n2

4

⌋
+

{
k2 − k if k is odd,
k2 − 3

2
k if k is even.

The extremal graphs Gi
n,k (i = 1, 2) of Theorem 1 are as follows. For odd k (where

n > 4k − 1) G1
n,k is constructed by taking a complete bipartite graph with color classes

of size dn
2
e and bn

2
c and embedding two vertex disjoint copies of Kk in one side. For even

k (where now n > 4k − 3) G2
n,k is constructed by taking a complete equi-bipartite graph

and embedding a graph with 2k − 1 vertices, k2 − 3
2
k edges with maximum degree k − 1

in one side. The graphs G1
n,k is unique up to isomorphism, but G2

n,k is not.
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Our goal is to give the spectral counterpart of Theorem 1. As the case k = 1 is just
Mantel’s theorem, whose spectral version is also known (see [21]) so we consider k > 2.
The main result of this paper is the following.

Theorem 2. Let G be a graph of order n that does not contain a copy of a k−friendship
graph, k > 2. For sufficiently large n, if G has the maximal spectral radius, then

G ∈ Ex(n, Fk).

We note that one may form an equitable partition of a graph in Ex(n, Fk) and deter-
mine its spectral radius as the root of a degree 3 (if k is odd) or degree 4 (if k is even)
polynomial. We at last point out that, during our proof, we use the triangle removal
lemma, so it is difficult to present exactly how large we need our n to be.

2 Some Lemmas

Let G be a simple graph with matching number β(G) and maximum degree ∆(G). For
given two integers β and ∆, define f(β,∆) = max{|E(G)| : β(G) 6 β,∆(G) 6 ∆}.
Chvátal and Hanson [6] obtained the following result.

Theorem 3 (Chvátal and Hanson [6]). For every two positive integers β > 1 and ∆ > 1,
we have

f(β,∆) = ∆β +

⌊
∆

2

⌋⌊
β

d∆/2e

⌋
6 ∆β + β.

We will frequently use the following special case proved by Abbott, Hanson and
Sauer [1]:

f(k − 1, k − 1) =

{
k2 − k if k is odd,
k2 − 3

2
k if k is even.

The extremal graphs are exactly those we embedded into the Turán graph Tn,2 to obtain
the extremal Fk-free graph Gi

n,k (i = 1, 2).
Essential to our proof are the following two lemmas: the triangle removal lemma and

a stability result of Füredi.

Lemma 4 (Triangle Removal Lemma [10, 14, 26]). For each ε > 0, there exists an
N = N(ε) and δ > 0 such that every graph G on n vertices with n > N with at most δn3

triangles can be made triangle-free by removing at most εn2 edges.

Lemma 5 (Füredi [16]). Suppose that K3 * G, |V (G)| = n, s > 0 and e(G) = e(Tn,2)−s.
Then there exists a bipartite subgraph H, E(H) ⊆ E(G) such that e(H) > e(G)− s.

The following lemma is needed in the sequel.

Lemma 6. For any positive integer n, we have

n

2
−
√⌈n

2

⌉ ⌊n
2

⌋
<

1

n
.
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3 The Proof of Theorem 2

Let Gn,k be the set of all Fk-free graphs of order n. Let G ∈ Gn,k be a graph on n vertices
with maximum spectral radius. The aim of this section is to prove that e(G) = ex(n, Fk)
for n large enough.

First note that G must be connected. Let λ1 be the spectral radius of G and let x be
a positive eigenvector for it. We may normalize x so that it has maximum entry equal
to 1, and let z be a vertex such that xz = 1. We prove the theorem iteratively, giving
successively better lower bounds on both e(G) and the eigenvector entries of all of the
other vertices, until finally we can show that e(G) = ex(n, Fk).

Let H ∈ Ex(n, Fk). Then since G is the graph maximizing the spectral radius over all
Fk-free graphs, in view of Theorem 1, we must have

λ1(G) > λ1(H) >
1TA(H)1

1T1
= 2

⌈
n
2

⌉ ⌊
n
2

⌋
+ f(k − 1, k − 1)

n
>
n

2
. (1)

The proof of Theorem 2 is outlined as follows.

• We give a lower bound on e(G) as a function of λ1 and the number t of triangles in
G, which on first approximation gives a bound of roughly n2

4
−O(kn).

• Using the triangle removal lemma and Füredi’s stability result, we show that G has
a very large maximum cut.

• We show that no vertex has many neighbors on its side of the partition, and then
we refine this by considering eigenvector entries to show that in fact no vertex has
more than a constant number of neighbors on its side of the partition.

• We show that no vertices have degree much smaller than n
2
, and this allows us to

refine our lower bound on both e(G) and on the eigenvector entry of each vertex.

• Once we know that all vertices have eigenvector entry very close to 1, we may show
that the partition is balanced. This shows that G can be converted to a graph in
Ex(n, Fk) by adding or removing a constant number of edges, and this allows us to
show that e(G) = ex(n, Fk).

We now proceed with the details. First we prove a lemma which gives a lower bound
on e(G) in terms of λ1 and the number of triangles in G.

Lemma 7. If G has t triangles, then

e(G) > λ21 −
3t

λ1
.

Proof. Let λ1 be the spectral radius of G and let x be a positive eigenvector scaled such
that it has maximum entry equal to 1, and let z be a vertex with maximum eigenvector
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entry i.e., xz = 1. Then λ1xu =
∑

v∼u xv and λ21xu =
∑

v∼u λ1xv =
∑

v∼u
∑

w∼v xw. We
consider the following triple sum:∑

u∈V

λ21xu =
∑
u∈V

∑
v∼u

∑
w∼v

xw.

The sum counts over all ordered walks on three vertices (with possible repetition), and
is weighted by the eigenvector entry of the last vertex. Instead of summing over ordered
triples of vertices, we count by considering the first edge in the walk. If a given walk has
first edge uv, then xw will be counted by this edge exactly once if w is adjacent to exactly
one of u or v and exactly twice if {u, v, w} forms a triangle. Therefore, the sum is equal
to

∑
uv∈E

2
∑
wu∈E
wv∈E

xw +
∑
wu∈E
wv 6∈E

xw +
∑
wv∈E
wu6∈E

xw

 =
∑
uv∈E

∑
wu∈E
wv∈E

xw +
∑
wu∈E
wv 6∈E

xw +
∑
wv∈E

xw


6

∑
uv∈E

∑
wu∈E
wv∈E

xw +
∑
wv 6∈E

xw +
∑
wv∈E

xw


6

∑
uv∈E

∑
wu∈E
wv∈E

xw +
∑
w∈V

xw


6

∑
uv∈E

∑
wu∈E
wv∈E

1 +
∑
w∈V

xw


= 3t+ e(G)

∑
w∈V

xw.

Hence

e(G) > λ21 −
3t∑

w∈V xw
.

On the other hand,

λ1 = λ1xz =
∑
w∼z

xw 6
∑
w∈V

xw.

Therefore

e(G) > λ21 −
3t∑

w∈V xw
> λ21 −

3t

λ1
.

So the assertion holds.

Corollary 8. If the number of triangles of G is t, then

e(G) > λ21 −
6t

n
.
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Proof. In view of inequality (1), and the function f(x) = λ21 − 3t
x

is strictly increasing
with respect to x, the assertion follows.

Lemma 9. Suppose the matching number of a graph H of order n is at most k−1. Then
e(H) 6 kn, i.e., ex(n,Mk) 6 kn, where Mk is a matching of size k.

Proof. By Theorem 3, e(H) 6 f(k − 1, n− 1) 6 (k − 1)(n− 1 + 1) < kn.

Lemma 10. Let ε and δ be fixed positive constants with δ < 1
10(k+1)2

, ε < δ2

16
. There exists

an N(ε, δ, k) such that G has a partition V = S ∪ T which gives a maximum cut, and

e(S, T ) >

(
1

4
− ε
)
n2

for n > N(ε, δ, k). Furthermore(
1

2
−
√
ε

)
n 6 |S|, |T | 6

(
1

2
+
√
ε

)
n.

Proof. Since G is Fk-free, the neighborhood of any vertex does not have Mk (a matching
of size k) as a subgraph. Thus by Lemma 9, we can obtain the following upper bound for
the number of triangles,

3t =
∑

v∈V (G)

e(G[N(v)]) 6
∑

v∈V (G)

ex(d(v) + 1,Mk) 6
∑

v∈V (G)

ex(n,Mk) 6
∑

v∈V (G)

kn = kn2.

This gives t 6 kn2

3
. So t 6 k

3n
n3 6 δn3 for n > N2 > k

3δ
. From Corollary 8, we obtain

e(G) >
n2

4
− 2kn. (2)

By Lemma 4, there exists an N1(ε, k) such that the graph G1 obtained from G by deleting
at most 1

10
εn2 edges is K3-free. For N = max{N1, N2}, the size of the graph G1 of order

n > N satisfies e(G1) > e(G) − 1
10
εn2. Note that e(G1) 6 e(Tn,2) by Turán’s Theorem.

Define
s , e(Tn,2)− e(G1) > 0.

By Lemma 5, G1 contains a bipartite subgraph G2 such that e(G2) > e(G1)− s. Hence,
for n sufficiently large, we have

e(G2) > e(G1)− s
= 2e(G1)− e(Tn,2)

> 2e(G)− e(Tn,2)−
1

5
εn2

> 2

(
n2

4
− 2kn

)
− n2

4
− 1

5
εn2
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>

(
1

4
− ε
)
n2.

Therefore, G has a partition V = S ∪ T which gives a maximum cut such that

e(S, T ) > e(G2) >

(
1

4
− ε
)
n2. (3)

Furthermore, without loss of generality, we may assume that |S| 6 |T |. If |S| < (1
2
−
√
ε)n,

then |T | = n− |S| > (1
2

+
√
ε)n. So

e(S, T ) 6 |S||T | <
(

1

2
−
√
ε

)
n

(
1

2
+
√
ε

)
n =

(
1

4
− ε
)
n2,

which contradicts to Eq. (3). Therefore it follows that(
1

2
−
√
ε

)
n 6 |S|, |T | 6

(
1

2
+
√
ε

)
n.

Hence the assertion holds.

Lemma 11. Let k > 2. Denote by

L :=

{
v : d(v) 6

(
1

2
− 1

4(k + 1)

)
n

}
.

Then
|L| 6 16k2.

Proof. Suppose that |L| > 16k2. Then let L′ ⊆ L with |L′| = 16k2. Then it follows that

e(G− L′) > e(G)−
∑
v∈L′

d(v)

>
n2

4
− 2kn− 16k2

(
1

2
− 1

4(k + 1)

)
n

>
(n− 16k2)2

4
+ k2.

for n a sufficiently large constant depending only on k, where the second inequality is by
(2). Hence by Theorem 1, G− L′ contains Fk, which implies that G contains Fk. So the
assertion holds.

We will also need the following lemma which can be proved by induction or double
counting.

Lemma 12. Let A1, · · · , Ap be p finite sets. Then

|A1 ∩ A2 ∩ · · · ∩ Ap| >
p∑
i=1

|Ai| − (p− 1)

∣∣∣∣∣
p⋃
i=1

Ai

∣∣∣∣∣ . (4)
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For a vertex v, let dS(v) = |N(v) ∩ S| and dT (v) = |N(v) ∩ T |, and let

W := {v ∈ S : dS(v) > δn} ∪ {v ∈ T : dT (v) > δn}

be the set of vertices that have many neighbors which are not in the cut. Let L be as in
Lemma 11, that is

L =

{
v : d(v) 6

(
1

2
− 1

4(k + 1)

)
n

}
.

Next we show that actually W and L are empty.

Lemma 13. For the above W , we have

|W | < 2ε

δ
n+

2k2

δn
,

and W \ L is empty.

Proof. Note that e(S, T ) >
(
1
4
− ε
)
n2 by Lemma 10, and e(G) 6 ex(n, Fk) 6 n2

4
+ k2 by

Theorem 1. Hence

e(S) + e(T ) = e(G)− e(S, T ) 6
n2

4
+ k2 −

(
1

4
− ε
)
n2 = εn2 + k2. (5)

On the other hand, if we let W1 = W ∩ S and W2 = W ∩ T , then we deduce

2e(S) =
∑
u∈S

dS(u) >
∑
u∈W1

dS(u) > |W1|δn, 2e(T ) =
∑
u∈T

dT (u) >
∑
u∈W2

dT (u) > |W2|δn.

So

e(S) + e(T ) > (|W1|+ |W2|)
δn

2
=
|W |δn

2
. (6)

By (5) and (6), we get
|W |δn

2
6 εn2 + k2,

i.e.,

|W | 6 2(εn2 + k2)

δn
. (7)

Suppose that W \ L 6= ∅. We now prove that this is impossible.
Let L1 = L ∩ S and L2 = L ∩ T . Without loss of generality, there exists a vertex

u ∈ W1 \ L1. Since S and T form a maximum cut, dT (u) > 1
2
d(u). On the other hand,

u 6∈ L because u ∈ W1 \ L1. Therefore d(u) >
(

1
2
− 1

4(k+1)

)
n. So

dT (u) >
1

2
d(u) >

(
1

4
− 1

8(k + 1)

)
n.
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On the other hand, |L| 6 16k2. Hence, for fixed δ < 1
10(k+1)2

, ε < δ2

16
and sufficiently large

n, we have

|S \ (W ∪ L)| >
(

1

2
−
√
ε

)
n− δn− 2k2

δn
− 16k2 >

(
1

2
−
√
ε− δ

)
n− 18k2 > k.

Suppose that u is adjacent to k vertices u1, . . . , uk in S \ (W ∪ L). Since ui 6∈ L,

we have d(ui) >
(

1
2
− 1

4(k+1)

)
n. On the other hand, dS(ui) 6 δn by ui /∈ W . So

dT (ui) = d(ui)− dS(ui) >
(

1
2
− 1

4(k+1)
− δ
)
n. By Lemma 12, we have

|NT (u) ∩NT (u1) ∩ · · · ∩NT (uk)|
> |NT (u)|+ |NT (u1)|+ . . .+ |NT (uk)| − k|NT (u) ∪NT (u1) ∪ · · · ∪NT (uk)|
> dT (u) + dT (u1) + · · ·+ dT (uk)− k|T |

>

(
1

4
− 1

8(k + 1)

)
n+

(
1

2
− 1

4(k + 1)
− δ
)
n · k − k

(
1

2
+
√
ε

)
n

=

(
1

8(k + 1)
− kδ − k

√
ε

)
n > k

for sufficiently large n, where the last inequality is from δ < 1
10(k+1)2

and ε < δ2

16
. So

there exist k vertices v1, . . . vk in T such that the induced subgraph by two partitions
{u1, . . . , uk} and {v1, . . . , vk} is complete bipartite. It follows that G contains Fk, this is
a contradiction. Therefore u is adjacent to at most k − 1 vertices in S \ (W ∪ L). Hence,
in view of ε < δ2

16
, we have

dS(u) 6 |W |+ |L|+ k − 1

<
2ε

δ
n+

2k2

δn
+ 16k2 + k − 1

<
2δ

3
n+

2k2

δn
+ 17k2

< δn

for sufficiently large n. This is a contradiction to the fact that u ∈ W . Similarly, there is
no vertex u ∈ W2 \ L2, Hence W \ L = ∅.

Lemma 14. L is empty, and both G[S] and G[T ] are K1,k and Mk-free.

Proof. We will prove the result from the following two claims.
Claim 1: There exist independent sets IS ⊆ S and IT ⊆ T such that

|IS| > |S| − 18k2, and |IT | > |T | − 18k2.

Indeed, let u1, . . . , u2k ∈ S \ L. Then ui /∈ L which implies

d(ui) >

(
1

2
− 1

4(k + 1)

)
n.
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By Lemma 13, dS(ui) 6 δn. Hence

dT (ui) = d(ui)− dS(ui) >

(
1

2
− 1

4(k + 1)
− δ
)
n.

Furthermore, by Lemma 12, we have∣∣∣∣∣
2k⋂
i=1

NT (ui)

∣∣∣∣∣ >
2k∑
i=1

|NT (ui)| − (2k − 1)

∣∣∣∣∣
2k⋃
i=1

NT (ui)

∣∣∣∣∣
>

(
1

2
− 1

4(k + 1)
− δ
)
n · 2k − (2k − 1)

(
1

2
+
√
ε

)
n

=

(
1

2(k + 1)
− 2kδ − (2k − 1)

√
ε

)
n

> k

for sufficiently large n. Hence there exist k vertices v1, . . . , vk such that the induced
subgraph by two partitions {u1, . . . , u2k} and {v1, . . . , vk} is a complete bipartite graph.
So G[S \ L] is both K1,k and Mk-free, otherwise G contains Fk, i.e., uu1v1, . . . uukvk for
d(u) > k, or v1u1u2, . . . , v1u2k−1u2k for {u1u2, . . . u2k−1u2k} being a matching of size k.
Hence the maximum degree and the maximum matching number of G[S \L] are at most
k − 1, respectively. By Theorem 3,

e(G[S \ L]) 6 f(k − 1, k − 1).

The same argument gives

e(G[T \ L]) 6 f(k − 1, k − 1).

Since G[S \L] has at most f(k−1, k−1) edges, then the subgraph obtained from G[S \L]
by deleting one vertex of each edge in G[S \L] contains no edges, which is an independent
set of G[S \ L]. So there exists an independent set IS ⊆ S such that

|IS| > |S \ L| − f(k − 1, k − 1) > |S| − k
(
k − 3

2

)
− 16k2 > |S| − 18k2.

The same argument gives that there is an independent set IT ⊆ T with

|IT | > |T | − 18k2.

So Claim 1 holds.
Recall that z is a vertex with maximum eigenvector entry. Since xz = 1, and

d(z) >
∑
w∼z

xw = λ1xz = λ1 >
n

2
.

Hence z /∈ L.
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Without loss of generality, we may assume that z ∈ S. Since the maximum degree in
the induced subgraph G[S \L] is at most k− 1 (containing no K1,k), from Lemma 11, we
have |L| 6 16k2 and

dS(z) = dS∩L(z) + dS\L(z) 6 k − 1 + 16k2 6 17k2.

Therefore, by Claim 1, we have

λ1 = λ1xz =
∑
v∼z

xv

=
∑

v∼z,v∈S

xv +
∑

v∼z,v∈T

xv

=
∑

v∼z,v∈S

xv +
∑

v∼z,v∈IT

xv +
∑

v∼z,v∈T\IT

xv

6 dS(z) +
∑
v∈IT

xv +
∑

v∈T\IT

1

6 17k2 +
∑
v∈IT

xv + |T | − |IT |

6
∑
v∈IT

xv + 17k2 + 18k2

6
∑
v∈IT

xv + 35k2.

So ∑
v∈IT

xv > λ1 − 35k2. (8)

Claim 2: L = ∅.
By way of contradiction, assume that there is a vertex v ∈ L, i.e., d(v) 6 (1

2
− 1

4(k+1)
)n.

Consider the graph G+ with vertex set V (G) and edge set E(G+) = E(G \ {v}) ∪ {vw :
w ∈ IT}. Note that adding a vertex incident with vertices in IT does not create any
triangles, and so G+ is Fk-free. By (8), we have that

λ1(G
+)− λ1(G) >

xT (A(G+)− A(G))x

xTx
=

2xv
xTx

∑
w∈IT

xw −
∑

uv∈E(G)

xu


>

2xv
xTx

(
λ1 − 35k2 − dG(v)

)
>

2xv
xTx

(
λ1 − 35k2 −

(
1

2
− 1

4(k + 1)

)
n

)
>

2xv
xTx

(
n

2
− 35k2 −

(
1

2
− 1

4(k + 1)

)
n

)
=

2xv
xTx

(
n

4(k + 1)
− 35k2

)
> 0,
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where the last step uses n large enough and that if v ∈ L, then dG(v) 6
(
1
2
− 1

4k+4

)
n.

This contradicts G has the largest spectral radius over all Fk-free graphs and so L must
be empty.

Next we may refine the structure of G.

Lemma 15. For n and k as before, we have

n

2
− 4k 6 |S|, |T | 6 n

2
+ 4k, (9)

e(G) >
n2

4
− 12k2, (10)

and
n

2
− 14k2 6 δ(G) 6 λ1 6 ∆(G) 6

n

2
+ 5k. (11)

Proof. From Lemma 14, both G[S] and G[T ] are K1,k and Mk-free, so we have e(S) +
e(T ) 6 2f(k − 1, k − 1) < 2k2. This means that the number of triangles in G is bounded
above by 2k2n since any triangle contains an edge of E(S) ∪ E(T ). By Corollary 8, we
have

e(G) > λ21 −
6t

n
>
n2

4
− 12k2n

n
=
n2

4
− 12k2.

Suppose that |S| 6 n
2
− 4k, then |T | = n− |S| > n

2
+ 4k. Hence

e(G) = e(S) + e(T ) + e(S, T ) 6 2k2 + |S||T | 6 2k2 +
(n

2
− 4k

)(n
2

+ 4k
)

=
n2

4
− 14k2,

which contradicts to e(G) > n2

4
− 12k2.

So we have
n

2
− 4k 6 |S|, |T | 6 n

2
+ 4k.

Moreover, by Lemma 14, the maximum degree of G[S] is at most k − 1. This implies
that

∆(G) 6
n

2
+ 4k + k − 1 6

n

2
+ 5k.

So
λ1 6 ∆(G) 6

n

2
+ 5k.

Furthermore, we claim that the minimum degree of G is at least n
2
− 14k2. Otherwise,

removing a vertex v of minimum degree d(v), we have

e(G− v) = e(G)− d(v)

>
n2

4
− 12k2 −

(n
2
− 14k2

)
=

n2

4
− n

2
+ 2k2
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=
(n− 1)2

4
+ k2 + k2 − 1

4

>
(n− 1)2

4
+ k2,

which implies G− v contains Fk by Theorem 1.

Lemma 16. For all u ∈ V (G), we have that xu > 1− 120k2

n
.

Proof. Without loss of generality, we may assume that z ∈ S. We consider the following
two cases.

Case 1: u ∈ S. Then dS(u) 6 k2 as e(G[S]) 6 k2. Hence we obtain

|NT (u)| = dT (u) = d(u)− dS(u) > δ(G)− dS(u) >
n

2
− 14k2 − k2

>
n

2
− 15k2.

|NT (u) ∩NT (z)| = |NT (u)|+ |NT (z)| − |NT (u) ∪NT (z)| > 2δT (G)− |T |

> 2
(n

2
− 15k2

)
−
(n

2
+ 4k

)
>
n

2
− 34k2.

λ1xu − λ1xz =
∑

v∼u,v∈T,v∼z

xv +
∑

v∼u,v∈T,v 6∼z

xv +
∑

v∼u,v∈S

xv

−
∑

v∼z,v∈T,v∼u

xv −
∑

v∼z,v∈T,v 6∼u

xv −
∑

v∼z,v∈S

xv

> −
∑

v∼z,v∈T,v 6∼u

xv −
∑

v∼z,v∈S

xv

> −
∑

v∼z,v∈T,v 6∼u

1−
∑

v∼z,v∈S

1

> −(dT (z)− |NT (u) ∩NT (z)|)− dS(z)

> −
((n

2
+ 5k

)
−
(n

2
− 34k2

))
− k2

> −40k2.

Therefore, for any u ∈ S, we have

xu > 1− 40k2

λ1
> 1− 40k2

n
2

= 1− 80k2

n
. (12)

Case 2: u ∈ T . By (12),

λ1xu =
∑
v∼u

xv >
∑

v∼u,v∈S

xv >

(
1− 80k2

n

)
dS(u).

Since
n

2
− 14k2 6 δ(G) 6 d(u) = dS(u) + dT (u),
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and dT (u) 6 k as the maximum degree in G[T ] is at most k − 1, we have dS(u) >
n
2
− 14k2 − k > n

2
− 15k2. Hence

xu >
(1− 80k2

n
)dS(u)

λ1
>

(1− 80k2

n
)(n

2
− 15k2)

n
2

+ 5k

=
n
2
− 55k2 + 1200k4

n
n
2

+ 5k

= 1−
55k2 + 5k − 1200k4

n
n
2

+ 5k

> 1− 120k2

n
.

From the above two cases, the result follows.

Using this refined bound on the eigenvector entries, we may show that the partition
V = S ∪ T is balanced.

Lemma 17. The sets S and T have sizes as close as possible. That is∣∣|S| − |T |∣∣ 6 1.

Proof. Without loss of generality, we may assume that |T | > |S|. Denote

S ′ := {v ∈ S : N(v) ⊆ T},
T ′ := {v ∈ T : N(v) ⊆ S}.

Since e(G[S]) 6 k2, there exist at most 2k2 vertices in S having a neighbor in S. Hence

|S ′| > |S| − 2k2.

Similarly,
|T ′| > |T | − 2k2.

Let C ⊆ T ′ be a set having |T | − |S| vertices, which exists since, from (9), |T | − |S| 6 8k
and |T ′| > |T | − 2k2 > n

2
− 4k − 2k2 > 8k. Then G \ C is a graph on 2|S| vertices such

that

e(G)− e(C, S) = e(G \ C) 6 ex(2|S|, Fk) 6
(2|S|)2

4
+ f(k − 1, k − 1).

Hence
e(G) 6 |S|2 + |C||S|+ f(k − 1, k − 1) = |S||T |+ f(k − 1, k − 1).

Let B = K|S|,|T | be the complete bipartite graph with partite sets S and T , and let
G1 = G[S] ∪ G[T ] and G2 be the graph with edges E(B) \ E(G). Note that e(G) =
e(B) + e(G1)− e(G2) and so e(G1)− e(G2) = e(G)− e(B) 6 f(k − 1, k − 1). By Lemma
16 we have,

xTx > n

(
1− 120k2

n

)2

> n

(
1− 240k2

n

)
= n− 240k2,
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and that λ1(B) =
√
|S||T |. By Lemma 15, also note that e(G1) 6 2k2, we obtain

e(S, T ) = e(G)− e(G1) >
n2

4
− 12k2 − 2k2 =

n2

4
− 14k2,

which implies that

e(G2) = e(B)− e(S, T ) 6 |S||T | −
(
n2

4
− 14k2

)
6 14k2.

So, bearing in mind the inequality (1), we have

2

n

⌊n
2

⌋ ⌈n
2

⌉
+

2f(k − 1, k − 1)

n
6 λ1 =

xT (A(B) + A(G1)− A(G2))x

xTx

=
xTA(B)x

xTx
+

xTA(G1)x

xTx
− xTA(G2)x

xTx
.

Note that by Lemma 16,

xTA(G2)x = 2
∑

uv∈E(G2)

xuxv > 2e(G2)(1−
120k2

n
)2 > 2e(G2)

(
1− 240k2

n

)
,

therefore

2

n

⌊n
2

⌋ ⌈n
2

⌉
+

2f(k − 1, k − 1)

n

6 λ1(B) +
2e(G1)

xTx
−

2e(G2)(1− 240k2

n
)

xTx

6 λ1(B) +
2(e(G1)− e(G2))

xTx
+

2e(G2)
240k2

n

xTx

6
√
|S||T |+ 2f(k − 1, k − 1)

xTx
+

2 · 14k2 240k
2

n

xTx

6
√
|S||T |+ 2f(k − 1, k − 1)

n
+ 2f(k − 1, k − 1)

(
1

xTx
− 1

n

)
+

2 · 14k2 240k
2

n

n(1− 240k2

n
)

6
√
|S||T |+ 2f(k − 1, k − 1)

n
+ 2k2

(
1

n(1− 240k2

n
)
− 1

n

)
+

2 · 14k2 240k
2

n

n(1− 240k2

n
)

=
√
|S||T |+ 2f(k − 1, k − 1)

n
+

480k4

n(n− 240k2)
+

6720k4

n(n− 240k2)

=
√
|S||T |+ 2f(k − 1, k − 1)

n
+

7200k4

n(n− 240k2)
.

Then
2

n

⌊n
2

⌋ ⌈n
2

⌉
−
√
|S||T | 6 7200k4

n(n− 240k2)
. (13)
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Assume to the contrary, so |T | > |S|+ 2. We consider two cases.
Case 1: n is even. Since |S|+ |T | = n, we have

2

n

⌊n
2

⌋ ⌈n
2

⌉
−
√
|S||T | > n

2
−
√(n

2
− 1
)(n

2
+ 1
)

=
n

2
−
√
n2

4
− 1 =

1

n
2

+
√

n2

4
− 1

>
1

n
.

So by (13), we have

1

n
<

2

n

⌊n
2

⌋ ⌈n
2

⌉
−
√
|S||T | 6 7200k4

n(n− 240k2)
6

8000k4

n2
.

This is a contradiction for sufficiently large n.
Case 2: n is odd. Since |S|+ |T | = n, we have

2

n

⌊n
2

⌋ ⌈n
2

⌉
−
√
|S||T | > n2 − 1

2n
−

√(
n− 3

2

)(
n+ 3

2

)
=

n− 1
n

2
−
√
n2 − 9

2
=

(n− 1
n
)2 − (n2 − 9)

2(n− 1
n

+
√
n2 − 9)

=
7 + 1

n2

2(n− 1
n

+
√
n2 − 9)

>
1

n
.

So by (13), we have

1

n
<

2

n

⌊n
2

⌋ ⌈n
2

⌉
−
√
|S||T | 6 7200k4

n(n− 240k2)
6

8000k4

n2
.

This is a contradiction for sufficiently large n. Therefore for n large enough we must have
that ||S| − |T || 6 1.

Finally, we show that e(G) = ex(n, Fk).

Proof of Theorem 2. By way of contradiction, we assume that e(G) 6 ex(n, Fk)−1.
Let H be an Fk-free graph with ex(n, Fk) edges on the same vertex set as G, where S
and T induce a complete bipartite graph in H (this is possible because every graph in
Ex(n, Fk) has a maximum cut of size bn2/4c). Let E+ and E− be sets of edges such
that E(G) ∪ E+ \ E− = E(H), and choose E+ and E− to be as small as possible, i.e.,
E+ = E(H) \ E(G) and E− = E(G) \ E(H). Since |E(G) ∩ E(H)| + |E−| = e(G) <
e(H) = |E(G)∩E(H)|+ |E+| which implies that |E+| > |E−|+ 1. Furthermore, we have
that |E−| 6 e(G[S]) + e(G[T ]) < 2k2. Finally, by (10) we have that |E+| < 15k2. Now,
by the Rayleigh quotient [19] and Lemma 16, we have that

λ1(H) >
xTA(H)x

xTx
= λ1(G) +

2

xTx

∑
ij∈E+

xixj −
2

xTx

∑
ij∈E−

xixj
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> λ1(G) +
2

xTx

(
|E+|

(
1− 120k2

n

)2

− |E−|

)

> λ1(G) +
2

xTx

(
|E+| − |E−| −

240k2

n
|E+|+

(120k2)2

n2
|E+|

)
> λ1(G) +

2

xTx

(
1− 240k2

n
|E+|+

(120k2)2

n2
|E+|

)
> λ1(G),

for sufficiently large n, where the last second inequality by |E−| < 2k2 and |E+| > |E−|+1
and the last inequality by |E+| < 15k2. Therefore we have that for n large enough,
λ1(H) > λ1(G), a contradiction. Hence e(G) = e(H).

From the above discussion, we complete the proof of Theorem 2. �
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[6] V. Chvátal and D. Hanson. Degrees and matchings. J. Combin. Theory Ser. B,
20(2):128–138, 1976.

[7] D. Conlon and J. Fox. Graph removal lemmas. In Surveys in combinatorics 2013,
volume 409 of London Math. Soc. Lecture Note Ser., pages 1–49. Cambridge Univ.
Press, Cambridge, 2013.

[8] E. R. van Dam. Graphs with given diameter maximizing the spectral radius. Linear
Algebra Appl., 426(2-3): 454–457, 2007.

[9] M. N. Ellingham and X.-Y. Zha. The spectral radius of graphs on surfaces. J.
Combin. Theory Ser. B, 78(1): 45–56, 2000.

the electronic journal of combinatorics 27(4) (2020), #P4.22 17



[10] P. Erdős, Z. Füredi, R. J. Gould, and D. S. Gunderson. Extremal graphs for inter-
secting triangles. J. Combin. Theory. Ser. B, 64(1):89–100, 1995.
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