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Abstract

A Norton algebra is an eigenspace of a distance regular graph endowed with a
commutative nonassociative product called the Norton product, which is defined as
the projection of the entrywise product onto this eigenspace. The Norton algebras
are useful in finite group theory as they have interesting automorphism groups. We
provide a precise quantitative measurement for the nonassociativity of the Norton
product on the eigenspace of the second largest eigenvalue of the Johnson graphs,
Grassmann graphs, Hamming graphs, and dual polar graphs, based on the formulas
for this product established in previous work of Levstein, Maldonado and Penazzi.
Our result shows that this product is as nonassociative as possible except for two
cases, one being the trivial vanishing case while the other having connections with
the integer sequence A000975 on OEIS and the so-called double minus operation
studied recently by Huang, Mickey, and Xu.

Mathematics Subject Classifications: 05E30, 05A15, 17D99

1 Introduction

For any binary operation ∗ defined on a set X with indeterminates x0, x1, . . . , xn taking
values from X, it is well known that the number of ways to insert parentheses into the
expression x0 ∗ x1 ∗ · · · ∗ xn is the ubiquitous Catalan number Cn := 1

n+1

(
2n
n

)
, which

enumerates hundreds of other families of objects [23, 24]. When ∗ is explicitly given, it is
natural to ask, among all the Cn ways to parenthesize the expression x0∗x1∗· · ·∗xn, what
the exact number Cn,∗ of distinct results is. This problem had not received much attention
until recently, when Hein and Huang [12] proposed the study of Cn,∗ as a quantitative
measurement for the nonassociativity of a binary operation ∗, based on the observation
that 1 6 C∗,n 6 Cn for all nonnegative integers n, where the first inequality is an equality
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if and only if the binary operation ∗ is associative. When the other extreme occurs, i.e.,
C∗,n = Cn for all n > 0, we say that the binary operation ∗ is totally nonassociative.
In general, the number C∗,n measures the distance of ∗ from being associative or totally
nonassociative.

Before work of Hein and Huang [12], Lord [19] introduced a measurement called the
depth of nonassociativity for a binary operation ∗, and examined it for some elementary
binary operations. It turns out that the depth of nonassociativity of ∗ can be written as
inf{n+ 1 : C∗,n < Cn}. Thus it is substantially refined by the new measurement C∗,n.

Motivated by addition and subtraction, Hein and Huang [12, 13] studied a large family
of binary operations ∗ defined by using roots of unity, obtained explicit formulas for the
number C∗,n measuring the nonassociativity of ∗, and discovered connections to many
Catalan objects with certain constraints. Huang, Mickey, and Xu [15] determined the
value of C	,n for the double minus operation 	 defined by a	 b := −a− b, and discovered
an coincidence between C	,n and the interesting integer sequence A000975 in The On-
Line Encyclopedia of Integer Sequences [21], which has many formulas and combinatorial
interpretations (see also Stockmeyer [25]).

In this paper we study the nonassociativity of the so-called Norton algebras, whose
construction relies on the notion of distance regular graph, an important topic in algebraic
combinatorics [5, 7, 9]. A distance regular graph is a graph Γ = (X,E) with vertex set X
and edge set E such that for any two vertices u and v, the number of vertices at distance
i from u and at distance j from v depends only on i, j, and the distance between u and v.
It is known that (the adjacency matrix of) Γ has eigenvalues θ0 > θ1 > · · · > θd, where d
is the diameter of Γ, and the corresponding eigenspaces V0, V1, . . . , Vd form a direct sum
decomposition V = V0⊕V1⊕· · ·Vd for the vector space V = RX := {f : X → R} ∼= R|X|.

For each i = 0, 1, . . . , d, the Norton product ? on the eigenspace Vi is defined by

u ? v := πi(u · v) for all u, v ∈ Vi

where πi is the orthogonal projection of V onto Vi and · is the entry-wise product given
by the formula (u ·v)(x) := u(x)v(x) for all x ∈ X. The Norton product ? is commutative
but not necessarily associative. With this product, each eigenspace Vi becomes an algebra
known as the Norton Algebra. The Norton algebras are useful in finite group theory as
they have interesting automorphism groups [6, 22] and are related to the construction of
the monster simple group [11].

We focus on the Norton product ? on the eigenspace V1 of the second largest eigenvalue
of Γ, where Γ a member of the following four important families of distance regular graphs:
the Johnson graphs, Grassmann graphs, Hamming graphs, and dual polar graphs.

The Johnson graph J(n, k) has vertex set consisting of all the k-subsets of the set [n] :=
{1, 2, . . . , n} and has edge set consisting of all unordered pairs xy with |x∩ y| = k− 1. In
particular, J(n, 1) is isomorphic to the complete graph Kn. As a q-analogue of the Johnson
graph J(n, k), the Grassmann graph Jq(n, k) has vertex set consisting of all k-dimensional
subspaces of a fixed n-dimensional vector space over the finite field Fq and has edge set
consisting of all unordered pairs xy with dim(x ∩ y) = k − 1. We may assume n > 2k,
without loss of generality, as taking the set complement (or orthogonal complement, resp.)
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gives a graph isomorphism J(n, k) ∼= J(n, n− k) (or Jq(n, k) ∼= Jq(n, n− k), resp.). Both
J(n, k) and Jq(n, k) are distance regular graphs with diameter d = k (see, e.g., Brouwer,
Cohen and Neumaier [5, § 9.1, § 9.3]), and their eigenvalues and eigenspaces are well
studied (see, e.g., Godsil and Meagher [10]).

The Hamming graph H(d, e) has vertex set consisting of all words of length d on the
alphabet {1, 2, . . . , e} (with e > 2) and has edge set consisting of all unordered pairs xy
with x and y differing in exactly one position. This is a distance regular graph with
diameter d [5, § 9.2] and the special case H(d, 2) is the well-known hypercube graph.

A dual polar graph Γ has vertex set X consisting of all maximal isotropic subspaces of
a certain finite dimensional vector space over a finite field Fq with a nondegenerate form
and has edge set E consisting of unordered pairs xy of vertices with dim(x ∩ y) = k − 1.
It turns out that Γ is a distance regular graph of diameter d, where d := dim(x) does
not depend on the choice of x ∈ X. Since d = 1 implies that Γ is a complete graph, we
may assume d > 2. The dual polar graphs are commonly listed as Cd(q), Bd(q), Dd(q),
Dd+1(q), A2d(r), A2d−1(r), where r =

√
q. These graphs already appeared as distance-

transitive (hence distance regular) graphs in work of Hua [14] back in 1945. See Brouwer,
Cohen and Neumaier [5, § 9.4] for more details.

Levstein–Maldonado–Penazzi [17] and Maldonado–Penazzi [20] obtained formulas for
the Norton product ? on the eigenspace V1 of Γ, where Γ is the Johnson graph J(n, k),
the Grassmann graph Jq(n, k), the hypercube graph H(d, 2) or a dual polar graph. Using
these formulas together with an extended formula that we obtain from H(d, 2) to the
Hamming graph H(d, e), we determine the nonassociativity measurement C?,n. Our main
results are summarized below.

Theorem 1. Let ? be the Norton product on the eigenspace V1 of the second largest
eigenvalue of a distance regular graph Γ.

• If Γ is J(2k, k) or H(d, 2) then C?,m = 1 for all m > 0, i.e., the operation ? is
associative.

• If Γ is J(3, 1), H(d, 3), or D2(2) then C?,m = C	,m for all m > 0, which coincides
with the OEIS sequence A000975 [21] except for m = 0.

• If Γ is J(n, k) with n > 2k and n > 4, H(d, e) with e > 4, or a dual graph polar
graph of diameter d > 2 other than D2(2), then C?,m = Cm for all m > 0, i.e., ? is
totally nonassociative.

The Norton products in Theorem 1 are either associative or totally nonassociative
except for the second case. This case is especially interesting as it provides a new inter-
pretation for the sequence A000975 on OEIS [21] with deep algebraic and combinatorial
background and is a natural higher-dimensional extension of the double minus operation
coming from a somewhat surprising context. In view of this, we believe that other Norton
algebras are worth further investigation in the future.

This paper is structured as follows. In Section 2 we discuss the nonassociativity
measurement for a binary operation, with an emphasis on the double minus operation. In
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Section 3 we focus on the formulas for the Norton algebras of distance regular graphs. In
Section 4 we establish our main results for the Norton product on the eigenspace of the
second largest eigenvalue of the Johnson graphs, Grassmann graphs, Hamming graphs and
dual polar graphs. We conclude the paper with some remarks and questions in Section 5.

2 Nonassociativity and binary trees

In this section we provide some results related to the nonassociativity measurement pro-
posed by Hein and Huang [12] and the double minus operation studied by Huang, Mickey,
and Xu [15].

Let ∗ be a binary operation defined on a set X. Let x0, x1, . . . , xn be X-valued inde-
terminates. In general, the expression x0 ∗ x1 ∗ · · · ∗ xn is ambiguous, so we need to insert
parentheses to specify the order in which the ∗’s are performed. The parenthesizations of
x0 ∗ x1 ∗ · · · ∗ xn are in bijection with binary trees with n+ 1 leaves, and thus enumerated
by the ubiquitous Catalan number Cn := 1

n+1

(
2n
n

)
. Let Tn denote the set of all binary trees

with n+ 1 leaves. Given a tree t ∈ Tn, let (x0 ∗ x1 ∗ · · · ∗ xn)t denote the parenthesization
of x0 ∗ x1 ∗ · · · ∗ xn corresponding to t.

For a specific binary operation ∗, it is possible that two parenthesizations of x0 ∗ x1 ∗
· · · ∗ xn are equal as functions from Xn+1 to X, and if so, the corresponding binary trees
are said to be ∗-equivalent. Let C∗,n denote the number of ∗-equivalence classes in the set
Tn. It is clear that C∗,n = 1 for all n > 0 if and only if ∗ is associative, and in general, we
have 1 6 C∗,n 6 Cn. Thus C∗,n gives a quantitative measurement for the nonassociativity
of the operation ∗. We say that ∗ is totally nonassociative if C∗,n = Cn for all n > 0.

Huang, Mickey and Xu [15] studied the double minus operation on the complex field C
(or any other field in which −1 still has multiplicative order 2) defined by a	 b := −a− b
for all a, b ∈ C. Parenthesizations for the double minus operation only depend on the leaf
depth in binary trees. Let t ∈ Tn and label its n + 1 leaves 0, 1, . . . , n from left to right
(or more precisely, according to the preorder). For each i ∈ {0, 1, . . . , n}, define the depth
di(t) of leaf i to be the length of the unique path from the root of t to leaf i. The depth
sequence of t is d(t) := (d0(t), d1(t), . . . , dn(t)). One sees that

(a0 	 a1 	 · · · 	 an)t = (−1)d0(t)a0 + (−1)d1(t)a1 + · · · (−1)dn(t)an.

Therefore two parenthesizations of a0 	 a1 	 · · · 	 an are equal if and only if the corre-
sponding binary trees in Tn have (term-wise) congruent depth sequences modulo 2. This
leads to the following result on the number C	,n.

Theorem 2 ([15]).

(i) Two binary trees t, t′ ∈ Tn are 	-equivalent if and only if their degree sequences
satisfy d(t) ≡ d(t′) (mod 2).

(ii) The sequence (C	,n)∞n=1 = (1, 2, 5, 10, 21, 42, 85, . . .) coincides with OEIS sequence
A000975 [21].
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The sequence (C	,n)∞n=1 satisfies various recursive relations, such as C	,n+1 = 2C	,n if
n is odd and C	,n+1 = 2C	,n+1 + 1 if n is even. It has the following formulas:

C	,n =

⌊
2n+1

3

⌋
=

2n+2 − 3− (−1)n

6
=


2n+1 − 1

3
, if n is odd;

2n+1 − 2

3
, if n is even.

There are also a large number of combinatorial interpretations for the nth term of the
sequence, including the number of steps required to solve the n-ring Chinese Rings puzzle,
the distance between the all-zero string 0n and all-one string 1n in an n-bit binary Gray
code, the positive integer with an alternate binary representation of length n, and so on.
See Stockmeyer [25] and the references therein for details on this sequence.

While Theorem 2 provides a different way of understanding the sequence A000975,
we will give yet one more interpretation with more algebraic background by studying
the Norton algebras of some distance regular graphs. To this end, we need to make an
observation on the depth sequence of a binary tree. Define D0 := {(0)} and for n > 0,

Dn+1 :=
n⋃
k=0

{(d0 + 1, . . . , dk + 1, d′0 + 1, . . . , d′n−k + 1) : (d0, . . . , dk) ∈ Dk,

(d′0, . . . , d
′
n−k) ∈ Dn−k}.

Proposition 3. Taking the depth sequence of a binary tree gives a bijection d : Tn → Dn.

Proof. The result is trivial if n = 0. Assume it holds for Tn, and we prove it for Tn+1

below.
Any sequence in Dn+1 can be written as (d0 + 1, . . . , dk + 1, d′0 + 1, . . . , d′n−k + 1) for

some sequences (d0, . . . , dk) ∈ Dk and (d′0, . . . , d
′
n−k) ∈ Dn−k, where 0 6 k 6 n. By the

induction hypothesis, there exist trees t ∈ Tk and t′ ∈ Tn−k such that d(t) = (d0, . . . , dk)
and d(t′) = (d′0, . . . , d

′
n−k). The unique binary tree with t and t′ as the two subtrees under

its root belongs to Tn+1 and has depth sequence (d0 + 1, . . . , dk + 1, d′0 + 1, . . . , d′n−k + 1).
Thus the map d is onto.

Let t ∈ Tn+1 with d(t) = (d0, d1, . . . , dn+1). Let i be the smallest integer such that di is
the largest among d0, d1, . . . , dn+1. Then i is the leftmost leaf in t with the largest depth
among all of the leaves. One sees that i must be the left child of its parent, and its right
sibling i+ 1 is another leaf with the same depth as i. Deleting the two leaves i and i+ 1
from t gives a tree t′ ∈ Tn with

d(t′) = (d0, . . . , di−1, di − 1, di+2, . . . , dn+1).

Now if s ∈ Tn+1 satisfies d(s) = d(t), then using the same argument as above, we
obtain s′ ∈ Tn with d(s′) = d(t′) by deleting the leaves i and i + 1. The induction
hypothesis implies s′ = t′. Since s′ and t′ are obtained from s and t in the same way, we
conclude that s = t and thus d is one-to-one.
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It turns out that in some cases the Norton product can be viewed as a higher-
dimensional extension of the double minus operation in the following sense.

Lemma 4. Given two binary operations ∗ and ◦ defined on two sets R and S, respectively,
define a new operation ~ on R×S by (r, s)~ (r′, s′) := (r ∗ r′, s◦s′) for all (r, s) ∈ R×S.
Then two binary trees are ~-equivalent if and only if they are both ∗-equivalent and ◦-
equivalent.

Proof. Let zi = (ri, si) be an arbitrary element of R× S for i = 0, 1, . . . ,m. We have

(z0 ~ z1 ~ · · ·~ zm)t = ((r0 ∗ r1 ∗ · · · ∗ rm)t, (s0 ◦ s1 · · · ◦ sm)t)

for any binary tree t ∈ Tm. Thus for any t, t′ ∈ Tm we have

(z0 ~ z1 ~ · · ·~ zm)t = (z0 ~ z1 ~ · · ·~ zm)t′

if and only if (r0∗r1∗· · ·∗rm)t = (r0∗r1∗· · ·∗rm)t′ and (s0◦s1◦· · ·◦sm)t = (s0◦s1◦· · ·◦sm)t′ .
This proves the desired result.

3 Distance regular graphs and Norton algebras

In this section we summarize the results by Levstein, Maldonado and Penazzi [17] and
Maldonado and Penazzi [20] on the Norton algebras of certain distance regular graphs,
and extend the result from the hypercube graphs to all Hamming graphs. The reader
is referred to Brouwer–Cohen–Neumaier [5] and van Dam–Koolen–Tanaka [7] for more
background information on distance regular graphs.

3.1 Distance regular graphs

A graph Γ = (X,E) with distance d(−,−) is said to be distance regular if for any integers
i, j, k > 0 and for any pair (x, y) ∈ X ×X with d(x, y) = k, the number

pkij := #{z ∈ X : d(x, z) = i, d(y, z) = j}
is independent of the choice of the pair (x, y). The constants pkij are called the intersection
numbers of the distance regular graph Γ.

Let Γ = (X,E) be a distance regular graph with diameter d. Let MX(R) denote the
R-algebra of real matrices with rows and columns indexed by X. For 0 6 i 6 d, the ith
adjacency matrix Ai of Γ is the matrix in MX(R) whose (x, y)-entry is 1 if d(x, y) = i
or 0 otherwise. In particular, A = A1 is called the adjacency matrix of the distance
regular graph Γ; this matrix is known to have eigenvalues θ0 > θ1 > · · · > θd and the
corresponding eigenspaces V0, V1, . . . , Vd form a direct sum decomposition RX = V0 ⊕
V1 ⊕ · · · ⊕ Vd, where RX := {f : X → R} ∼= R|X|. We will simply call θ0, θ1, . . . , θd and
V0, V1, . . . , Vd the eigenvalues and eigenspaces of the graph Γ.

The adjacency algebra A(Γ) of Γ is the subalgebra of MX(R) consisting of all poly-
nomials in the adjacency matrix A of Γ. The primitive idempotents of this algebra
are E0, E1, . . . , Ed, where Ei is the matrix of the orthogonal projection πi : RX → Vi.
The algebra A(Γ) has three important bases: {I, A,A2, . . . , Ad}, {A0, A1, . . . , Ad}, and
{E0, E1, . . . , Ed}.

the electronic journal of combinatorics 27(4) (2020), #P4.27 6



3.2 The Johnson graphs

Let n and k be two positive integers. The Johnson graph J(n, k) = (X,E) has vertex set
X consisting of all k-subsets of the set [n] := {1, 2, . . . , n} and has edge set

E = {xy : x, y ∈ X, |x ∩ y| = k − 1}.

The graph Johnson J(n, k) is a distance-regular graph since d(x, y) = j if and only if
|x∩ y| = k− j for all x, y ∈ X. For example, J(n, 1) is isomorphic to the complete graph
Kn and J(n, 2) is isomorphic to the line graph of Kn.

For any k-subsets x and y of [n], one has |x∩y| = k−1 if and only if |xc∩yc| = n−k−1.
Thus J(n, k) is isomorphic to J(n, n − k), and we may assume n > 2k, without loss of
generality. The diameter of J(n, k) is d = k, and for i = 0, 1, . . . , d = k, the ith eigenvalue
of the Johnson graph J(n, k) is θi = (k − i)(n− k − i)− i whose multiplicity is

dim(Vi) =

(
n

i

)
−
(

n

i− 1

)
.

To study the Norton algebras of J(n, k), Maldonado and Penazzi [20] constructed a
lattice L which consists of all subsets of [n] with cardinality at most k together with
1̂ := [n]. The lattice L is ordered by containment with minimum element 0̂ := ∅ and
maximum element 1̂. It has a rank function given by the cardinality of sets. The formulas
for the meet and join of L are

x ∧ y = x ∩ y and x ∨ y =

{
x ∪ y if |x ∪ y| 6 k

1̂ otherwise.

3.3 The Grassmann graphs

The Grassmann graph Jq(n, k) is a q-analogue of the Johnson graph J(n, k). Fix an n-
dimensional vector space Fnq over the finite field Fq with q elements. The vertex set X of
the graph Jq(n, k) consists of all k-dimensional subspaces of Fnq . Two vertices are adjacent
in Jq(n, k) if and only if their intersection has dimension k − 1. More generally, we have
d(x, y) = j if and only if dim(x ∩ y) = k − j for all x, y ∈ X.

The orthogonal complement of a subspace z of Fnq is z⊥ := {w ∈ Fnq : 〈z, w〉 = 0}
where we use the usual inner product 〈z, w〉 := ztw. We have a graph isomorphism
Jq(n, k) ∼= Jq(n, n− k) by taking the orthogonal complement since dim(x ∩ y) = k − 1 if
and only dim(x⊥ ∩ y⊥) = n− k− 1. Therefore we may assume n > 2k for the Grassmann
graph Jq(n, k), without loss of generality. We also assume k > 2 as Jq(n, 1) is a complete
graph which is already covered in the Johnson case.

The Grassmann graph Jq(n, k) is a distance regular graph with diameter d = k. Many
parameters of Jq(n, k) are q-analogues of the Johnson graph J(n, k). Recall that an integer
m > 0 has its q-analogue defined by [m]q := 1−qm

1−q = 1 + q + · · · + qm−1. The number of

vertices in the Grassmann graph Jq(n, k) is the q-binomial coefficient[
n
k

]
q

:=
[n]q[n− 1]q · · · [n− k + 1]q

[k]q[k − 1]q · · · [1]q
.
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For i = 0, 1, . . . , d = k, the ith eigenvalue of the Grassmann graph Jq(n, k) is

θi = qi+1[k − i]q[n− k − i]q − [i]q

whose multiplicity is

dim(Vi) =

[
n
i

]
q

−
[
n

i− 1

]
q

.

Maldonado and Penazzi [20] constructed a lattice L which consists of all subspaces
of Fnq with dimension at most k together with 1̂ := Fnq . The lattice L is ordered by

containment with minimum element 0̂ := 0 and maximum element 1̂. The rank function
of L is given by the dimension of linear spaces. The formulas for the meet and join of L
are

x ∧ y = x ∩ y and x ∨ y =

{
span(x ∪ y) if dim(span(x ∪ y)) 6 k

1̂ otherwise.

3.4 Hamming graphs

The Hamming graph H(d, e) has vertex set X consisting of all words of length d on the
alphabet {1, 2, . . . , e} (where e > 2) and has edge set E consisting of all unordered pairs
of vertices differing in precisely one position. It is a distance regular graph of diameter
d, with the distance between two vertices given by the number of positions in which
they differ. For i = 0, 1, . . . , d, the ith eigenvalue of H(d, e) is θi = (d − i)e − d and its
multiplicity is

(
d
i

)
(e− 1)i [5, Theorem 9.2.1]. When e = 2 the Hamming graph H(d, 2) is

known as the hypercube graph.
To study the Norton algebras of the Hamming graph H(d, e), we construct a lattice

L which agrees with the lattice given by Maldonado and Penazzi [20] in the special case
of e = 2.

For i = 0, 1, . . . , d, let Li be the set of all words of length d on the alphabet {0, 1, . . . , e}
with exactly i nonzero entries. For example, we have L0 = {0d} and Ld = X.

Let u = u1 · · ·ud and v = v1 · · · vd be two words on the alphabet {0, 1, . . . , e}. Define
u 6 v if ui 6= 0⇒ vi = ui for all i = 1, . . . , d. Then the disjoint union L := L0∪L1∪ · · · ∪
Ld ∪ {1̂} becomes a lattice with minimum element 0̂ := 0d and maximum element 1̂ (not
to be confused with the all-one word). The rank of u is the number of nonzero entries in
u. The ith entry of u ∧ v is

(u ∧ v)i =

{
ui if ui = vi

0 if ui 6= vi
for i = 1, . . . , d.

If ui 6= 0, vi 6= 0, and ui 6= vi for some i, then u ∨ v = 1̂; otherwise u ∨ v has ith entry

(u ∨ v)i =


ui if ui = vi

ui if ui 6= 0 = vi

vi if ui = 0 6= vi

for i = 1, . . . , d.
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3.5 Dual polar graphs

Let V be a finite dimensional vector space over a finite field Fq endowed with a nondegen-
erate form. A subspace of V is said to be isotropic if the form vanishes on this subspace.
A dual polar graph Γ has vertex set X consisting of all maximal isotropic subspaces of
one of the following vector spaces, and has edge set consisting of all unordered pairs xy
of vertices with dim(x ∩ y) = d − 1, where d := dim(x) is independent of the choice of
x ∈ X.

• Cd(q): V = F2d
q with a symplectic form; e = 1.

• Bd(q): V = F2d+1
q with a quadratic form; e = 1.

• Dd(q): V = F2d
q with a quadratic form of Witt index d; e = 0.

• Dd+1(q): V = F2d+2
q with a quadratic form of Witt index d; e = 2.

• A2d(r): V = F2d+1
q with a Hermitian form, where q = r2; e = 3/2.

• A2d−1(r): V = F2d
q with a Hermitian form, where q = r2; e = 1/2.

The above dual polar graphs are all distance regular graphs with diameter d and another
important parameter e. For i = 0, 1, . . . , d, the ith eigenvalue of a dual polar graph is
θi = qe[d− i]q − [i]q and its multiplicity is [5, Theorem 9.4.3]

dim(Vi) = qi
[
d
i

]
q

1 + qd+e−2i

1 + qd+e−i

i∏
j=1

1 + qd+e−j

1 + qj−e
.

Levstein, Maldonado and Penazzi [17] constructed a lattice L which consists of all
isotropic subspaces of the underlying vector space Fnq together with the maximal element

1̂ := Fnq . The order, rank, meet, and join of the lattice L are all similar to the Grassmann

case, except that u∨v = 1̂ if the span of u∪v is not isotropic. The set Li of i-dimensional
isotropic subspaces has cardinality [5, Lemma 9.4.1]

|Li| =
[
d
i

]
q

·
i−1∏
j=0

(
qd+e−j−1 + 1

)
.

3.6 Norton Algebras

Let Γ = (X,E) be a distance regular graph of diameter d, with eigenvalues θ0 > θ1 > · · · >
θd and corresponding eigenspaces V0, V1, . . . , Vd. For i = 0, 1, . . . , d, using the orthogonal
projection πi : RX → Vi we define the Norton product on Vi as

u ? v := πi(u · v) for all u, v ∈ Vi
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where · is the entrywise product, i.e., (u · v)(x) := u(x)v(x) for all x ∈ X. With the
Norton product ?, the eigenspace Vi becomes an algebra known as the Norton algebra,
which is commutative but not associative in general.

Let Γ = (X,E) be the Johnson graph J(n, k), the Grassmann graph Jq(n, k), the
Hamming graph H(d, e) or a dual polar graph throughout the rest of the paper. Recall
that there is a lattice L associated with each of these graphs. For any v ∈ L, define a
map ıv : X → R by

ıv(x) :=

{
1 if v 6 x

0 otherwise.

For i = 0, 1, . . . , d, let Λi denote the subspace of RX spanned by {ıv : v ∈ Li}, where Li is
the set of elements of rank i in L. In particular, Λ0 is the span of the function 1 : X → R
which takes constant value 1 on all vertices. Also note that πi(1) = 0 is the zero function
for i = 1, . . . , d.

Levstein–Maldonado–Penazzi [17] and Maldonado–Penazzi [20] showed the following
result (whose proof in the hypercube case remains valid for all Hamming graphs).

Theorem 5. Let Γ be J(n, k), Jq(n, k), H(d, e) or a dual polar graph.

(i) There is a filtration Λ0 ⊆ Λ1 ⊆ · · · ⊆ Λd = RX .

(ii) The eigenspaces of Γ are given by V0 = Λ0 = R1 and Vi = Λi∩Λ⊥i−1 for i = 1, 2, . . . , d.

(iii) The set {v̌ : v ∈ L1} spans V1, where v̌ := π1(ıv) = ıv − a1
|X|1 with a1 := #{x ∈ X :

x > v} not depending on the choice of v.

For Γ = J(n, k) with n > 2k, Maldonado and Penazzi [20] showed that if u, v ∈ L1

then

ǔ ? v̌ =


(

1− 2k

n

)
v̌ if u = v

2k − n
n(n− 2)

(ǔ+ v̌) if u 6= v.

(1)

For Γ = Jq(n, k) with n > 2k > 4, Maldonado and Penazzi [20] showed that if u, v ∈ L1

then

ǔ ? v̌ =


(

1− 2[k]q
[n]q

)
v̌ if u = v

− [k]q
[n]q

(ǔ+ v̌) +
[k − 1]q
q[n− 2]q

∑
w∈L1:w6u∨v

w̌ if u 6= v.
(2)

This is indeed a q-analogue of the previous formula (1) since − k
n

+ k−1
n−2

= 2k−n
n(n−2)

.
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For a dual polar graph Γ, Levstein, Maldonado and Penazzi [17] showed that if u, v ∈
L1 then

ǔ ? v̌ =



(qd+e−1 − 1)v̌/(qd+e−1 + 1) if u = v

−(ǔ+ v̌)/(1 + qd+e−1) if u ∨ v = 1̂

−(ǔ+ v̌)

1 + qd+e−1
+
∑
w∈Ψ2

w̌

qd−1(1 + qe−1)

+
∑

w∈Ψ3

w̌
qd−1(1+qe−1)(1+qd−3+e)

otherwise

(3)

where Ψj := {w ∈ L1 : u ∨ v ∨ w ∈ Lj} for j = 2, 3.
Finally, let Γ = H(d, e). Maldonado and Penazzi [20] showed that the Norton product

on V1 is zero when e = 2. We generalize the result to all Hamming graphs.

Theorem 6. Let Γ = H(d, e). For any u, v ∈ L1, we have

ǔ ? v̌ =


(e− 2)v̌/e if u = v

−(ǔ+ v̌)/e if u ∨ v = 1̂

0 if u ∨ v ∈ L2.

(4)

Proof. Let u, v ∈ L1. By Theorem 5, we have

ǔ ? v̌ = π1 ((ıu − 1/e) · (ıv − 1/e))

= π1(ıu · ıv)− π1(ıu + ıv)/e+ π1(1)/e2

= π1(ıu∨v)− (ǔ+ v̌)/e.

If u = v then ıu∨v = ıv and thus v̌ ? v̌ = v̌ − 2v̌/e = (e− 2)v̌/e.
If u ∨ v = 1̂ then ıu∨v = 0 and thus

ǔ ? v̌ = π1(0)− (ǔ+ v̌)/e = −(ǔ+ v̌)/e.

If u ∨ v ∈ L2 then ǔ ? v̌ = 0 since for any w ∈ L1 we have

〈ǔ ? v̌, π1(ıw)〉 = 〈ıu∨v − (ıu + ıv)/e, ıw − 1/e〉
= 〈ıu∨v, ıw〉 − 〈ıu + ıv, ıw〉/e− 〈ıu∨v,1〉/e+ 〈ıu + ıv,1〉/e2

= 〈ıu∨v, ıw〉 − 〈ıu + ıv, ıw〉/e− ed−3 + 2ed−3 = 0

where the first equality holds by the orthogonality of π1 and last one by the following
argument.

• If w = u or w = v then 〈ıu∨v, ıw〉 = ed−2 and 〈ıu + ıv, ıw〉 = ed−1 + ed−2.

• If w ∨ u = 1̂ or w ∨ v = 1̂ then 〈ıu∨v, ıw〉 = 0 and 〈ıu + ıv, ıw〉 = ed−2.

• If u ∨ v ∨ w ∈ L3 then 〈ıu∨v, ıw〉 = ed−3 and 〈ıu + ıv, ıw〉 = 2ed−2.
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To better understand the Norton algebras of the Hamming graph H(d, e), we provide
a basis for each eigenspace.

Proposition 7. For i = 0, 1, . . . , d, the eigenspace Vi has a basis {πi(ıv) : v ∈ L′i}, where
L′i is the set of all words in Li whose nonzero entries cannot be e. In particular, V1 has
a basis {v̌ : v ∈ L′1} where L′1 is the set of all words v1 · · · vd with 1 6 vi < e for some i
and vj = 0 for all j 6= i.

Proof. The result is trivial when i = 0. Assume i > 1 below.
We have a spanning set {πi(ıv) : v ∈ Li} for Vi by its definition. Let w ∈ Li with

wj = e for some j. Changing the jth entry of w to zero gives a word u ∈ Li−1. For any
x ∈ X = Ld, we have x > u if and only if x > v for some v m u with vj 6= 0. Hence∑

vmu: vj 6=0

πi(ıv) = πi(ıu) = 0.

This implies that we can write πi(ıw) in terms of πi(ıv) for all v m u with 1 6 vj < e.
Repeating this process for all other entries of w that equal e, we can write πi(ıw) in terms
of {πi(ıv) : v ∈ L′i}. Thus this set spans Vi and it is indeed a basis since dim(Vi) =(
d
i

)
(e− 1)i = |L′i|.

Corollary 8. Let V1(d, e) denote the Norton algebra V1 of the Hamming graph H(d, e).
Then V1(d, e) is isomorphic to the direct product of d copies of V1(1, e):

V1(d, e) ∼= V1(1, e)× · · · × V1(1, e)︸ ︷︷ ︸
d

.

Proof. By Proposition 7, we have a basis {v̄ : v ∈ L′1} for V1(d, e), where L′1 consists of
all words of length d on the alphabet {1, . . . , e − 1}. By Theorem (6), the subalgebra
spanned by {v̄ : v ∈ L′1, vi ∈ {1, . . . , e − 1}} is isomorphic to V1(1, e) for all i = 1, . . . , d
and V1(d, e) is isomorphic to the direct product of these subalgebras.

Remark 9. One can also prove Corollary 8 by the method used in work of Levstein,
Maldonado and D. Penazzi [18] on the Terwilliger algebra of the Hamming scheme.

4 Main Results

In this section we establish our main results on the nonassociativity of the Norton product
? on the eigenspace V1 of Γ, where Γ is the Johnson graph J(n, k), the Grassmann graph
Jq(n, k), the Hamming graph H(d, e) or a dual polar graph. Recall that V1 has a spanning
set {v̌ : v ∈ L1} and a basis {v̌ : v ∈ L′1}. We also have formulas (1), (2), (3), (4) for the
Norton product ? on V1.
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4.1 The Johnson graphs

In this subsection we study the Norton product ? on the eigenspace V1 of the Johnson
graph J(n, k). When n = 2k, the formula (1) becomes ǔ ? v̌ = 0 for all u, v ∈ L1 and thus
? is associative.

We assume n > 2k through the end of this subsection. For each v ∈ L1, let

v̄ :=
n

n− 2k
v̌.

Then {v̄ : v ∈ L1} is a spanning set for V1. Let c := −1/(n − 2). For any u, v ∈ L1, we
have

ū ? v̄ =

{
v̄ if u = v

c(ū+ v̄) if u 6= v
(5)

by the formula (1) for the Norton product ? on the spanning set {v̌ : v ∈ L1} of V1.

Example 10. For n > 3, the Johnson graph J(n, 1) ∼= Kn has vertices labeled by 1-
subsets of [n]. Its adjacency matrix is A = J − I, whose eigenvalues are θ0 = n − 1 and
θ1 = −1. We have V0 = R1 and V1 = V ⊥0 =

{
f : X → R :

∑
x∈X f(x) = 0

}
. For each

v = {i} ∈ L1 = X we have

ıv = ei, v̌ := π1(ei) = ei − 1/n, and xi := v̄ = nv̌/(n− 2)

where ei : X → R is defined by ei({i}) = 1 and ei({j}) = 0 for all j 6= i. The set
{x1, . . . , xn} spans V1, and deleting any element from it gives a basis for V1. We have

xi ? xi = xi and xi ? xj = c(xi + xj)

where 1 6 i 6= j 6 n and c := −1/(n− 2). For distinct i, j, k ∈ {1, 2, . . . , n}, we have

xi ? (xi ? xj) = c(xi + xi ? xj),

(xi ? xj) ? (xi ? xj) = (2c2 + c)(xi ? xj).

The next lemma will play an important role in our study of the Norton product ?.

Lemma 11. Let t ∈ Tm. Let u and v be distinct elements of L1.
(i) If z0 = z1 = · · · = zm = v̄ then (z0 ? z1 ? · · · ? zm)t = v̄.
(ii) If zr := ū for some r and zs = v̄ for all s 6= r, then

(z0 ? z1 ? · · · ? zm)t = cdr(t)ū+
(
c+ c2 + · · ·+ cdr(t)

)
v̄. (6)

Proof. (i) If z0 = z1 = · · · = zm = v̄ then (z0 ? z1 ? · · · ? zm)t = v̄ since v̄ ? v̄ = v̄ by the
formula (5).

(ii) We use induction on m. The result is trivial when m = 1. Assume m > 2 below.
Let t1 ∈ Tm′ and t2 ∈ Tm−m′−1 be the subtrees of t rooted at the left and right children
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of the root of t, respectively. Suppose the rth leaf of t is contained in t1, without loss of
generality. Then dr(t) = dr(t1) + 1. Thus

(z0 ? z1 ? · · · ? zm)t = (z0 ? · · · ? zm′)t1 ? (zm′+1 ? · · · ? zm)t2

=
(
cdr(t1)ū+

(
c+ c2 + · · ·+ cdr(t1)

)
v̄
)
? v̄

= cdr(t1)+1(ū+ v̄) +
(
c+ c2 + · · ·+ cdr(t1)

)
v̄

= cdr(t)ū+
(
c+ c2 + · · ·+ cdr(t)

)
v̄.

by the inductive hypothesis and part (i) of this lemma.

It turns out the the case n = 3 is different from the case n > 4. We first consider
the former, which implies k = 1 as we assume n > 2k. As discussed in Example 10, for
the Johnson graph J(3, 1) ∼= K3, the eigenspace V1 of θ1 = −1 has a basis {x, y} which
satisfies

x ? x = x, y ? y = y, and x ? y = −x− y. (7)

It follows that

x ? (x ? y) = y, y ? (x ? y) = x, and (x ? y) ? (x ? y) = x ? y. (8)

Proposition 12. Let ? be the Norton product on the eigenspace V1 of the Johnson graph
J(3, 1) ∼= K3. Then two binary trees in Tm are ?-equivalent if and only if their depth
sequences are (term-wise) congruent modulo 2. Consequently, C?,m = C	,m for all m > 0,
which agrees with the sequence A000975 on OEIS [21] except for m = 0.

Proof. Let t and t′ be two binary trees in Tm. Let z0, . . . , zm be indeterminates taking
values in V1. It suffices to show that (z0 ? · · · ? zm)t = (z0 ? · · · ? zm)t′ if and only if
d(t) ≡ d(t′) (mod 2); the rest of the result will follow from Theorem 2.

First suppose that (z0 ? · · · ? zm)t = (z0 ? · · · ? zm)t′ . Let r be an arbitrary element of
{0, 1, . . . ,m}. By Lemma 11, taking zr = x and zs = y for all s 6= r gives

(−1)dr(t)x+
1− (−1)dr(t)+1

2
y = (−1)dr(t′)x+

1− (−1)dr(t′)+1

2
y.

This implies that dr(t) ≡ dr(t
′) (mod 2). Since r is arbitrary, we have d(t) ≡ d(t′)

(mod 2).
For the reverse direction, we compare ? with the double minus operation 	, which can

be defined on V1 by a	 b := −a− b for all a, b ∈ V1. Theorem 2 still holds since −1 is a
second root of unity in R. Both 	 and ? are commutative, and one can check that

x	 y = −x− y = x ? y,

x	 x = −2x ≡ x = x ? x (mod 3),

y 	 y = −2y ≡ y = y ? y (mod 3),

x	 (x	 y) = −x− (−x− y) = y = x ? (x ? y),

y 	 (x	 y) = −y − (−x− y) = x = y ? (x ? y), and

(x	 y)	 (x	 y) = 2x+ 2y ≡ −x− y = x ? y (mod 3).

(9)
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Suppose that d(t) ≡ d(t′) (mod 2). This implies that (z0 	 · · · 	 zm)t = (z0 	 · · · 	 zm)t′ .
To show (z0 ? · · · ? zm)t = (z0 ? · · · ? zm)t′ , we may assume that z0, . . . , zm take values from
the basis {x, y} of V1 by the linearity of the Norton product ?. Using the formula (7)
for the Norton product ? on {x, y}, we can expand (z0 ? · · · ? zm)t and (z0 ? · · · ? zm)t′ .
During this process, we will only encounter x, y, and x ? y, according to the formula (8).
By reduction modulo 3 and using the above relations (9) between 	 and ? we have
(z0 ? · · · ? zm)t = (z0 ? · · · ? zm)t′ from (z0 	 · · · 	 zm)t = (z0 	 · · · 	 zm)t′ .

Remark 13. This proposition suggests that the Norton product ? on V1 for J(3, 1) ∼= K3

can be viewed as a 2-dimensional generalization of the double minus operation 	. The two
operations are related by congruence modulo 3, as shown in the above proof. However,
the two operations are not the same even if the ground field R is replaced with a field of
characteristic 3. For example, we have (−x) ? y = −(x ? y) = x+ y but (−x)	 y = x− y.
It would be nice to have an explicit formula for the result from expanding (z0 ? · · · ? zm)t
for any tree t ∈ Tm, where z0, . . . , zm take values in the basis {x, y}; such a formula may
lead to a different proof of the above proposition.

Now we study the case n > 4, which is different from the previous case n = 3, since
in the formula (5) for the Norton product ?, the constant c := −1/(n − 2) generates an
infinite multiplicative group in the field R when n > 4.

Proposition 14. Suppose n > 4 and n > 2k. Let ? be the Norton product on the
eigenspace V1 of the Johnson graph J(n, k). Then two binary trees in Tm are ?-equivalent
if and only if they are equal. Consequently, C?,m = Cm for all m > 0, i.e., the operation
? is totally nonassociative.

Proof. It suffices to show that any two distinct binary trees t and t′ in Tm are not ?-
equivalent. By Proposition 3, their depth sequences d(t) and d(t′) must be distinct as
well, i.e., dr(t) 6= dr(t

′) for some r ∈ {0, 1, . . . ,m}. Since dim(V1) > 2, there exist u, v ∈ L1

such that ū and v̄ are linearly independent. By Lemma 11 (ii), we have

(z0 ? z1 ? · · · ? zm)t 6= (z0 ? z1 ? · · · ? zm)t′

if zr := ū and zs := v̄ for all s 6= r, as c generates an infinite multiplicative group in R.
Thus t and t′ are not ?-equivalent.

4.2 Grassmann graphs

In this subsection we study the Norton product ? on the eigenspace V1 of the Grassmann
graph Jq(n, k). The case k = 1 is already covered in the Johnson case as Jq(n, 1) ∼=
K[n]q

∼= J([n]q, 1). Thus we assume n > 2k > 4.

Define v̄ := [n]q
[n]q−2[k]q

v̌ for all v ∈ L1. By the formula (2), if u, v ∈ L1 then

ū ? v̄ =

v̄ if u = v

c(ū+ v̄) +
∑

w∈L1:w6u∨v

bw̄ if u 6= v (10)

the electronic journal of combinatorics 27(4) (2020), #P4.27 15



where

c := − [k]q
[n]q − 2[k]q

and b :=
[k − 1]q[n]q

q[n− 2]q([n]q − 2[k]q)
.

Lemma 15. Let t ∈ Tm. Let u and v be distinct elements of L1.

(i) If z0 = z1 = · · · = zm = v̄ then (z0 ? z1 ? · · · ? zm)t = v̄.

(ii) Let zr := ū for some r and zs = v̄ for all s 6= r. Let h := dr(t). Then

(z0 ? z1 ? · · · ? zm)t = α(h)ū+ β(h)v̄ + γ(h)
∑

w∈L1:w6u∨v

w̄

where α(h), β(h), γ(h) are all constants depending only on n, k, q, h, with α(h) = ch

and

γ(h) =
h∑
j=1

qj−1

(
h

j

)
bjch−j =

(qb+ c)h − ch

q
.

Proof. (i) This follows immediately from the formula v̄ ? v̄ = v̄.
(ii) We use induction on m. The result is the same as the formula (10) when m = 1. For
m > 2, let t be a binary tree in Tm with two subtrees t1 ∈ Tm′ and t2 ∈ Tm−m′−1 rooted
at the left and right children of the root of t, respectively. Suppose that the rth leaf of t
is contained in t1, without loss of generality. By part (i) of this lemma we have

(z0 ? z1 ? · · · ? zm)t = (z0 ? · · · ? zm′)t1 ? (zm′+1 ? · · · ? zm)t2 = (z0 ? · · · ? zm′)t1 ? v̄.

Let h := dr(t1). Then dr(t) = h+ 1. Applying the inductive hypothesis to t1 we obtain

(z0 ? z1 ? · · · ? zm)t =α(h)ū ? v̄ + β(h)v̄ ? v̄ + γ(h)
∑

w∈L1:w6u∨v

w̄ ? v̄

=α(h)c(ū+ v̄) +
∑
w∈L1
w6u∨v

α(h)bw̄ + β(h)v̄ + γ(h)v̄

+
∑

w∈L1\{v}
w6u∨v

γ(h)c(w̄ + v̄) +
∑

w∈L1\{v}
w6u∨v

∑
τ∈L1
τ6w∨v

γ(h)bτ̄

=α(h)cū+ (α(h)c+ β(h) + γ(h) + qγ(h)c) v̄

+
∑
w∈L1
w6u∨v

α(h)bw̄ +
∑

w∈L1\{v}
w6u∨v

γ(h)cw̄ +
∑
τ∈L1
τ6u∨v

qγ(h)bτ̄

=α(h)cū+ (α(h)c+ β(h) + γ(h) + (q − 1)γ(h)c) v̄

+
∑
w∈L1
w6u∨v

(α(h)b+ γ(h)c+ qγ(h)b)w̄.
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We have α(h)c = chc = ch+1 = α(h+ 1) and

α(h)b+ γ(h)c+ qγ(h)b = bch +
h∑
j=1

qj−1

(
h

j

)
bjch−j+1 +

h∑
j=1

qj
(
h

j

)
bj+1ch−j

=
h∑
j=1

qj−1

(
h

j

)
bjch−j+1 +

h+1∑
j=1

qj−1

(
h

j − 1

)
bjch+1−j

=
h+1∑
j=1

qj−1

(
h+ 1

j

)
bjch+1−j = γ(h+ 1).

Thus (z0 ? z1 ? · · · ? zm)t satisfies the desired formula. (It is tedious to determine β(h) and
we will not need it anyway.)

Theorem 16. If n > 2k > 4 then the Norton product ? on the eigenspace V1 of the
Grassmann graph Jq(n, k) is totally nonassociative.

Proof. It suffices to show that any two distinct binary trees t and t′ in Tm are not ?-
equivalent. By Proposition 3, the depth sequences d(t) and d(t′) must be distinct, i.e.,
dr(t) = h and dr(t

′) = h′ are distinct for some r ∈ {0, 1, . . . ,m}. Toward a contradiction,
suppose that

(z0 ? z1 ? · · · ? zm)t = (z0 ? z1 ? · · · ? zm)t′ . (11)

Let u, v be distinct elements of L1. Since dim(V1) = |L1| − 1, deleting any element
from the spanning set {w̄ : w ∈ L1} gives a basis for V1. In particular, there exists a
subset L′1 ⊆ L1 such that {w̄ : w ∈ L′1} is a basis of V1 and {w ∈ L1 : w 6 u ∨ v} ⊆ L′1.
The set {w ∈ L1 : w 6 u ∨ v} contains at least three distinct elements u, v, τ , since its
cardinality is 1 + q > 3.

Let zr = ū for some r and zs = v̄ for all s 6= r. By Lemma 15, taking the coefficients
of the basis elements ū and τ̄ in the above equation (11) gives

α(h) + γ(h) = α(h′) + γ(h′) and γ(h) = γ(h′).

Thus α(h) = α(h′), i.e., ch = ch
′
. Since h 6= h′ and c ∈ R, we must have c = ±1. But

c := − [k]q
[n]q − 2[k]q

=
1− qk

2(1− qk)− (1− qn)
= ±1

implies qn − qk = 0 or qn − 3qk + 2 = 0, which is impossible as qn > q2k > 3qk > qk

whenever n > 2k > 4 and q > 2. This contradiction concludes the proof.

4.3 Hamming graphs

In this subsection we study the Norton product ? on the eigenspace V1 of the Hamming
graph Γ = H(d, e). When e = 2, this product is associate since it is acutally zero by
Theorem 6 (see also work of Maldonado and Penazzi [20]). Assume e > 3 below.
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Proposition 17. Let ? be the Norton product on the eigenspace V1 of the Hamming graph
H(d, 3). Then two binary trees in Tm are ?-equivalent if and only if their depth sequences
are (term-wise) congruent modulo 2. Consequently, C?,m = C	,m for all m > 0, which
agrees with the sequence A000975 on OEIS [21] except for m = 0.

Proof. If d = 1 then the result follows from Proposition 12 since H(1, 3) ∼= K3
∼= J(3, 1).

If d > 2 then we can apply Lemma 4 and Corollary 8 to conclude the proof.

Proposition 18. Let ? be the Norton product on the eigenspace V1 of the Hamming graph
H(d, e) with e > 4. Then two binary trees in Tm are ?-equivalent if and only if they are
equal. Consequently, C?,m = Cm for all m > 0, i.e., ? is totally nonassociative.

Proof. If d = 1 then the result follows from Proposition 14 since H(1, e) ∼= Ke
∼= J(e, 1).

If d > 2 then we can apply Lemma 4 and Corollary 8 to conclude the proof.

4.4 Dual polar graphs

Finally, we study the Norton product ? on the eigenspace V1 of a dual polar graph Γ =
(X,E) with diameter d. If d = 1 then Γ is a complete graph, which has already been
discussed in the Johnson case. Thus we assume d > 2 below. For every v ∈ L1, let

v̄ :=
(qd+e−1 + 1)v̌

qd+e−1 − 1
.

By the previous formula (3) for ?, if u, v ∈ L1 then

ū ? v̄ =


v̄ if u = v

c(ū+ v̄) if u ∨ v = 1̂

c(ū+ v̄) + b
∑
w∈Ψ2

w̄ +
∑
w∈Ψ3

b′w̄ otherwise
(12)

where Ψj := {w ∈ L1 : u ∨ v ∨ w ∈ Lj}, c := 1/(1− qd+e−1),

b :=
(qd+e−1 + 1)

(qd+e−1 − 1)qd−1(1 + qe−1)
and b′ :=

(qd+e−1 + 1)

(qd+e−1 − 1)qd−1(1 + qe−1)(1 + qd−3+e)
.

Example 19. A dual polar graph of diameter d = 2 is a generalized quadrangle of order
(qe, q); in particular, D2(q) is isomorphic to the complete bipartite graph K1+q,1+q [4,
§7]. In Example 10 we discussed the complete graphs. Now we examine the complete
m-partite graph Kn,...,n, which becomes the complete graph Km when n = 1 or the dual
polar graph D2(q) ∼= K1+q,1+q when m = 2 and n = 1 + q. For n > 2 the complete
m-partite graph Kn,...,n is a distance regular graph of diameter d = 2 with adjacency
matrix A = Jmn − diag(Jn, . . . , Jn), where Jn denote the all-one matrix of size n-by-n.
The eigenvalues of A are θ0 = mn, θ1 = 0, and θ2 = −n. The eigenspaces are V0 = R1,

V1 = {(vij)16i6m, 16j6n : vi1 + · · ·+ vin = 0 for i = 1, . . . ,m}, and
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V2 = {(vij)16i6m, 16j6n : vi1 = · · · = vin for i = 1, . . . ,m, v11 + · · ·+ vm1 = 0}.

The Norton algebra V1 of the complete m-partite graph Kn,...,n is isomorphic to the direct
product ofm copies of the Norton algebra V1 of the complete graphKn and also isomorphic
to the Norton algebra V1 of the Hamming graph H(m,n) by Corollary 8.

Theorem 20. Let ? be the Norton product on the eigenspace V1 of a dual polar graph of
diameter d > 2.

• If Γ = D2(2) then two binary trees in Tm are ?-equivalent if and only if their depth
sequences are (term-wise) congruent modulo 2, and consequently, C?,m = C	,m for
all m > 0, which agrees with the sequence A000975 on OEIS [21] except for m = 0.

• If Γ 6= D2(2) then the operation ? is totally nonassociative.

Proof. If Γ = D2(2) then the result follows from Proposition 17 since the Norton algebra
V1 of D2(2) ∼= K3,3 is isomorphic to that of the Hamming graph H(2, 3) as discussed in
Example 19.

Suppose Γ 6= D2(2) below. There exist distinct elements u, v ∈ L1 such that u∨v = 1̂,
i.e., the span of u∩v is not isotropic, as otherwise the span of all isotropic one-dimensional
subspaces would be the unique maximal isotropic subspace, giving a contradiction to the
hypothesis d > 2.

Since u∨v = 1̂, the formula (12) gives ū? v̄ = c(ū+ v̄) where c := 1/(1−qd+e−1). Thus
Lemma 11 still holds and we can argue in the same way as the proof of Proposition 14 to
show that ? is totally nonassociative, provided that (i) ū and v̄ are linearly independent,
and (ii) c 6= ±1.

To show the assumption (i), suppose that ū + λv̄ = 0 for some constant λ, for the
sake of contradiction. This implies that π1(ıu + λıv) = 0, i.e., ıu + λıv ∈ Λ0 = R1. Thus
any x ∈ X, we have either u 6 x or v 6 x, but not both since u ∨ v = 1̂ 66 x. In other
words, ıu +λıv = ıu + ıv = 1, which implies that ū+ v̄ = 0. Then we have a contradiction
between ū ? v̄ = c(ū+ v̄) = 0 and ū ? v̄ = −v̄ ? v̄ = −v̄ 6= 0.

Now suppose that the assumption (ii) is false, i.e., c := 1/(1 − qd+e−1) = ±1. This
implies that qd+e−1 = 0 or qd+e−1 = 2. The former is absurd as q > 2. The latter holds if
and only if q = d = 2 and e = 0, but in this case the dual polar graph is exactly D2(2).
Thus the proof is complete.

5 Remarks and questions

5.1 Explicit formula for the Johnson graphs

For the Norton product ? on the eigenspace V1 of the Johnson graph J(n, k), we can use
the formula (5) for ? to simplify the expression (z0 ? z1 ? · · · ? zm)t, where t is a binary tree
with m+1 leaves and z0, z1, . . . , zm are indeterminates taking values in V1, or equivalently,
in the spanning set {v̄ : v ∈ L1} of V1. It would be nice to have an explicit rule for the
result, especially in the case (n, k) = (3, 1) when the formula (7) for ? is relatively simple.
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5.2 Generalized Johnson graphs

The generalized Johnson graph J(n, k, r) has vertex set X consisting of all k-subsets of
[n] and has edge set

E = {xy : x, y ∈ X, |x ∩ y| = k − r}.

It includes the Johnson graph J(n, k) = J(n, k, 1) as a special case. The eigenvalues of the
adjacency matrix of J(n, k, r) are given by the so-called Eberlein polynomials ; this can be
derived in terms of association schemes [3, 8] or by representation theoretic means [2, 16].
The distance in J(n, k, r) was determined by Agong, Amarra, Caughman, Herman and
Terada [1]. In general, the graph J(n, k, r) is not distance regular. Thus we cannot extend
our results from J(n, k) to J(n, k, r).

5.3 Bilinear Forms Graphs

The bilinear forms graph Hq(d, e) has vertex set X consisting of all d× e matrices over a
finite field Fq and has edge set E consisting of all unordered pairs of vertices whose differ-
ence has rank one. Two vertices have distance i in Hq(d, e) if and only if their difference
has rank i. The graph Hq(d, e) is a distance regular graph of diameter d (assuming d 6 e)
and is a q-analogue of the Hamming graph H(d, e). It would be nice to have an explicit
formula for the Norton product on the eigenspace V1 of the graph Hq(d, e).

5.4 Other distance regular graphs

There are many other interesting distance regular graphs in the literature; see, for ex-
ample, Brouwer, Cohen and Neumaier [5] and van Dam–Koolen–Tanaka [7]. The Norton
algebras of these graphs are worth further investigation.
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