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Abstract

In 1981, Kelly showed that planar posets can have arbitrarily large dimen-
sion. However, the posets in Kelly’s example have bounded Boolean dimension and
bounded local dimension, leading naturally to the questions as to whether either
Boolean dimension or local dimension is bounded for the class of planar posets. The
question for Boolean dimension was first posed by Nešetřil and Pudlák in 1989 and
remains unanswered today. The concept of local dimension is quite new, introduced
in 2016 by Ueckerdt. Since that time, researchers have obtained many interesting
results concerning Boolean dimension and local dimension, contrasting these param-
eters with the classic Dushnik-Miller concept of dimension, and establishing links
between both parameters and structural graph theory, path-width and tree-width in
particular.

Here we show that the local dimension is not bounded in the class of planar
posets. Our proof also shows that the local dimension of a poset is not bounded in
terms of the maximum local dimension of its blocks, and it provides an alternative
proof of the fact that the local dimension of a poset cannot be bounded in terms of
the tree-width of its cover graph, independent of its height.
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1 Notation, Terminology and Background Discussion

In this paper, we investigate combinatorial problems for finite posets. As has become
standard in the literature, we use the terms elements and points interchangeably in refer-
ring to the members of the ground set of a poset. We will write x ‖ y in P when x and y
are incomparable in a poset P , and we let Inc(P ) denote the set of all ordered pairs (x, y)
with x ‖ y in P . As a binary relation, Inc(P ) is symmetric. Recall that a non-empty
family R of linear extensions of P is called a realizer of P when x < y in P if and only if
x < y in L for each L ∈ R. Clearly, a non-empty family R of linear extensions of P is a
realizer of P if and only if for each (x, y) ∈ Inc(P ), there is some L ∈ R for which x > y
in L. The dimension of a poset P , as defined by Dushnik and Miller in their seminal
paper [3], is the least positive integer d for which P has a realizer R with |R| = d.

In recent years, researchers have been investigating combinatorial problems for two
variations of the Dushnik-Miller concept for dimension, known as Boolean dimension and
local dimension, respectively.

Here is the setting for Boolean dimension. For a positive integer d, we let 2d denote
the set of all 0–1 strings of length d. Such strings are also called bit strings. Let P be
a poset and let B = {L1, L2, . . . , Ld} be a family of linear orders on the ground set of P
(these linear orders need not be linear extensions of P ). Also, let τ be a function which
maps all 0–1 strings of length d to {0, 1}. For each pair (x, y) of distinct elements of P ,
we form the bit string q(x, y,B) which has value 1 in coordinate i if and only if x < y
in Li. We call the pair (B, τ) a Boolean realizer of P if for every pair (x, y) of distinct
elements of P , x < y in P if and only if τ(q(x, y,B)) = 1. Nešetřil and Pudlák [12]
defined the Boolean dimension of P , denoted bdim(P ), as the least positive integer d for
which P has a Boolean realizer (B, τ) with |B| = d. Clearly, bdim(P ) 6 dim(P ), since
if R = {L1, L2, . . . , Ld} is a realizer of P , we simply take B = R and τ as the function
which maps (1, 1, . . . , 1) to 1 while all other bit strings of length d are mapped to 0.

Trivially, bdim(P ) = 1 if and only if P is either a chain or an antichain. We say
that a poset Q is a subposet of P if for any two elements x, y in Q we have x 6 y in Q
if and only if x 6 y in P . So, if Q is a subposet of P , then bdim(Q) 6 bdim(P ). In
this paper, we will denote the dual of poset P as P ∗, and we define it as follows: the
set of vertices of P and P ∗ are the same and x 6 y in P ∗ if and only if y 6 x in P ∗.
Clearly, bdim(P ) = bdim(P ∗). It is an easy exercise to show that if bdim(P ) = 2, then
dim(P ) = 2. In [16], Trotter and Walczak prove the modestly more challenging fact that
if bdim(P ) = 3, then dim(P ) = 3. As we will see shortly, for every d > 4, there is a poset
P with bdim(P ) = 4 and dim(P ) = d.

Here is the setting for local dimension. Let P be a poset. A partial linear extension,
abbreviated ple, of P is a linear extension of a subposet of P . Whenever L is a family
of ple’s of P and u ∈ P , we set µ(u,L) = |{L ∈ L : u ∈ L}|. In turn, we set µ(P,L) =
max{µ(u,L) : u ∈ P}. A non-empty family L of ple’s of a poset P is called a local realizer
of P if the following two conditions are satisfied: (1) If x < y in P , there is some L ∈ L
for which x < y in L; (2) if (x, y) ∈ Inc(P ), there is some L ∈ L for which x > y in L.
The local dimension of P , denoted ldim(P ), is then defined to be the least positive integer
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d for which P has a local realizer L with µ(P,L) = d.
The concept of local dimension is due to Torsten Ueckerdt who shared his ideas with

participants of the workshop on Order and Geometry (held in Gułtowy, Poland, September
14–17, 2016). Clearly, this new notion resonated with participants at the workshop, and
it served to stimulate renewed interest in Boolean dimension as well.

Trivially, ldim(P ) 6 dim(P ) for all posets P . Also, ldim(P ) = 1 if and only if P is
a chain; ldim(Q) 6 ldim(P ) if Q is a subposet of P ; and if P ∗ is the dual of P , then
ldim(P ∗) = ldim(P ). It is an easy exercise to show that if ldim(P ) = 2, then dim(P ) = 2.
However, for every d > 3, there is a poset P with ldim(P ) = 3 and dim(P ) = d.

The principal result of this paper involves a construction for a family of posets for
which local dimension is unbounded. The implications of our construction fall into four
distinct categories:

1.1 Planar Posets

For two elements x, y of a poset P we say that y covers x if x < y and there is no element
z with x < z < y. The cover graph of P is the undirected graph G(P ) whose set of
vertices is the same as the set of elements of P , in which x is adjacent to y if and only if
x covers y or y covers x in P . A drawing on the plane of the cover graph of a poset P
is called an order diagram if for any two comparable elements x < y in P , the point in
the plane corresponding to the element y is higher than the point corresponding to the
element x. A poset P is planar if its order diagram can be drawn in the plane without
edge crossings. If a poset is planar, then its cover graph is planar, although the converse
does not hold in general.

For an integer n > 2, the standard example Sn is a height 2 poset with minimal
elements A = {a1, a2, . . . , an} and maximal elements B = {b1, b2, . . . , bn}. Furthermore,
ai < bj in Sn if and only if i 6= j (see Figure 1). Dushnik and Miller [3] showed that

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

Figure 1: The Standard Example

dim(Sn) = n, for all n > 2 (see [14]). Furthermore, it is an easy exercise to show that Sn

is planar when 2 6 n 6 4 and non-planar when n > 5.
In Figure 2, we present a construction due to Kelly [10], showing that for all n > 5, the

non-planar poset Sn is a subposet of a planar poset Kn. This specific figure is a diagram
for K6, but it should be clear how we intend the diagram to be depicted for other values
of n.
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z1

w2

z2
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z3

w4

z4

w5

z5

Figure 2: The Kelly Construction

The following argument shows that the bound bdim(Kn) 6 4 holds for all n > 3.
First, notice that dim(K3) = 3 implies bdim(K3) = 3. So, assume that n > 4. Then for
Kn we form linear orders L1:

a1 < w1 < a2 < · · · < wn−1 < an < bn < zn−1 < bn−1 < · · · < z1 < b1

and L2:

an < zn−1 < an−1 < · · · < z1 < a1 < b1 < w1 < b2 < . . . < wn−1 < bn.

Note that L1 and L2 are linear extensions of Kn. Then form linear orders (they are not
linear extensions) L3:

a1<b1 < a2<b2 < . . . < an<bn < w1<. . .<wn−1<z1<. . .<zn−1

and L4:

zn−1<. . .<z1<wn−1<. . .<w1 < an<bn < an−1<bn−1 < . . . < a1<b1.

Then set B = {L1, L2, L3, L4}, and let τ : 24 → {0, 1} be defined by setting τ(1, 1, 0, 1) =
τ(1, 1, 1, 0) = 1. The map τ sends all other strings to 0. It is easy to check that (B, τ) is
a Boolean realizer for Kn.

In [12], Nešetřil and Pudlák remarked that the posets in the Kelly construction have
Boolean dimension at most 4, and they asked if the Boolean dimension of planar posets
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is bounded. It is clear from their presentation that they believed the answer should be
“yes”. However, this challenging question has remained open for nearly 30 years.

For local dimension, Ueckerdt [18] noted that ldim(Sn) 6 3 for all n > 2. In fact,
ldim(K2) = 2 and ldim(Kn) = 3 for all n > 3. Here’s why. Suppose n > 3. Let L1 and
L2 be the linear extensions of Kn defined just above. Then for each i = 1, 2, . . . , n, let Mi

be the ple whose ground set is {ai, bi} with ai > bi in Mi. Clearly, L = {L1, L2} ∪ {Mi :
1 6 i 6 n} is a local realizer for Kn and µ(z,L) 6 3 for all z ∈ Kn.

In view of these observations, it is also natural to ask whether local dimension is
bounded for the class of planar posets. Our construction will show that the answer is
“no”.

1.2 Components and Blocks

We refer the reader to [2] for the concepts of graph theory, including the following terms:
connected and disconnected graphs; components; cut vertices; and k-connected graphs
for an integer k > 2. A block is an inclusion-maximal 2-connected subgraph.

Here are the analogous concepts for posets. A poset P is said to be connected if its
cover graph is connected. A subposet B of P is said to be convex if y ∈ B whenever
x, z ∈ B and x < y < z in P . Note that when B is a convex subposet of P , the cover
graph of B is an induced subgraph of the cover graph of P . A convex subposet B of P
is called a component of P when the cover graph of B is a component of the cover graph
of P . A convex subposet B of P is called a block of P , when the cover graph of B is a
block in the cover graph of P .

When P is a disconnected poset with components C1, C2, . . . , Ct, for some t > 2, then
dim(P ) = max{2,max{dim(Ci) : 1 6 i 6 t}}. Readers may note that the preceding
observation is just a special case of the formula for the dimension of a lexicographic
sum (see page 23 in [14]). For the local dimension, it is an easy exercise to show that
ldim(P ) 6 2 + max{ldim(Ci) : 1 6 i 6 t}, but we do not know whether this inequality is
best possible.

The corresponding result for Boolean dimension is more complicated and is due to
Mészáros, Micek and Trotter [11].

Theorem 1. Let P be a disconnected poset with components C1, C2, . . . , Ct, for some
t > 2. If d = max{bdim(Ci) : 1 6 i 6 t}, then bdim(P ) = O(2d).

The inequality in Theorem 1 cannot be improved dramatically, since it is shown in [11]
that for large d, there is a disconnected poset P with bdim(P ) = Ω(2d/d) and bdim(C) 6 d
for every component C of P .

The situation with blocks is more complex, even for Dushnik-Miller dimension. In [17],
Trotter, Walczak and Wang prove the following result for Dushnik-Miller dimension.

Theorem 2. If d > 1 and dim(B) 6 d for every block of a poset P , then dim(P ) 6 d+2.
Furthermore, this inequality is best possible.

Boolean dimension behaves somewhat like Dushnik-Miller dimension with respect to
blocks, as the following inequality is also proved in [11].
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Theorem 3. If d > 1 and bdim(B) 6 d for every block B of a poset P , then bdim(P ) =
O(2d).

Again, this inequality cannot be improved dramatically, as it is shown in [11] that for
large d, there is a poset P with bdim(P ) = Ω(2d/d) and bdim(B) 6 d for every block B
of P .

Our construction will show that local dimension behaves quite differently with respect
to blocks. We will prove:

Theorem 4. For every d > 1, there is a poset P such that ldim(P ) = d while ldim(B) 6 3
for every block B of P .

1.3 Structural Graph Theory

The first major result linking dimension with structural graph theory is due to Joret,
Micek, Milans, Trotter, Walczak and Wang [7], who showed that for each pair (t, h) of
positive integers, there is a least positive integer d(t, h) so that if P is a poset of height
h and the tree-width1 of the cover graph of P is t, then dim(P ) 6 d(t, h). A poset of
height 1 is an antichain and has dimension at most 2, so it is of interest to study d(t, h)
only when h > 2. Trotter and Moore [15] showed that d(1, h) = 3 for all h > 2, and
Joret, Micek, Trotter, Wang, and Wiechert [9] showed that d(2, h) 6 1276 for all h > 2.
Recently, Seweryn [13] has given the following substantive improvement: d(2, h) 6 12.
It is a relatively simple exercise to show that the posets in the Kelly construction [10]
have cover graphs with path-width at most 3, so d(t, h) goes to infinity with h when t > 3.
The best bounds to date in the general case are due to Joret, Micek, Ossona de Mendez
and Wiechert [8]:

2Ω(hb(t−1)/2c) 6 d(t, h) 6 4(t+3h−3
t ). (1)

However, Felsner, Mészáros and Micek [5] proved that the Boolean dimension of a
poset is bounded in terms of the tree-width of its cover graph, independent of its height.
Formally, here is their result.

Theorem 5. For every t > 1, there is a least positive integer d(t) so that if P is a poset
whose cover graph has tree-width t, then bdim(P ) 6 d(t).

Barrera-Cruz, Prag, Smith, Taylor and Trotter [1] proved that the local dimension
of a poset is bounded in terms of the path-width of its cover graph, independent of its
height. Formally, here is their result.

Theorem 6. For every t > 1, there is a least positive integer d′(t) so that if P is a poset
whose cover graph has path-width t, then ldim(P ) 6 d′(t).

However, it is also shown in [1] that the analogue of Theorem 5 for local dimension is
false:

1We refer the reader to [2] for the concepts of tree-width and path-width.
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Theorem 7. For every d > 1, there exists a poset P with ldim(P ) > d such that the
cover graph of P has tree-width at most 3.

Our construction provides an alternative proof of Theorem 7.

1.4 Bounded Boolean Dimension and Unbounded Local Dimension

Trotter and Walczak [16] proved that if P is a poset and ldim(P ) 6 3, then bdim(P ) 6
8442. However, for each d > 4, they also proved that there is a poset P with ldim(P ) = 4
and bdim(P ) = d. They also showed that if bdim(P ) = 3, then ldim(P ) = dim(P ) = 3.
In [1], it is shown that for each d > 1, there is a poset P with bdim(P ) 6 4 and
ldim(P ) > d. Our construction provides another instance of a family of posets where
Boolean dimension is bounded and local dimension is not.

2 Our Construction

For the remainder of the paper, whenever we discuss a pair (n, d), it will be assumed that
n and d are integers with n > 2 and d > 1. Also, we do not distinguish between an
element x and a sequence (x) of length 1.

Fix an integer n > 2. Then for each d > 1, we define a planar poset K(n, d) via a
recursive process. The elements of K(n, d) will be identified with sequences of length d
from the set {a1, . . . , an, b1, . . . , bn, w1, . . . , wn−1, z1, . . . , zn−1}. As suggested by the nota-
tion, the poset K(n, 1) = Kn+1, i.e., K(n, 1) is just the Kelly construction illustrated in
Figure 2.

Now suppose that we have defined the planar poset K(n, d) for some d > 1. Suppose
further that we have a planar drawing without crossings of the order diagram of K(n, d)
and that in this drawing, (bn) is the highest point. To form K(n, d + 1), we take the
drawing of K(n, 1) illustrated in Figure 2 and make the following changes:

For each i = 1, 2, . . . , n, we take a suitably small scaling of the drawing of K(n, d) and
identify the point (bn) in K(n, d) with the point ai in K(n, 1). We change the label of the
points in the copy of K(n, d) by prepending the symbol ai at the start of the sequence.

With the obvious requirements regarding scaling in mind, it is clear that posets in
the family K = {K(n, d) : n > 2, d > 1} are planar. We note that for each pair (n, d),
a block of the poset K(n, d) is isomorphic to a subposet of the Kelly construction Kn+1.
Accordingly, if B is a block in K(n, d), then ldim(B) 6 3.

We also note that posets in the family K have tree-width at most 3. Here’s why: It
is easy to see that the cover graph of the poset K(n, 1) has path-width at most 3, so it
has tree-width at most 3. One of the basic properties of tree-width is that the tree-width
of a connected graph is just the maximum tree-width of its blocks. Since the blocks of
K(n, d) are isomorphic to subposets of the Kelly construction Kn+1, they have tree-width
at most 3. However, it should be noted that the path-width of cover graphs in the family
K is not bounded.

Let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}. The elements of K(n, d) will be
called the core points if they are identified with sequences from

(⋃d
k=1 A

k−1 × B
)
∪ Ad,
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b1

b2

b3

b4

a1

w1

z1

a2

w2

z2

a3

w3

z3

a4

Figure 3: Our construction for n = 3 and d = 2

and we will let Core(n, d) denote the subposet of K(n, d) determined by the core points.
Roughly speaking, the core points are those sequences that consist of d elements of A,
or less than d elements of A followed by exactly one element of B. A subtle detail, that
is important later on, is that we are not using an+1 and bn+1 in the definition of the
Core(n, d). Note that Core(n, d) will always be a proper subposet of K(n, d). Also, note
that Core(n, 1) is just the standard example Sn.

For the arguments to follow, it is important to understand the structure of the subposet
Core(n, d). We state the following elementary proposition for the emphasis.

Proposition 8. Let u and v be two distinct elements of Core(n, d). Then u < v in
Core(n, d) if and only if there is k ∈ [d] such that u = (ai1 , . . . , aik−1

, aik , . . . , aid) ∈ Ad

and v = (ai1 , . . . , aik−1
, bj) ∈ Ak−1 ×B, where aik < bj in Sn.

For example, when n = 8 and d = 6, we have

u = (a2, a6, a7, a5, a5, a4) < (a2, a6, b3) = v

in K(8, 6). Note that a7 < b3 in S8.

the electronic journal of combinatorics 27(4) (2020), #P4.28 8



We also note that the subposet Core(n, d) has height 2. Furthermore, the minimal
elements of Core(n, d) are those sequences of length d with all coordinates in A, while
the maximal elements of Core(n, d) are those sequences of length at most d with all
coordinates except the last in A.

3 The Local Dimension of Posets in the Class K

In this section, we will show that the local dimension of posets in the class K is unbounded.
This shows: (1) local dimension is not bounded for the class of planar posets; (2) the local
dimension of a poset is not bounded in terms of the maximum local dimension of its blocks;
and (3) the local dimension of a poset cannot be bounded in terms of the tree-width of
its cover graph, independently of its height. Finally, we will have given another example
of a family of posets where Boolean dimension is bounded and local dimension is not.

The proof of our main theorem will require a special case of a result which has become
known as the “Product Ramsey Theorem”, appearing in the classic text [6] as Theorem 5
on page 113. However, we will use slightly different notation in discussing this result.

Given a finite set X and an integer k with 0 6 k 6 |X|, we denote the set of all k-
element subsets of X by

(
X
k

)
. When T1, T2, . . . , Tt are k-element subsets of X1, X2, . . . , Xt,

respectively, we refer to the product g = T1×T2×· · ·×Tt as a kt-grid in X1×X2×· · ·×Xt.
Here is a formal statement of the version of the Product Ramsey Theorem we will use

in our argument.

Theorem 9. For every 4-tuple (r, t, k,m) of positive integers with m > k, there is a least
positive integer n0 = PRam(r, t, k,m) with n0 > m such that if |Xi| > n0 for every
i = 1, 2, . . . , t, then whenever we have a coloring φ which assigns to each kt-grid g in
X1 ×X2 × · · · ×Xt a color φ(g) from a set R of r colors, then there is a color α ∈ R so
that for each j = 1, 2, . . . , t, there is an m-element subset Hj ⊆ Xj such that φ(g) = α
for every kt-grid g in H1 ×H2 × · · · ×Ht.

Actually, we will only use the case where k = 1, and now the theorem becomes a multi-
dimensional version of the pigeon-hole principle. Readers who would be interested in how
this theorem is applied to combinatorial problems on posets when k > 2 are encouraged
to consult [1], [4] and [17].

Now we are ready to state and prove our main theorem.

Theorem 10. For every d > 1, there exists a least positive integer nd with nd > 2 so that
if n > nd, then ldim(K(n, d)) > d.

Proof. The theorem holds trivially for d 6 2, with n1 = n2 = 2. So for the balance of
the argument, we fix a value of d with d > 3. Since Core(n, d) is a subposet of K(n, d), it
suffices to show that ldim(Core(n, d)) > d, provided n is sufficiently large. The argument
will proceed by contradiction, i.e., we will assume that L is a local realizer for Core(n, d)
with µ(z,L) 6 d − 1 for every z ∈ Core(n, d). We will then show that this leads to a
contradiction, provided n is sufficiently large.
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We will now describe a recursive procedure which consists of d steps. The procedure
will utilize a rapidly growing sequence (p1, p2, . . . , pd) of integers with p1 = d. For the
moment, we defer the explanation as to how this sequence is determined, but in time it
will be clear that this is done by repeated applications of Theorem 9.

The key idea of the proof is presented in the following technical claim for which we
need to define A(H) = {ah ∈ A : h ∈ H} for each H ⊆ [n] and Min(X) as the set of all
minimal elements in X.

Claim 11. Let m ∈ [d] and p ∈ N. Then there exists n ∈ N such that the following
statements hold:

1. There are m− 1 indices h1, . . . , hm−1 ∈ [n].

2. There exist d+ 1−m sets Hm, . . . , Hd ⊆ [n], with |Hm| = · · · = |Hd| = p.

3. If L is a local realizer for Core(n, d), then there exists an (m − 1)-element family
M⊆ L of ple’s such that each element in

{ah1} × · · · × {ahm−1} × A(Hm)× · · · × A(Hd) ⊆ Min(Core(n, d))

appears in every ple from M.

It is worth mentioning that for each i ∈ [m] the value pi equals p from the above claim
for m = d+1− i and can be calculated by analyzing the sequence of the calls of the claim
in reverse order m = d, . . . , d+ 1− i.

Proof. We prove the claim by induction on m ∈ [d]. For m = 1, we must be concerned
only about item (2) in this list by setting n = p and Hi = [n] for each i = 1, . . . , d.

Here’s how the inductive step is carried out. We will prove the statement of the claim
form+1 and any p′ ∈ N. Let us assume that it is true form and for some fixed p ∈ N which
depends on p′. (How big p must be will be described later.) In consequence we obtain an
integer n, a set M of ple’s, appropriate h1, . . . , hm−1 ∈ [n], and Hm, . . . , Hd ⊆ [n]. For
each i = m, . . . , d, let Hi = Hi,1∪Hi,2∪· · ·∪Hi,m be a partition into disjoint subsets with
|Hi,j| > bp/mc for all j = 1, 2, . . . ,m. For each j ∈ [m], we let

Uj = {ah1} × · · · × {ahm−1} × A(Hm,j)× · · · × A(Hd,j),

Vj = {ah1} × · · · × {ahm−1} ×B(Hm,j),

where B(H) = {bh ∈ B : h ∈ H} for each H ⊆ [n]. Note that Uj ⊆ Min(Core(n, d)) and
Vj ⊆ Max(Core(n, d)). Also, for each j = 1, 2, . . . ,m, we let Lj denote the subfamily of L
consisting of those ple’s which reverse at least one incomparable min-max pair in Uj×Vj.
Note that each Lj is non-empty whenever p/m > 1. We observe that if 1 6 j < j′ 6 m,
then Lj ∩ Lj′ = ∅. This follows from the fact, that if (u, v) and (u′, v′) are incomparable
min-max pairs from Uj×Vj and Uj′×Vj′ , respectively, then u < v′ and u′ < v in Core(n, d).

Since |M| = m−1, it follows that there is some integer j0 ∈ [m] so thatM∩Lj0 = ∅.
Let hm be any integer in Hm,j0 and let

W = {ah1} × · · · × {ahm−1} × {ahm} × A(Hm+1,j0)× · · · × A(Hd,j0),
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{v} = {ah1} × · · · × {ahm−1} × {bhm}.

It is worth noting that W ⊆ Uj0 ⊆ Min(Core(n, d)) and v ∈ Vj0 ⊆ Max(Core(n, d)).
Moreover we observe that v ‖ w in Core(n, d) for all w ∈ W. It follows that for each
w ∈ W , there is some ple L in Lj0 ⊆ L −M with w > v in L. Since there are at most
d−1 ple’s in L in which v appears, this results in a coloring of the elements of W using at
most d−1 colors. Since there is a natural one-to-one correspondence between elements of
W and 1d−m grids in Hm+1,j0 × · · · ×Hd,j0 , we are then in a position to apply Theorem 9.

In particular, given a value of p′, we will assume that p/m is large enough to guarantee
that there is a ple L ∈ Lj0 ⊆ L −M and a family Km+1, . . . , Kd of sets with Ki ⊆ Hi,j0

and |Ki| = p′ for each i = m+ 1,m+ 2, . . . , d, such that w > v in L for all

w ∈ {ah1} × · · · × {ahm} × A(Km+1)× · · · × A(Kd) ⊆ W.

We then add the ple L toM and set Hi = Ki for all i = m+ 1,m+ 2, . . . , d.

The final contradiction occurs as we invoke Claim 11 for m = d and p = d. Now we
have integers h1, . . . , hd−1, a set Hd of size d, and a subfamilyM of L with |M| = d− 1.
It follows that there are exactly d incomparable min-max pairs of the form (u, v) with

u ∈ {ah1} × {ah2} × · · · × {ahd−1
} × A(Hd) and

v ∈ {ah1} × {ah2} × · · · × {ahd−1
} ×B(Hd).

Furthermore, these incomparable min-max pairs form a subposet of Core(n, d) which
is isomorphic to the standard example Sd. Because one ple can reverse at most one of
the d incomparable pairs, there are (at least) d distinct ple’s in L which reverse these
pairs and at least one of these does not belong toM. The d− 1 ple’s fromM with the
one outside we just got are witnesses for that, there is some u with µ(u,L) > d. The
contradiction completes the proof.
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