
Switch-based Markov Chains for Sampling

Hamiltonian Cycles in Dense Graphs

Pieter Kleer∗

Max Planck Institute for Informatics
Saarland Informatics Campus (SIC)

Saarbrücken, Germany

pkleer@mpi-inf.mpg.de

Viresh Patel Fabian Stroh †

University of Amsterdam
Korteweg-de Vries Institute (KdVI)

Amsterdam, The Netherlands

{vpatel,f.j.m.stroh}@uva.nl

Submitted: Apr 8, 2020; Accepted: Sep 17, 2020; Published: Nov 13, 2020

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We consider the irreducibility of switch-based Markov chains for the approximate
uniform sampling of Hamiltonian cycles in a given undirected dense graph on n
vertices. As our main result, we show that every pair of Hamiltonian cycles in a
graph with minimum degree at least n/2 + 7 can be transformed into each other by
switch operations of size at most 10, implying that the switch Markov chain using
switches of size at most 10 is irreducible. As a proof of concept, we also show that
this Markov chain is rapidly mixing on dense monotone graphs.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

In this work, we consider the problem of sampling Hamiltonian cycles in dense graphs
using switch-based Markov chains. Throughout, let G be an n-vertex graph and denote its
minimum degree by δ(G). A Hamiltonian cycle of G is a simple cycle of G that includes
every vertex. A classical theorem by Dirac [3] states that if δ(G) > n/2 then G has a
Hamiltonian cycle. Moreover, it is well known that in general it is NP-complete to decide
if G has a Hamiltonian cycle even if δ(G) > (1

2
− ε)n.

Dyer, Frieze, and Jerrum [4] considered the question of counting and sampling Hamil-
tonian cycles in dense graphs. They consider a Markov Chain Monte Carlo (MCMC)
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approach for solving the sampling problem. Here, one defines a suitable Markov chain
on the (exponentially large) set of all Hamiltonian cycles, and shows that it is rapidly
mixing, i.e., only a polynomial number of steps of the chain are needed in order to ob-
tain a sample that is close to uniform. In particular, they give a fully-polynomial almost
uniform sampler for sampling Hamiltonian cycles from graphs G with δ(G) > (1

2
+ ε)n,

which is then turned into a fully-polynomial randomised approximation scheme for count-
ing Hamiltonian cycles in such graphs by a standard reduction.

For the sampling problem, they take a two-step approach. First, based on a result of
Jerrum and Sinclair [7], they show that there is a rapidly mixing Markov chain on the set
of all 2-factors of G (which are all subgraphs of G in which every vertex has degree 2).
Then it is shown that the number of 2-factors in G is at most a polynomial factor larger
than the number of Hamiltonian cycles in G. This then automatically implies (roughly
speaking) that if one takes a polynomial number of samples from the Markov chain that
samples 2-factors, most likely one of those samples will be a Hamiltonian cycle. This
sample is then also an approximately uniform sample from the set of all Hamiltonian
cycles in G.

At the end of their paper, Dyer, Frieze and Jerrum [4] ask if there is a rapidly mixing
Markov chain on the set of Hamiltonian cycles, and possibly ‘near-Hamiltonian cyles’,
that mixes rapidly.1 As a first step towards addressing this question, we show there exist
switch-based Markov chains on the set of all Hamiltonian cycles of a dense graph that
converge to the uniform distribution, provided that δ(G) > 1

2
n+ 7.

Switch Markov chains are arguably the simplest and most natural Markov chains on
the set of Hamiltonian cycles of a graph. Given a graph G, let HG denote the set of
Hamiltonian cycles of G. We say that H ′ ∈ HG can be obtained from H ∈ HG by a
k-switch if |E(H)4E(H ′)| 6 2k, that is, a k-switch is an operation for transforming one
Hamiltonian cycle into another by altering at most 2k of its edges.2

For a given constant k ∈ N, the k-switch Markov chain on HG is defined as follows
in this work. Given that the Markov chain is currently in state H ∈ HG, we first pick
` ∈ {1, . . . , k} uniformly at random, and then select a set L ⊆ E(G) with |L| = 2`
uniformly at random. If the graph H ′ with edge set

E(H ′) = E(H)4L

is again in HG, i.e., a Hamiltonian cycle of G, then we transition to H ′. Otherwise, we
do nothing and stay in the state H.3 See Figure 1 for an example.

It is not hard to show that the k-switch Markov chain will converge to the uniform
distribution on HG (because of symmetry of the transition probabilities) provided that
the chain is irreducible. Irreducibility here refers to the fact that any two Hamiltonian
cycles H1, H2 ∈ HG can be transformed into each other by a sequence of k-switches.

1To be precise, in [4] they ask: “Second, is there a random walk on Hamilton cycles and (in some
sense) “near-Hamilton cycles” which is rapidly mixing?”

2Such operations are also widely used, for example, in heuristics for the travelling salesman problem
see, e.g., [10].

3There exist many algorithmic rules to select a switch.
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Figure 1: Example of a switch for k = 2. Left side: The Hamiltonian cycle H is the
circle. We switch along the cycle v1v2v3v4, drawn thick. Right side: The modified graph
H ′, which is also a Hamiltonian cycle.

1.1 Our contributions

The main goal of this work is to provide the first irreducibility results for the k-switch
Markov chain. Given a graph G, we sayHG is k-switch irreducible if for every H,H ′ ∈ HG,
we can obtain H ′ from H by a sequence of k-switches, i.e., there exist H0, . . . , Hr ∈ HG

with H0 = H and Hr = H ′ where |E(Hi)4E(Hi+1)| 6 k for i = 0, . . . , r − 1. Our results
are as follows.

(i) We prove that HG is 10-switch irreducible if δ(G) > 1
2
n+ 7.

(ii) For each k > 4, we give examples of graphs G satisfying δ(G) > n−3k−4
2

for which
HG is not k-switch irreducible.

(iii) We give examples of graphs G with δ(G) > 2
3
n − 1 for which HG is not 2-switch

irreducible.

The second item essentially establishes that, for the case k = 10, the result in the first
item is best possible (up to a constant-sized gap between n/2−17 and n/2+7). Moreover,
the third item shows that the 2-switch Markov chain (probably the simplest Markov chain
on Hamiltonian cycles) cannot be used to address the question of Dyer, Frieze and Jerrum
for all dense graphs with δ(G) > n/2.

As a proof of concept, we show that, for dense monotone graphs G (discussed in the
related work section), the k-switch Markov chain on HG is rapidly mixing. We do this
by means of a meta-theorem which shows that if the k-switch Markov chain on HG is
(strongly) irreducible for some dense monotone graph G, then it is also rapidly mixing.
Here, strong irreduciblity roughly refers to the fact that if two Hamiltonian cycles are
close to each other in terms of symmetric difference, we should be able to transform them
into each other using a small number of k-switches; a formal definition is given later on.
In the first item above, we show indeed this strong version of irreducibility for k = 10.
Overall, several interesting new questions arise in light of our work and we hope our results
will stimulate more work in the area. In particular, what is the smallest k for which the
k-switch Markov chain is (strongly) irreducible for dense graphs with δ(G) > n

2
+c, where
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c is a (small) constant? Furthermore, given the vast interest in the 2-switch Markov chain
for other combinatorial objects (see Section 1.2), what is the smallest4 constant 2

3
< γ < 1

such that the 2-switch Markov chain is irreducible for all dense graphs with δ(G) > γn+c
for some (small) constant c?

1.2 Related work

The question of irreducibility, as well as being integral to the MCMC method, is studied
in its own right under the moniker of reconfiguration problems. Here, one wishes to de-
cide whether the space of solutions to some combinatorial problem is connected (where
two solutions are adjacent if one can be obtained from the other by some small prescibed
change); see for example the surveys of van den Heuvel [17] and Nishimura [12]. Recon-
figuration problems about Hamiltonian cycles have not been widely considered. Takaoka
[15] has considered the complexity of deciding whether HG is 2-switch irreducible when G
belongs to particular structural graph classes. This includes a hardness result for chordal
bipartite graphs, but also a result establishing the 2-switch irreducibility of Hamiltonian
cycles in unit interval graphs and monotone graphs. A slightly different Hamiltonian
reconfiguration problem is considered by Lignos [9].

The mixing time of switch-based Markov chains have been studied extensively for
sampling subgraphs of Kn with a given degree sequence, see, e.g., [8, 2, 11, 1]. It is well
known, see e.g. [16], that every two graphs (thought of as subgraphs on Kn) with the
same degree sequence can be transformed into each other with switches of size 2 (in Kn).
This remains true if one restricts oneself to the class of all connected subgraphs of Kn

with a fixed degree sequence [16]. In particular, relevant to our setting, Feder et al. [6]
(implicitly) show that the 2-switch chain is rapidly mixing on the set of all Hamiltonian
cycles in case G is the complete graph. There are more direct ways to obtain this result,
but we mention it here as we rely on some of their ideas in order to address the mixing
time of the switch Markov chain on dense monotone graphs.

Monotone graphs, also known as bipartite permutation graphs, have been widely stud-
ied from the structural graph theory perspective, perhaps most notably in their charac-
terisation [14] (we define them formally in Section 4.1). Monotone graphs have also been
considered in the context of switch-based Markov chains for the sampling of perfect match-
ings: in particular, Dyer, Jerrum and Müller [5] show that the 2-switch Markov chain for
sampling perfect matchings is rapidly mixing on monotone graphs. We refer the reader
to [5] for further results in this direction.

We mentioned above that Takaoka [15] shows that the set of all Hamiltonian cycles in
a given monotone graph is 2-switch irreducible. We remark that this is established in the
weak sense by showing that every Hamiltonian cycle can be transformed, by switches of
size 2, into a fixed canonical Hamiltonian cycle. However, we need the stronger notion of
irreducibility for our rapid mixing proof for dense monotone graphs to go through.

4It is not hard to argue that the result is true for for complete graphs G where γ = c = 1.
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2 Preliminaries

Let G = (V,E) be a simple undirected graph with vertex set V = {v1, . . . , vn} and edge
set E = {e1, . . . , em}. We use the shorthand notation uv to denote an edge {u, v} ∈ E. A
2-factor of G is a subgraph F in which every vertex v ∈ V has degree precisely dF (v) = 2.
We use FG to denote the set of all 2-factors of G. A Hamiltonian cycle is a connected
2-factor, i.e., a simple cycle passing through all vertices of G. We use HG to denote the
set of all Hamiltonian cycles of G. Given two graphs G = (V,E) and G′ = (V,E ′) on
the same vertex set V , their symmetric difference is denoted by G4G′ = (V,E4E ′) =
(V, (E \ E ′) ∪ (E ′ \ E)). We use NG(v) = {w : vw ∈ E} to denote the set of neighbours
of v ∈ V in G and we write dG(v) = |N(v)| for the degree of v dropping subscripts when
the graph is clear.

For a given k > 2 and (finite) set A of graphs on some vertex set V , a switch of size k
(with respect to A) is an operation on a given graph F = (V,E) ∈ A in which we remove
exactly k edges from F and add exactly k edges from the complement of F in such a way
that the resulting graph F ′ also satisfies F ′ ∈ A. We then define a k-switch to be a switch
of size at most k. In this work we are mostly interested in A = HG or A = FG for a given
undirected graph G.

Fix a graph G and consider a k-switch with respect to FG or HG. Writing A for the 2k
edges involved in the k-switch, it is easy to see that every vertex of the graph S = (V,A)
must have even degree (since all graphs in FG or HG are regular of degree 2). Moreover,
every connected component of S can be thought of as an alternating circuit, i.e. a circuit
whose edges alternate between edges in G and edges not in G.5

k-Switch irreducibility. For a given graph G and integer k, we say that HG is (weakly)
k-switch irreducible if for every H1, H2 ∈ HG, there exists a sequence H1 = Z1, . . . , Zq =
H2 of Hamiltonian cycles in HG such that every consecutive pair of Hamiltonian cycles
(Zi, Zi+1) differs by a k-switch. Moreover, for a given class of graphs G and integer k, we
say that G is strongly k-switch irreducible for Hamiltonian cycles if there exists a function
φ : N → N with the following property: for all G ∈ G, whenever H1, H2 ∈ HG with
|E(H1)4E(H2)| 6 x, there exists a sequence of Hamiltonian cycles H1 = Z1, . . . , Zq =
H2 of Hamiltonian cycles in HG such that every consecutive pair of Hamiltonian cycles
(Zi, Zi+1) differs by a k-switch operation and q 6 φ(x).

Roughly speaking, strong irreducibility states that if two Hamiltonian cycles are some-
what ‘close’ to each other in terms of symmetric difference, then we should be able to
transform one into the other with a ‘small’ number of k-switches. Similarly we define
(strong) irreducibility for 2-factors.

For a given graph G, we say that FG (the set of 2-factors of G) is (weakly) k-switch
irreducible if for every F1, F2 ∈ FG, there exists a sequence F1 = Z1, . . . , Zq = F2 of
2-factors in FG such that every consecutive pair of 2-factors (Zi, Zi+1) differs by a k-
switch. For a given class of graphs G and integer k, we say that G is strongly k-switch

5Recall that a circuit in G = (V,E) is a sequence of v1e1v2e2 · · · vk−1ek−1vk of vertices and edges
where ei = vivi+1 ∈ E, the edges ei are distinct, and v1 = vk.
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irreducible for 2-factors if there exists a function φ : N→ N with the following property:
for all G ∈ G, whenever H1, H2 ∈ HG with |E(H1)4E(H2)| 6 x, there exists a sequence
H1 = Z1, . . . , Zq = H2 of Hamiltonian cycles in HG such that every consecutive pair of
Hamiltonian cycles (Zi, Zi+1) differs by a k-switch operation and q 6 φ(x).

Markov chains and mixing times. The preliminaries here will only be required in Section 4
onwards. We write M = (Ω, P ) to denote an aperiodic, irreducible and time-reversible
Markov chain M on state space Ω with transition matrix P . We write P t(x, ·) for the
distribution over Ω at time step t given that the initial state is x ∈ Ω. The total variation
distance of this distribution from the (unique) stationary distribution π at time t with
initial state x is

∆x(t) = max
S⊆Ω

∣∣P t(x, S)− π(S)
∣∣ =

1

2

∑
y∈Ω

∣∣P t(x, y)− π(y)
∣∣ ,

and the mixing time of M is

τ(ε) = max
x∈Ω

min{t : ∆x(t′) 6 ε for all t′ > t}.

Informally, τ(ε) is the number of steps until the Markov chain is ε-close to its stationary
distribution. When π is the uniform distribution over Ω, we say that a Markov chain is
to be rapidly mixing if the mixing time can be upper bounded by a function polynomial
in ln(|Ω|/ε).

As the Markov chains we consider are time-reversible, the matrix P only has real
eigenvalues, that we denote by 1 = λ0 > λ1 > λ2 > . . . > λ|Ω|−1 > −1. We can always
replace the transition matrix P of the Markov chain by (P +I)/2, to make the chain lazy,
and, hence, guarantee that all its eigenvalues are non-negative. It then follows that the
second-largest eigenvalue of (the new transition matrix) P is λ1. In this work we always
consider the lazy versions of the Markov chains involved, but we do not always mention
this explicitly. It follows directly from Proposition 1 in [13] that

τ(ε) 6
1

1− λ1

(
ln(1/π∗) + ln(1/ε)

)
,

where π∗ = minx∈Ω π(x). When π is the uniform distribution, the above bound reduces
to

τ(ε) 6
1

1− λ1

(ln(|Ω|) + ln(1/ε)).

The quantity (1− λ1)−1 can be upper bounded using the multicommodity flow method of
Sinclair [13].

We define the state space graph of the chain M as the directed graph G with vertex
set Ω that contains exactly the arcs (x, y) ∈ Ω × Ω for which P (x, y) > 0 and x 6= y.
Let P = ∪x 6=yPxy, where Pxy is the set of simple paths between x and y in G. A
flow f in Ω is a function P → [0,∞) with the property

∑
p∈Pxy

f(p) = π(x)π(y) for
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all x, y ∈ Ω, x 6= y. The flow f can be extended to a function on oriented edges of
G by setting f(e) =

∑
p∈P:e∈p f(p), so that f(e) is the total flow routed through the

edge e ∈ E(G). Let `(f) = maxp∈P:f(p)>0 |p| be the length of a longest flow carrying
path, and let ρ(e) = f(e)/Q(e) be the load of the edge e, where Q(e) = π(x)P (x, y)
for e = (x, y). The maximum load of the flow is then given by ρ(f) = maxe∈E(G) ρ(e).
Sinclair, in Corollary 6 ′ of [13], shows that

(1− λ1)−1 6 ρ(f)`(f).

We use the following (by now standard) technique for bounding the maximum load
of a flow in case the chain M has uniform stationary distribution π. Suppose θ is the
smallest positive transition probability of the Markov chain between two distinct states
in Ω. If b is such that f(e) 6 b/|Ω| for all e ∈ E(G), then it follows that ρ(f) 6 b/θ. This
implies that

τ(ε) 6
`(f) · b
θ

ln(|Ω|/ε) .

Now, if `(f), b and 1/θ can be bounded by a function polynomial in ln(|Ω|), it follows that
the Markov chain M is rapidly mixing. In this case, we say that f is an efficient flow.
Note that in this approach the transition probabilities do not play a role as long as 1/θ
is polynomially bounded.

3 Irreducibility of k-switch Markov chain

In this section we will prove various results regarding the (non)-irreducibility of the k-
switch Markov chain. The main result of this section is Theorem 1 below. Afterwards,
we provide various examples of non-irreducibility for certain combinations of δ(G) and k.

Theorem 1. If a graph G satisfies δ(G) > 1
2
n + 7, then the set HG of all Hamiltonian

cycles of G is 10-switch irreducible. Moreover, the class of graphs G for which δ(G) >
1
2
n+ 7 is strongly 10-switch irreducible for Hamiltonian cycles.

Remark 2 (Bipartite case). Theorem 1 remains true if we restrict ourselves to bipartite
graphs G = (A ∪B,E), where |A| = |B| = n, and δ(G) > 1

2
n+ 7. The proofs are almost

identical, so we make remarks in footnotes where the proofs differ.

In order to prove Theorem 1, we rely on the following lemma. It allows us to quickly
reconfigure a 2-factor T into a Hamiltonian cycle H ′ without increasing the symmetric
difference with respect to some fixed Hamiltonian cycle H.

Lemma 3 (Reconnecting lemma). Let G = (V,E) be an undirected graph with minimum
degree δ(G) > 1

2
n+ 1, and let H be a fixed Hamiltonian cycle in G. Let T be an arbitrary

2-factor of G with t components.
Then there exists a Hamiltonian cycle H ′, so that T can be transformed into H ′ with

at most t− 1 switches of size at most 3, and for which

|H ′4H| 6 |T4H|. (1)
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Proof. Let t be the number of components of T . We will prove the statement in the
lemma using induction. If t = 1 then T is Hamiltonian and we are done as we may take
H ′ = T . Suppose t > 1. Let C1, . . . , Ct denote the cyclic components of T . Since H is
Hamiltonian, there must be some edge vw ∈ E(H) connecting two components of T (see
Figure 2). We assume without loss of generality that vw connects C1 and C2, i.e that
v ∈ V (C1) and w ∈ V (C2) (by renumbering if necessary). Moreover, since v has degree
two in H and vw ∈ E(H), it must be that there exists an a ∈ V (C1) (one of the two
neighbours of v in T ) so that va ∈ E(T ), but va /∈ E(H). Similarly, there is a b ∈ V (C2)
so that wb ∈ E(T ), but wb /∈ E(H).

We assign orientations to C1, . . . , Ct. We will call v+ the vertex following v in the
appropriate orientation and v− the vertex preceding v. We choose the orientations on C1

and C2 such that v = a+ and b = w+, see Figure 2, and we assign arbitrary orientations

C2C1
v w

a b

Ci

C2C1
v w

a b

x y

x

y

Figure 2: Two situations in the general case. The thick black line shows the cycle after
the switch. Left: xy is on a third cycle. Right: xy is on C1.

on C3, . . . , Ct. Consider X := {v+ | v ∈ N(a)}. As δ(G) > 1
2
n + 1, |X| > 1

2
n + 1. Also

consider N(b), and note that we have |N(b)| > 1
2
n+ 1. Therefore |X ∩N(b)| 6= ∅. Select

y ∈ X ∩N(b) and set x = y− noting that ax ∈ E(G).6 If y /∈ {a, b+, w, v+}, the general
case, we now switch along the cycle vaxybwv; see Figure 2. Note that the edge xy may
lie on C1, C2 or a different cycle Ci. In all these cases, we do not increase |T∆H|, as
vw ∈ E(H) and va, bw /∈ E(H). If xy /∈ E(C1 ∪C2), we decrease the number of cycles by
two, otherwise by one. For the special cases y ∈ {a, b+, w, v+}, we switch along different
cycles as follows; see Figure 3. If y = v+, we switch along the cycle vybwv. If y = w, we
switch along the cycle vaxwv. If y ∈ {a, b+}, then ab ∈ E(G), and we switch along the
cycle vabwv. It is easy to see that in these cases we decrease |T∆H| by at least two and
we decrease the number of cycles by one.

In any case, the resulting 2-factor has fewer components and the symmetric difference is
not larger. Repeated application of this procedure proves the statement of the lemma.

6In the case of bipartite graphs (see Remark 2), we note that avwb is a path of G so a and b are in
different parts, say a ∈ A and b ∈ B. Then X ⊆ A with |X| > 1

2n+1 and N(b) ⊆ A with |N(b)| > 1
2n+1,

so X ∩N(b) 6= ∅ and we continue.
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C2C1
v w

a b
C2C1

v w

a b

y

Figure 3: Two situations from the special cases. Left: y = v+, Right: y = a, y = b+

We now continue with the proof of Theorem 1.

Proof of Theorem 1. We claim that for two given Hamiltonian cycles H1 and H2 there is
a switch of size at most 4 that transforms H1 into a 2-factor T with at most 3 components
such that |T4H2| < |H14H2|. The theorem then follows from Lemma 3 since with two
switches of size at most 3, we can transform T into some Hamiltonian cycle H ′ satisfying

|H ′4H2| 6 |T4H2| < |H14H2|.

In particular we can transform H1 to H ′ with a switch of size at most 4 + 2× 3 = 10, and
repeating this we can transform H1 into H2 with at most x = |H14H2| switches of size 10,
proving the theorem (where we take φ(x) = x in the definition of strong irreducibility).

We now prove the claim. Note that the symmetric difference of H1 and H2 is the
vertex-disjoint union of circuits in which edges alternate between H1 and H2 and the
circuits visit each vertex zero, one, or two times. If the symmetric difference of H1 and
H2 contains such alternating circuits with four or six edges (corresponding to switches of
size 2 or 3), the claim obviously holds, so assume otherwise. In this case it is not hard to
see that we can find an H1, H2-alternating walk P = a1a2a3a4a5a6 (here the ai are vertices
and a1 and a6 are distinct) such that the a1a2, a3a4, a5a6 are edges of H1, and a2a3, a4a5

are edges of H2.
We try to find vertices b and c that are neighbours on H1 such that b ∈ N(a1) and

c ∈ N(a6). Then the circuit C := a1a2a3a4a5a6cba1 is a 4-switch for H1. Deleting the
edges a1a2, a3a4, a5a6 and cb divides H1 into four paths and adding a2a3, a4a5, a6c and
ba1 can connect some of these paths again.

Therefore, switching H1 along C can produce at most 4 connected components, and
this only happens if the four edges a2a3, a4a5, a6c and ba1 connect each path into a cycle
(see Figure 4, left side). If one of the paths is just an isolated vertex, it cannot be connected
to itself in this way. It is easy to check that 4 components are produced if and only if the
vertices a1, a2, . . . , a6, c, b are distinct and appear in that order along H1 (as in Figure 4,
left side). To prevent this, we choose b and c as follows: orient H1 so that a2 follows a1.
We call the vertex following a vertex v in this orientation v+ and the previous vertex v−.
Set M = {v− : v ∈ N(a6)} and consider N(a1) ∩M . As both |N(a1)|, |M | > n/2 + 7 we
have |N(a1) ∩M | > 2 · 7 = 14.7 Select b ∈ (N(a1) ∩M) \ {a+

i , a
−
i , i = 1, . . . , 6} and set

7In the case of bipartite graphs (see Remark 2), we note that a1a2a3a4a5a6 is a walk in G and so a1
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a1a2

a6a5

a3
a4

b
c

a1a2

a6a5

a3
a4

c
b

Figure 4: Left side: The circle is H1. The only way that a 4-switch (thick lines) leads to
four components is the shown configuration. Right side: Choosing c to follow b leads to
at most three components. Note that in general the edges a3a4 and a5a6 could appear in
different places and orientations.

c = b+. This ensures that the resulting 4-switch (along the circuit C := a1a2a3a4a5a6cba1)
produces at most three components.

Finally, if T is the 2-factor produced by switching H1 along C, then compared to H1,
T contains at least two new edges of H2 (namely a2a3, a4a5) but T may have lost one edge
of H2 (namely bc if it was in fact an edge of H2), giving a net gain of one. Since T and
H1 have the same number of edges, we see that |T4H2| 6 |H14H2| − 1, as required.

We also give a version of Theorem 1 for 2-factors, instead of Hamiltonian cycles, that
we will need later. The proof is a simplification of Theorem 1 and so we defer its proof
to the appendix.

Proposition 4. The class of graphs G for which δ(G) > 1
2
n + 7 is strongly 4-switch

irreducible for 2-factors.
For bipartite graphs the following holds. The class of bipartite graphs G = (A ∪B,E)

with bipartition A ∪ B, where |A| = |B| = n, and δ(G) > 1
2
n + 7 is strongly k-switch

irreducible for 2-factors.

We continue with examples showing non-irreducibility under certain assumptions on
δ(G) and k, as stated in contributions (ii) and (iii) in Section 1.1.

Example 5 (The case δ(G) = 2n
3

− 1 and k = 2). Construct G = (V,E) as follows:
Set V = A1 ∪A2 ∪A3, where |Ai| = n/3 =: m. For convenience, we select n such that m
is odd and m > 3. We denote the vertices of Ai by vi,j for j = 1, . . . ,m. Take as edge set
E all edges between vertices in A1, all edges between vertices in A3, and all edges from
vertices in Ai to vertices in Ai+1 for i = 1, 2 (see Figure 5).

We color edges as follows: All edges incident to a vertex in A1 are colored blue, and
all other edges red. Note that all cycles of length 4 contain an even number of red and

and a6 are in different parts; say a1 ∈ A and a6 ∈ B. Then N(a1),M ⊆ B, so since |N(a1)|, |M | > 1
2n+7,

so |N(a1) ∩M | > 14, and we continue as before.
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blue edges. This means that any switch along a 4-cycle preserves the parity of red and
blue edges.

We will finish the construction by describing two Hamiltonian cycles H1 and H2 that
have different parities of blue edges. As any 2-switches preserve the parity of blue edges,
H1 cannot be converted to H2 via 2-switches.

The blue edges in H1 are v2,1v1,1, v1,kv1,k+1 for k = 1, . . . ,m− 1 and v1,mv2,m. The red
edges in H1 are v2,kv3,k, v3,kv2,k+1 for k = 1,m− 2 and v2,m−1v3,m−1, v3,m−1v3,m, v3,mv2,m.
There are an even number of blue edges and an odd number of red edges in H1. The
Hamiltonian cycle H2 is constructed by swapping the roles of the blue and red edges.

A1 A2 A3
A1 A2 A3

Figure 5: Left: The graph G. Right: The Hamiltonian cycle H1 in G with n = 9. There
are an even number of (thick) blue edges and an odd number of (thin) red edges.

Example 6 (The case δ(G) ≈ n
2

for each fixed k.). For k fixed and n > 3k + 5, there
is a graph G with δ(G) > (n − 3k − 4)/2 for which HG is not k-switch irreducible. Our
construction relies on the following lemma.

Lemma 7. For any `, there is a graph X with 3` + 1 vertices that has exactly two
Hamiltonian paths H1 and H2. Moreover, these two paths satisfy |H1∆H2| = 2`.

Proof. Without loss of generality let ` be odd, and set n = 3` + 1. Let X = (V,E)
with V := {v1, . . . , vn} and E := E1 ∪ E2, where E1 = {vivi+1 | 1 6 i 6 n − 1}, and
E2 = {vjvj+4 | j ≡ 2(mod 3) and j 6 n − 5} ∪ {v3vn−2}; see left side of Figure 6. As
vertices v1 and vn have degree 1, they must be the ends of any Hamiltonian path in X.
Vertices vi with i ≡ 1(mod 3) and 4 6 i 6 n − 3 have degree 2 in X, so both of their
incident edges must be part of any Hamiltonian path; call the set of these 2` edges F and
call the remaining edges F ′. Note that the edges of F ′ form a cycle C ⊆ X. In F , every
vertex of V has degree 1 or 2 and those vertices of degree 1 (except for v1 and vn) are
precisely the vertices in the cycle C. Therefore we can only extend F to a Hamiltonian
path by adding a perfect matching from C, and it is easy to see that adding either perfect
matching from C results in a Hamiltonian path. These Hamiltonian paths have symmetric
difference of size |E(C)| = |F ′| = 2`.

For the example we begin by applying the previous lemma with ` = k + 1 to obtain
the graph X of order r := 3` + 1. For any n such that n + r is odd, we construct our
example G by taking an (unbalanced) complete bipartite graph with parts A and B of

size n+(r−1)
2

and n−(r−1)
2

respectively and adding a copy of X inside A. See Figure 6, right
side.
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v1

v16

A

B

X

Figure 6: Left: Example of X for ` = 5 (edges in E1 are black, edges in E2 are red, edges
in F are heavy, edges in C are thin). Right: The example graph G

As there are no edges inside B, any Hamiltonian cycle of G must use r−1 edges inside
A, and so these must be within X. Since X has r vertices, any Hamiltonian cycle of G
must induce a Hamiltonian path on X. By construction, X has exactly two Hamiltonian
paths H1 and H2, and they have a symmetric difference of 2k + 2. It is easy to see that
G has Hamiltonian cycles that use each of the two Hamiltonian paths in X, but it is
impossible to perform a sequence of k-switches to transform a Hamiltonian cycle that
uses H1 into one that uses H2; indeed if such a sequence existed, examining its restriction
to X would yield a sequence of switches of size at most k that transforms H1 into H2 but
maintaining a Hamiltonian path in X at each stage; this is impossible since X has only
two Hamiltonian paths and their symmetric difference has size 2` = 2(k + 1) > k.

4 Rapid mixing for dense monotone graphs

In this section we will give some rapid mixing results for switch-based Markov chains for
sampling Hamiltonian cycles in special classes of dense graphs.

We first present a result for the sampling of 2-factors using switch-based Markov chains,
which will be used later on, and that might be of independent interest. Given a graph
G, recall the k-switch Markov chain on HG defined in the introduction. Replacing HG

with FG (the set of all 2-factors of G) everywhere in that definition defines the k-switch
Markov chain on FG.

Theorem 8. Let G be the class of all graphs G on n vertices with δ(G) > n/2. If G
is strongly k-switch irreducible for 2-factors for some k ∈ N (this is the case for k = 4
by Proposition 4) then there is an efficient multicommodity flow for the k-switch Markov
chain on FG, and, in particular, this Markov chain is rapidly mixing.

Moreover, Theorem 8 remains true for the bipartite case of the problem, where we are
given a bipartite graph G = (A∪B,E) with both |A| = |B| = n, and where every vertex
in A ∪B has degree at least n/2.

The proof of Theorem 8 is outlined in Appendix A. It is based on the embedding
argument introduced in [1] for the switch Markov chain that samples graphs with a given
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degree sequence. It is perhaps interesting to note that it seems much harder to prove
Theorem 8 by using other approaches for that problem, such as [2, 11]. These approaches
do have the advantage that they get better mixing time bounds than those in [1].

4.1 Dense monotone graphs

In this section we will describe a rapid mixing result for sampling Hamiltonian cycles from
dense monotone graphs that is based on Theorem 8. We will start with the definition of
monotone graphs (also known as bipartite permutation graphs).

Definition 9 (Monotone graph). A bipartite graph G = (A∪B,E), with |A| = |B| = n, is
monotone if there exists a permutation (a1, . . . , an) of the vertices in A and a permutation
(b1, . . . , bn) of the vertices in B, such that the adjacency matrix C of G, with rows indexed
by a1, . . . , an and columns indexed by b1, . . . , bn, has monotone rows and columns. This
means that for each i, there exists 1 6 ri 6 ti 6 n such that C(ai, bj) = 1 if and only
if ri 6 j 6 ti and the sequences (ri)

n
i=1 and (ti)

n
i=1 are non-decreasing. Intuitively, this

means that the 1-entries in every row and column are contiguous. Note that although the
definition does not immediately appear to be symmetric in A and B, one can easily check
that it is. An example of such an adjacency matrix of a monotone graph is

C =


1 1 1 0 0 0
1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 1
0 0 1 1 1 1

 .

Moreover, we say G is a γ-dense monotone graph if every vertex in A ∪ B has degree at
least γn.

The main theorem of this section is given below.

Theorem 10. Let D be the set of all monotone graphs with δ(G) > n/2.8 If D is strongly
k-switch irreducible for Hamiltonian cycles for some k ∈ N (this is the case for k = 10 by
Remark 2) then for every G ∈ D, the k-switch Markov chain for sampling a Hamiltonian
cycle from HG is rapidly mixing.

As mentioned earlier, the set of all Hamiltonian cycles for (not necessarily dense)
monotone graphs is connected under switches of size two [15] in the weak sense as defined
in the preliminaries. Takaoka shows that every Hamiltonian cycle can be transformed into
a ‘canonical’ Hamiltonian cycle using switches of size two. This is, however, not enough
for the argument we will give below. For that we need the strong sense of irreducibility.

8Remember that the total number of nodes in G is 2n in the bipartite case.
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Proof of Theorem 10. The proof relies on an embedding argument similar to that in [6],
but technically somewhat different. While the argument in [6] corresponds to the case
where G is a complete bipartite graph (which is indeed monotone), here we relax the
argument so that it extends to monotone graphs.

Let G ∈ D be given. In particular, our goal is to show, for every G ∈ D, the existence
of a function φ : FG → HG with the properties

i) φ−1(H) 6 poly(n) for every H ∈ HG, and,

ii) there exists a function f : N→ N such that whenever F, F ′ ∈ FG with |F4F ′| 6 k,
we have |φ(F )4φ(F ′)| 6 f(k).

If such a function exists, one can argue exactly as in [6] that every efficient multi-
commodity flow for the k-switch Markov chain on the set of all 2-factors FG can be
transformed into an efficient multi-commodity flow for the k-switch Markov chain on the
set of all Hamiltonian cycles HG.9 (The embedding argument from [6] that we refer to
here is essentially the same as that used to prove Theorem 8 in Appendix A.) As we know
that there exists an efficient multi-commodity flow for the k-switch Markov chain (by
Theorem 8 and Proposition 4), this then shows that the k-switch Markov chain on HG is
also rapidly mixing.

The remainder of the proof is dedicated to showing the existence of such a function
φ for each G ∈ D, which we will do in three claims. Let G = (A ∪ B,E) ∈ D be a
monotone graph with |A| = |B| = n where we assume that n is even for simplicity.10 Let
a1, . . . , an (resp. b1, . . . , bn) be the vertices of A (resp. B) in order as given in Definition 9.
Set A1 = {a1, . . . , an/2} with A2 = A \ A1 and B1 = {b1, . . . , bn/2} with B2 = B \B1.

Claim 11. With the setup above, the graphs G[A1 ∪ B1] and G[A2 ∪ B2] are complete
bipartite.

Claim 12. Given G ∈ D, let PG be the set of all subgraphs K ⊆ G such that K is
the union of three vertex-disjoint paths that together cover all vertices of G. Then there
exists an injective function φ1 : FG → PG and a function g : N → N such that whenever
F, F ′ ∈ FG with |F4F ′| 6 k, we have |φ1(F )4φ1(F ′)| 6 g(k).

Claim 13. Given G ∈ D, there is a function φ2 : PG → HG such that for every K ∈ PG,
we have that |K4φ(K)| 6 9; in particular, for each H ∈ HG, |φ−1

2 (H)| 6 |E(G)|9 =
poly(n).

The function φ is the composition of φ1 and φ2 and can easily be seen to satisfy the
desired properties (taking f(k) = g(k) + 18). Therefore it remains only to prove the
claims.

9In [6], it is shown that any efficient flow for the 2-switch Markov chain for sampling subgraphs of
Kn with a given degree sequence can be turned into an efficient flow for the 2-switch Markov chain for
sampling connected graphs with a given degree sequence.

10When n is odd, one can work with dn/2e instead of n/2 throughout the proof.
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Proof of Claim 11. Note that a1b1 must be an edge of G. If this is not the case, then
b1 can never have positive degree, because of monotonicity of the rows of the adjacency
matrix. As both a1 and b1 have degree at least n/2, we can conclude that all edges of the
form aibj with 1 6 i, j 6 n/2 are present (again because of monotonicity) so G[A1 ∪ B1]
is complete bipartite. A similar argument holds for the edge anbn that yields G[A2 ∪B2]
is complete bipartite.

Proof of Claim 12. We use a similar idea as in [6]. We fix the total orderings

an
2

+1 < an
2

+2 < · · · < an < a1 < a2 < · · · < an
2

on the vertices in A and

bn
2

+1 < bn
2

+2 < · · · < bn < b1 < b2 < · · · < bn
2

on the vertices of B.
Fix F ∈ FG and let C1, . . . , Cq be the cycles (or connected components) of F . For a

given cycle Cr, we use ar to denote the highest ordered vertex of A in Cr, and we use br

to denote the highest ordered vertex of B in Cr. We first group the cycles in three sets
depending on the vertices ar and br. We define

QA1 = {Cr : ar ∈ A1}, QB1 = {Cr : ar ∈ A2 and br ∈ B1}

and QA2∪B2 as the set of all remaining cycles not in QA1 or QB1 . Note that the cycles in
QA2∪B2 are fully contained in A2 ∪ B2. For each cycle Cr in QA1 and QA2∪B2 , let cr be
an arbitrary neighbour of ar in Cr and for each cycle Cr in QB1 let dr be an arbitrary
neighbour of br on Cr (in each case there are two choices). We delete the edges arcr and
brdr from F to create paths; we will connect the paths in each group together to build
the three paths which will define φ1(F ) ∈ PG.

We first explain the idea (of Feder et al. [6]) on how to glue together the paths from
QA2∪B2 in such a way that we can uniquely recover the original paths from the single
glued path: this case is easiest because we know from Claim 11 that the graph G[A2∪B2]
is complete bipartite.

After renaming the cycles, let us assume the cycles in QA2∪B2 are C1, . . . , Cq where
a1 < a2 · · · < aq. Let Pr be the path obtained by deleting the edge arcr from the cycle
Cr. As all the cycles lie entirely within A2 ∪B2 and G[A2 ∪B2] is complete bipartite, we
know that all the edges crar+1 are present in G for r = 1, . . . , q − 1. Adding these edges
to the graph consisting of P1, . . . , Pq, results in a path that we call PA2∪B2 .

P1 P2 P3 P4

a1 c1 a2 c2 a3 c3 a4 c4

Figure 7: Sketch of path P from the paths P1, . . . , Pq for the case q = 4.
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Note that, given PA2∪B2 , (without knowing the paths P1, . . . , Pq), we can uniquely
recover these P1, . . . , Pq as follows. We know that the endpoint of PA2∪B2 that is contained
in A is the first vertex of P1, i.e., the vertex a1 (the other endpoint is necessarily in B).
In order to recover P1 we start following the path PA2∪B2 , starting from a1, until we reach
the first vertex in A that is ordered higher than a1; this is the first vertex of P2, i.e., the
vertex a2. Continuing in this fashion we can uniquely recover all the paths Pi.

We apply a similar procedure to the paths obtained from QA1 and QB1 to form paths
PA1 and PB1 , respectively. The problem here is that the underlying graph is not complete
bipartite so we do not apriori know if the edges to ‘glue’ the paths together are all present:
we argue that they are in fact present. The proof for QA1 that we will give below also
holds for QB1 by symmetry of monotonicity (the case of QB1 is essentially a slightly more
restrictive setting in which some of the cases below cannot occur).

Assume that the cycles in QA1 are C1, . . . , Cp labelled so that a1 < a2 < · · · < ap. By
means of a case distinction, depending on whether cr ∈ B1 or cr ∈ B2 for r = 1, . . . , p−1,
we will show that the edges crar+1 always exist.

Case 1: cr ∈ B1. As we know that ar+1 ∈ A1, by definition of QA1 it follows that
crar+1 is in G, since G[A1 ∪B1] is complete bipartite by Claim 11.

Case 2: cr ∈ B2. Since ar < ar+1 =: aj by assumption, monotonicity tells us that
the neighbourhood N(ar+1) ⊆ B ends at either cr or to the right of cr. Furthermore, we
know ajbj ∈ E(G), again since G[A1 ∪ B1] is bipartite by Claim 11. Since bj ∈ B1, it
lies to the left of cr ∈ B2 so, in particular, the neighbourhood N(ar+1) starts before cr.
Monotonicity then tells us that the edge crar+1 is also present in G.

We have shown how to construct the paths PA1 , PB1 , and PA2∪B2 , which together
clearly cover all vertices of G. We define φ1(F ) = PA1 ∪ PB1 ∪ PA2∪B2 ∈ PG.

In order to see that φ1 is injective, note first that if K ∈ PG is the image of some
(unknown ) F ∈ FG under φ1, then one of the paths in K has all its vertices in A2 ∪ B2

(we call this path PA2∪B2), one has all its vertices from A in A2 and some vertices from
B1 (we call this path PB1), and we call the remaining path PA1 . As described earlier, we
can then easily identify the constituent paths that were glued together to form PA1 , PB1 ,
and PA2∪B2 . Finally we can complete each constituent path to a cycle to uniquely recover
F . Therefore φ1 is injective.

Finally, suppose F, F ′ ∈ FG with |F4F ′| 6 k. In particular, there are at most k cycles
that belong to one of F or F ′ but not both. In constructing φ1(F ) (resp. φ1(F ′)), we first
delete one edge from each cycle of F (resp. F ′) to obtain a union of paths, which we call
J (resp. J ′). Then |J4J ′| 6 k and there are at most k paths that belong to one of J or
J ′ but not both. When gluing paths of J (resp. J ′) together to form φ1(F ) (resp. φ1(F ′))
there are at most 2k gluing edges that are used for one of J or J ′ but not both (at most
two such edges for each differing path). This shows that |φ1(F )4φ1(F ′)| 6 k + 2k = 3k,
showing φ1 has the desired property (taking g(k) = 3k).

Proof of Claim 13. This claim follows immediately from Lemma 14 below.
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Lemma 14. Suppose G = (V,E) is an n-vertex graph with δ(G) > n/2. If P1, . . . , Pk

are k vertex-disjoint paths in G that together cover all vertices V , then there exists a
Hamiltonian cycle H of G such that E(H)4E(P1 ∪ · · · ∪ Pk) 6 3k.

For bipartite graphs, we have the following. Suppose G = (V,E) is a bipartite graph
with bipartition V = A∪B with |A| = |B| = n and δ(G) > n/2. If P1, . . . , Pk are k vertex-
disjoint paths in G that together cover all vertices V , then there exists a Hamiltonian cycle
H of G such that E(H)4E(P1 ∪ · · · ∪ Pk) 6 3k.

We prove the lemma for graphs; an almost identical proof works for bipartite graphs
and we indicate where the proofs differ.

Proof. We will inductively modify the system of paths, at each step modifying at most 3
edges and reducing the number of paths by 1.

Let xi and yi be the endpoints of Pi and orient the path Pi from xi to yi. For any
vertex x, let x+ (resp. x−) be the successor (resp. predecessor) of x on its path (note that
these exist except possibly at the 2k endpoints of the paths). For any set S ⊆ V (G), we
define S+ := {x+ : s ∈ S}.

Assuming k > 2, take any two paths, say P1 and P2. [If G is bipartite, we choose
P2 s.t. x1 and y2 are in different parts, say x1 ∈ A and x2 ∈ B. Note that this is
always possible, renaming paths if necessary.] If x1 is adjacent to any of x2, . . . , xk, say
to xi, then we can reduce the number of paths by replacing P1 and Pi by y1P1x1xiPiyi
as required (only modifying one edge) and we continue. Therefore we may assume that
x1 is not adjacent to any of x2, . . . , xk, and in particular, |N(x1)−| = |N(x1)| > n/2.
Then since |N(y2)| > n/2, we must have that N(x1)− ∩ N(y2) is non-empty. [Note
that for G bipartite N(x1)−, N(y2) ⊆ A and therefore N(x1)− ∩ N(y2) also holds.] Let
z ∈ N(x1)− ∩N(y2) and assume z ∈ V (Pi) for some i = 1, . . . , k. If i 6= 1, 2 then we can
replace P1, P2, Pi with the two paths y1P1x1z

+Piyi and xiPizy2P2x2, which together cover
all the vertices of V (P1) ∪ V (P2) ∪ V (Pi) (see Figure 8 (a)). If i = 1, we replace P1, P2

with the path y1P1z
+x1P1zy2P2x2 (see Figure 8 (b)) and if i = 2, we replace P1, P2 with

y1P1x1z
+P2y2zP2x2. In all three of these cases, we delete one edge and add two (i.e. we

modify three edges) and reduce the number of paths by 1.

P1

P2

Pi

x1

x2

y1

y2P2

y2x2

P1

x1 y1

(b)(a)

z+

z+
z

z

yixi

(c)

x yz+z

Figure 8: (a) and (b): Reducing the number of paths, cases i 6= 1, 2 and i = 1. Case
i = 2 is similar. (c): completing the Hamiltonian cycle. In all cases, the thick, red edge
is removed, and the curvy edges are introduced.
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By iterating this, we obtain a Hamiltonian path P by modifying at most 3(k − 1)
edges. We can then complete this to a Hamiltonian cycle in the standard way. Let x
and y be the endpoints of P and pick z ∈ N(x)− ∩ N(y) (which exists as before since
|N(x)−|, |N(y)| > n/2). Then we obtain a Hamiltonian cycle H = xPzyPz+x (see
Figure 8 (c)), where again we have added two edges and removed one. [In the case of
G being bipartite, P has its endpoints in different parts, so that again N(x)−, N(y) are
subsets of the same part, so again N(x)− ∩N(y) 6= ∅.]

This completes the proof of the three claims and hence of the theorem.

4.2 Remarks regarding the density assumption

It is perhaps interesting to note, in general, it is necessary to make some kind of assump-
tion on the minimum degree of the monotone graph for the argument in the proof of
Theorem 10 to work. Without it, it is not necessarily true that the number of 2-factors
is at most a polynomial factor larger than the number of Hamiltonian cycles of a given
graph G. See the matrix below for an indication of the family of instances that should
achieve this claim. 

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1


We next explain why this claim is true. Let the rows be indexed by A = (a1, . . . , an) and
the columns by B = (b1, . . . , bn). As a1 only has two neighbours, any Hamiltonian cycle
must contain the edges a1b1 and a1b2. This is indicated in the matrix below.

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1


Now, the vertex a2 cannot also have neighbours b1 and b2, as this creates a cycle of length
four. So we have N(a2) = {b1, b3} or N(a2) = {b2, b3}; see the matrices below.

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1

 or


1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1


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Note that in both the matrices above, there is now one vertex in B that has two neighbours
already (and therefore cannot be chosen as neighbour in any later step). By repeating
this argument, one can show that for every row i = 2, . . . , n − 1 there are two possible
choices of extending the current Hamiltonian path, and so the number of Hamiltonian
cycles equals 2n−2.

However, the number of 2-factors in at least (n/4)!. To see this, first note that this is a
lower bound on the number of Hamiltonian cycles in the (complete) subgraph induced by
the vertices {a3n/4+1, . . . , an} and {b1, . . . , bn/4} (assuming that n is divisible by four). It
is not hard to see that any Hamiltonian cycle on this induced subgraph can be extended
to a 2-factor of the original bipartite graph.11

Nevertheless, we believe that our result can be generalized to monotone graphs with
minimum degree γn for any γ ∈ (0, 1). However, this comes at the expense of many more
technicalities that (in our opinion) do not offer any additional insights. Remember that
in Claim 11, we show that the nodes of G can be partitioned into two complete bipartite
graphs whenever γ > 1/2. More generally, for a given γ ∈ (0, 1), it should be possible to
partition the nodes of G into a constant c = c(γ) number of complete bipartite graphs.
The analogue of Claim 12 would then be to show that all cycles in a given 2-factor can
be broken up, and glued together again, into a constant d(γ) number of (vertex-disjoint)
paths, after which one would need to argue that the resulting collection of paths is close,
in terms of symmetric difference, to a Hamiltonian cycle in the monotone graph.
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A Rapid mixing of switch-based chains for sampling 2-factors
in dense graphs

This section is a modification of certain parts in [1].

We will tailor all definitions to the notion of 2-factors for sake of readibility. Let 2 =
(2, 2, . . . , 2) be the all-twos sequence of length n. Let G be a given (dense) undirected
graph G and let FG be the set of all 2-factors of G.

We write G(d′) for the set of all subgraphs of G with degree sequence d′. Let F ′G =
∪d′G(d′) with d′ ranging over the set{

d′ : d′j 6 2 for all j, and
n∑

i=1

|2− d′i| 6 2

}
.

In other words, F ′G is the set of almost 2-factors, that is, subgraphs of G with degree
sequence d′ where (i) d′ = 2, or (ii) there exist distinct κ, λ such that d′i = 1 if i ∈ {κ, λ}
and d′i = 2 otherwise, or (iii) there exists a κ so that d′i = 0 if i = κ and d′i = 2 otherwise.
In the case (ii) we say that d′ has two vertices with degree deficit one, and in the case
(iii) we say that d′ has one vertex with degree deficit two.

A family D of graphs G is called P -stable [7] if there exists a polynomial q(n) such
that for all G ∈ D we have |F ′G|/|FG| 6 q(n) where n is the number of vertices of G.

Jerrum and Sinclair [7] define a Markov chain that, tailored to 2-factors, works as follows.

Let F ∈ F ′G be the current 2-factor of the JS chain. Choose an ordered pair of vertices
(i, j) uniformly at random:

1. if F ∈ FG and (i, j) is an edge of F , delete (i, j) from G (Type 0 transition),

2. if F /∈ FG and the degree of i in G is less than 2, and (i, j) is not an edge of F ,
add (i, j) to F if this edge is in G; if this causes the degree of j to exceed 2, select
an edge (j, k) uniformly at random from F and delete it (Type 1 transition).

In case the degree of j does not exceed 2 in the second case, we call this a Type 2
transition.

The graphs F, F ′ ∈ F ′G are JS adjacent if F can be obtained from F ′ with positive
probability in one transition of the JS chain and note this relation is symmetric. The
properties of the JS chain, stated in Theorem 15 below, are easy to check [7].

Theorem 15. The JS chain on F ′G is irreducible, aperiodic and symmetric, and, hence,
has uniform stationary distribution over F ′G. Moreover, P (F, F ′)−1 6 2n3 for all JS
adjacent F, F ′ ∈ F ′G, and also the maximum in- and out-degrees of the state space graph
of the JS chain are bounded by n3.
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We say that two graphs F, F ′ ∈ F ′G are within distance r in the JS chain if there exists
a path of length at most r from F to F ′ in the state space graph of the JS chain. By
dist(F ′,2) we denote the minimum distance of F ′ ∈ F ′G to an element in F . The following
parameter will play a central role in this work. Let

kJS(G) = max
F ′∈F ′

G

dist(F ′,2) . (2)

Based on the parameter kJS, we define the notion of strong stability [1].

Definition 16 (Strong stability). A family of graphs D is called strongly stable if there
exists a constant ` such that kJS(G) 6 ` for all G ∈ D.

It is shown by Jerrum and Sinclair [7], that if D is the set of all graphs G with
δ(G) > n/2, then D is strongly stable for ` = 3. (This gives rise to the condition on the
minimum degree in the statement of Theorem 8.)

We now have all the ingredients for the proof of Theorem 8. It uses essentially the same
argument as that in [1], where it is shown that the switch Markov chain for sampling
graphs with given degrees is rapidly mixing for certain strongly stable classes of degree
sequence, i.e., for the notion of strong stability in that setting.

Proof of Theorem 8. The high-level idea is to use an embedding argument which states
that an efficient multi-commodity flow for the JS chain can be transformed into an effi-
cient flow for the k-switch Markov chain.

The fact that there exists an efficient multi-commodity flow for the JS chain can be shown
using exactly the same arguments as in Theorem 3.2 in [1].12

Without going into all the details, we will give a sketch of this argument. Recall that
Sinclair’s multi-commodity flow method asks us to define a flow f in the state space graph
of the JS chain that routes a fraction π(X)π(Y ) of flow from X to Y for every X, Y ∈ F ′G.
Here,

π(Z) =
1

|F ′G|
for every Z ∈ F ′G.

The notion of strong stability allows us to take a shortcut here: Instead of defining a
flow between every two states in F ′G, one can first define a flow between any two 2-factors
F, F ′ ∈ FG. Then, roughly speaking, in order to define a flow between any two states
in F ′G, we use the fact that every ‘almost 2-factor’ X ∈ F ′G \ FG is close to some actual
2-factor in the state space graph, because of strong stability. These short paths between
states in F ′G \ FG and FG can be exploited to define the desired flow between any two
states in F ′G.

12That theorem essentially shows the result in the case where the graph G is complete and strong
irreducibility for k = 2, but the analysis remains true when G is not a complete graph, and when k > 2
(still assuming the notion of strong stability of the given class of degree sequences).
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In order to define the flow between two 2-factors F and F ′, we decompose the symmet-
ric difference F4F ′ into a collection of alternating circuits.13 We then use the operations
defining the JS chain in order to transform F into F ′ by ‘flipping’ edges on an alternating
circuit in order to move from F to F ′ (see Figures 4–6 in [1] for an example). In particular,
all these flow-carrying paths will have polynomial length. Morever, all these operations
only use edges in F4F ′ and so the approach taken in the proof of Theorem 3.2 in [1]
can be used here as well (when G is not a complete graph). In order to prove that this
procedure indeed yields an efficient flow, one can use the exact same arguments as in [1].

In particular, we can obtain the following statement similar to Theorem 3.2 in [1].

Lemma 17. Let D be the collection of graphs with δ(G) > n/2. Then there exist poly-
nomials p(n) and r(n) such that for any G ∈ D there exists an efficient multi-commodity
flow f for the JS chain on F ′G satisfying

max
e
f(e) 6 p(n) and `(f) 6 q(n).

where f(e) is the total amount of flow routed over edge e in the state space graph, and
`(f) the maximum length of a flow-carrying path.

The next step entails transforming the flow f in Lemma 17 into an efficient multi-
commodity flow for the k-switch Markov chain (assuming strong irreducibility). First
note that the flow f above is a flow between any two states in F ′G, whereas we are inter-
ested in defining a flow, let us call it g, between any two states in FG. Therefore, the first
step will be to restrict ourselves to the flow routed in f between states in FG, which we
call f̃ .

A subtlety here is that we route a flow of 1/|F ′G|2 between any two states in FG in f̃
(and also f), whereas we need to route 1/|FG|2 between two such states in the desired
(final) flow g. This is not a problem as replacing |F ′G| by |FG| in the definition of f̃ only
blows up the congestion on a given edge e by at most a polynomial factor, using the fact
that

|F ′G|
|FG|

6 s(n)

for some polynomial s, since γ > 1/2.14 Let us call the resulting (intermediate) flow f̄ ,
which now routes a fraction 1/|FG|2 of flow between any two states in FG in the JS chain,
and that has polynomially bounded congestion.15

We next continue with transforming the flow f̄ into the desired flow g (again similar to
the ideas in [1]). We do this by a sequence of reductions.

13To be more precise, the flow is spread out over all possible ways in which the symmetric difference
can be decomposed.

14Given F ∈ F ′G \ FG, let x, y be vertices of degree 1 or x = y the vertex of degree 0. Find z ∈
N(x)∩N(y)+ and replace zz− with xz, yz− to obtain σ(F ) ∈ FG with |F4σ(F )| 6 3. Thus |σ−1(F )| 6
n3 =: s(n).

15The flows f̃ and f̄ are not efficient multi-commodity flows for Markov chains, but ‘auxiliary flows’.
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We first identify for every X ∈ F ′G \ FG some 2-factor ψ(X) ∈ FG that is within
kJS = 3 moves (in the JS chain) away from X. All X that map unto the same 2-factor
F = ψ(X) are merged with F into a supervertex that we identify with F . If this procedure
gives rise to parallel (directed) edges, we replace them by one edge and route all flow over
that edge; self-loops are removed. It is not hard to see |ψ−1(F )| has size polynomial in
n, intuitively, as we only merge vertices that are close to each other (in the original JS
chain). Moreover, it is not hard to see that this procedure will only give rise to at most
a polynomial number of parallel edges between two given vertices in FG (for the same
reason). Let us call the resulting (simple) graph J = (FG, A) and the resulting flow in
this graph f ∗. By what is said above, we have maxe f

∗(e) 6 p′(n) for some polynomial
p′, i.e., the congestion of f ∗ is at most a polynomial factor larger than that of f̄ .

The final problem, before we obtain the desired flow g, is that the graph J contains
edges (possibly with flow) between 2-factors F, F ′ ∈ FG that might be more than a k-
switch away from each other. Said differently, these edges do not represent transitions in
the k-switch Markov chain. Let us partition the edge set A = Aswitch ∪ Ainfeasible where
Aswitch contains all edges of A that represent a transition in the k-switch Markov chain,
and Ainfeasible all those edges that do not.

We argue that for every edge a = (F, F ′) ∈ Ainfeasible, we can always find a short
‘detour’ in the graph J using only edges in Aswitch. To see this, fix some a ∈ Ainfeasible.
Suppose that X and Y are adjacent in the JS chain and that F = ψ(X) and F ′ = ψ(Y )
(these X and Y exist by existence of the infeasible edge a). Since kJS = 3, it can be
shown that

|F∆F ′| 6 12.

Intuitively, this follows from the fact that in the JS chain, F = ψ(X) is close to X, which
is close to Y , which is in turn close to ψ(Y ) = F ′. It follows that with at most 12/k
switches of size at most k, that define the shortcut in J using only edges in Aswitch, we can
transform F into F ′. This follows from the assumption of k-switch irreducibility. Since all
these detours take place on a ‘local’ level, the congestion of the resulting multi-commodity
flow for the k-switch Markov chain, that we get from rerouting the flow of infeasible edges
over their respective shortcut, increases at most by a polynomial factor on every fixed
feasible edge in J. That is, for a fixed edge b = (F0, F

′
0) ∈ Aswitch, the total number of

edges a = (F, F ′) ∈ Ainfeasible that use b in their detour is at most poly(n), as (roughly
speaking) F0 is at most 12/k transitions away from F by construction (and k is constant).

This yields the desired flow g. For a precise and detailed outline of this idea, we refer
the reader to [1].

Proof of Proposition 4. We claim that given F1, F2,∈ FG, there is a T ∈ FG that can be
obtained from F1 by a 4-switch such that |T4F2| < |F14F2|. Applying this repeatedly
proves the proposition, taking φ(k) = k.

Let F1, F2 ∈ FG. Note that the symmetric difference of F1 and F2 is the vertex-disjoint
union of circuits in which edges alternate between F1 and F2 and the circuits visit each
vertex zero, one, or two times. If the symmetric difference of F1 and F2 contains such
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alternating circuits with four or six edges (corresponding to switches of size 2 or 3), then
switching along such a circuit reduces the symmetric difference, so assume otherwise.

In this case it is not hard to see that we can find an H1, H2-alternating walk P =
a1a2a3a4a5a6 (here the ai are vertices and a1 and a6 are distinct) such that a1a2, a3a4, a5a6

are edges of F1, and a2a3, a4a5 are edges of F2.
We try to find vertices b and c that are neighbours on F1 such that b ∈ N(a1) and

c ∈ N(a6). Then the circuit C := a1a2a3a4a5a6cba1 is a 4-switch for F1. We choose b and
c as follows. Orient the cycles of F1 arbitrarily. We call the vertex following a vertex v in
this orientation v+ and the previous vertex v−. Set M = {v+ : v ∈ N(a6)} and consider
N(a1) ∩M . As both |N(a1)|, |M | > n/2 + 7 we have |N(a1) ∩M | > 2 · 7 = 14.16 Select
c ∈ (N(a1) ∩M) \ {a+

i , a
−
i , i = 1, . . . , 6} and set b = c−. For T , the 2-factor produced

by switching F1 along C := a1a2a3a4a5a6cba1, we see that compared to F1, T contains at
least two new edges of F2 (namely a2a3, a4a5) but T may have lost one edge of F2 (namely
bc if it was in fact an edge of F2), giving a net gain of one. Since T and F1 have the same
number of edges, we see that |T4F2| 6 |F14F2| − 1, as required.

16In the case of bipartite graphs, we note that a1a2a3a4a5a6 is a walk in G and so a1 and a6 are
in different parts; say a1 ∈ A and a6 ∈ B. Then N(a1),M ⊆ B, so since |N(a1)|, |M | > 1

2n + 7, so
|N(a1) ∩M | > 14, and we continue as before.
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