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Abstract

Let Fq be a finite field of order q, where q is a power of a prime. For a set
A ⊂ Fq, under certain structural restrictions, we prove a new explicit lower bound
on the size of the product set A(A + 1). Our result improves on the previous best
known bound due to Zhelezov and holds under more relaxed restrictions.

Mathematics Subject Classifications: 11B75

1 Introduction

Let p denote a prime, Fq the finite field consisting of q = pm elements and F∗q = Fq\{0}.
For sets A,B ⊂ Fq, we define the sum set A+B = {a+ b : a ∈ A, b ∈ B} and the product
set AB = {ab : a ∈ A, b ∈ B}. Similarly, we define the difference set A−B and the ratio
set A/B.

The sum-product phenomenon in finite fields is the assertion that for A ⊂ Fq, the
sets A+A and AA cannot both simultaneously be small unless A closely correlates with
a coset of a subfield. A result in this direction is due to Li and Roche-Newton [6], who
showed that if |A ∩ cG| 6 |G|1/2 for all subfields G and elements c in Fq, then

max{|A+ A|, |AA|} � (log |A|)−5/11|A|1+1/11.

In the same spirit and under a similar structural assumption on the set A, one expects
that, for all α ∈ F∗q, either of the product sets AA or (A+α)(A+α) must be significantly
larger than A. Zhelezov [12] proved the estimate

max{|AB|, |(A+ 1)C|} & |A|1+1/559, (1)
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for sets A,B,C ⊂ Fq, under the condition that

|AB ∩ cG| 6 |G|1/2 (2)

for all subfields G of Fq and elements c ∈ Fq. Then, taking B = A and C = A+ 1, under
restriction (2), we have

max{|AA|, |(A+ 1)(A+ 1)|} & |A|1+1/559. (3)

For sets B1, B2, X ⊂ F∗q, we recall Plünnecke’s inequality (see Lemma 9)

|B1B2| 6
|B1X||B2X|
|X|

.

From this we can deduce that

|A(A+ 1)|2 > |A| ·max{|AA|, |(A+ 1)(A+ 1)|}.

Hence, by (3), we have the estimate

|A(A+ 1)| & |A|1+δ (4)

with δ = 1/1118, which holds under restriction (2) with B = A. Alternatively, by (1),
with B = A+ 1 and C = A, the estimate (4) holds with δ = 1/559.

For large sets, A ⊂ Fq with |A| > q1/2, Garaev and Shen [2] proved the bound

|A(A+ 1)| � min{q1/2|A|1/2, |A|2/q1/2}. (5)

Furthermore, it was demonstrated in [2] that in the range |A| > q2/3, the bound (5) is
optimal up to the implied constant.

In the realm of small sets A ⊂ Fq, with |A| 6 p5/8, Stevens and de Zeeuw [9] obtained

|A(A+ 1)| � |A|1+1/5.

Warren [11], further improved this bound to (log |A|)−7/6|A|1+2/9 under the constraint
|A| 6 p1/4. Both of these results are based on a bound on incidences between lines and
Cartesian products, proved in [9], which in turn relies on a bound on incidences between
points and planes due to Rudnev [8]. We point out that the main result of [8] has led
to many quantitatively strong sum-product type estimates, however these estimates are
restricted to sets which are bounded in size in terms of the characteristic p.

Our main result, stated below, relies on a somewhat more primitive approach towards
the sum-product problem in finite fields, often referred to as the additive pivot technique.
Specifically, we adopt our main tools and ideas from [4] and [6].

Theorem 1. Let A ⊆ Fq. Suppose that

|A ∩ cG| � max{|G|1/2, |A|25/26} (6)

for all proper subfields G of Fq and elements c ∈ Fq. Then for all α ∈ F∗q, we have

|A(A+ α)| & min
{
|A|1+1/52, q1/48|A|1−1/48

}
.
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Theorem 1 provides a quantitative improvement over the relevant estimates implied
by (1) and holds under a more relaxed condition than those given by (2). It also improves
on (5) in the range q1/2 6 |A| . q1/2+1/102.

Given a set A ⊂ Fq, we define the additive energy of A as the quantity

E+(A) = |{(a1, a2, a3, a4) ∈ A4 : a1 + a2 = a3 + a4}|.

As an application of Theorem 1, we give a bound on the additive energy of subsets of Fq.

Corollary 2. Let A ⊆ Fq. Suppose that

|A ∩ cG| � max{|G|1/2, |AA|50/53} (7)

for all proper subfields G of Fq and elements c ∈ Fq. Then for any α ∈ F∗q, we have

|A ∩ (A− α)| . |AA|1−1/53 + q−1/47|AA|1+1/47. (8)

Consequently, under restriction (7), we have

E+(A) . |A|2
(
|AA|1−1/53 + q−1/47|AA|1+1/47

)
.

Asymptotic notation

We use standard asymptotic notation. In particular, for positive real numbers X and Y ,
we use X = O(Y ) or X � Y to denote the existence of an absolute constant c > 0 such
that X 6 cY . If X � Y and Y � X, we write X = Θ(Y ) or X ≈ Y . We also use X . Y
to denote the existence of an absolute constant c > 0, such that X � (log Y )cY .

2 Preparations

For X ⊂ Fq, let R(X) denote the quotient set of X, defined by

R(X) =

{
x1 − x2
x3 − x4

: x1, x2, x3, x4 ∈ X, x3 6= x4

}
.

We present a basic extension of [10, Lemma 2.50].

Lemma 3. Let X ⊂ Fq and r ∈ F∗q. If r 6∈ R(X), for any nonempty subsets X1, X2 ⊆ X,
we have

|X1||X2| = |X1 − rX2|.

Proof. Consider the mapping φ : X1 ×X2 → X1 − rX2 defined by φ(x1, x2) = x1 − rx2.
Suppose that (x1, x2), (y1, y2) ∈ X1 ×X2 are distinct pairs satisfying x1 − rx2 = y1 − ry2.
Then we get

r =
x1 − y1
x2 − y2

,

which contradicts the assumption that r 6∈ R(X). We deduce that φ is injective, which
in turn implies the required result.
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The next lemma, which appeared in [10, Corollary 2.51], is a simple corollary of
Lemma 3.

Lemma 4. Let X ⊂ Fq with |X| > q1/2, then R(X) = Fq.

We have extracted Lemma 5, stated below, from the proof of the main result in [6].

Lemma 5. Let X ⊂ Fq be such that

1 +R(X) ⊆ R(X) and X ·R(X) ⊆ R(X).

Then R(X) is the subfield of Fq generated by X.

The next result has been stated and proved in the proof of [7, Theorem 1].

Lemma 6. Let X ⊂ Fq with |R(X)| � |X|2. Then there exists r ∈ R(X) such that for
any subset X

′ ⊂ X with |X ′| ≈ |X|, we have

|X ′ + rX
′| � |X|2.

The following lemma enables us to extend our main result to sets which are larger
than q1/2. See [1, Lemma 3] for a proof.

Lemma 7. Let X1, X2 ⊂ Fq. There exists an element ξ ∈ F∗q such that

|X1 + ξX2| >
|X1||X2|(q − 1)

|X1||X2|+ (q − 1)
.

Next, we recall Ruzsa’s triangle inequality. See [10, Lemma 2.6] for a proof.

Lemma 8. Let X,B1, B2 be nonempty subsets of an abelian group. We have

|B1 −B2| 6
|X +B1||X +B2|

|X|
.

In particular, for A ⊂ F∗q, by a multiplicative application of Lemma 8, we have the
useful inequality

|A/A| 6 |A(A+ 1)|2

|A|
. (9)

In the next two lemmas we state variants of the Plünnecke-Ruzsa inequality, which
can also be found in [5].

Lemma 9. Let X,B1, . . . , Bk be nonempty subsets of an abelian group. Then

|B1 + · · ·+Bk| 6
|X +B1| · · · |X +Bk|

|X|k−1
.
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Lemma 10. Let X,B1, . . . , Bk be nonempty subsets of an abelian group. For any 0 <
ε < 1, there exists a subset X

′ ⊆ X, with |X ′ | > (1− ε)|X| such that

|X ′ +B1 + · · ·+Bk| �ε,k
|X +B1| · · · |X +Bk|

|X|k−1
.

The following two lemmas are due to Jones and Roche-Newton [4].

Lemma 11. Let Z ⊆ F∗q. Suppose that X, Y ⊆ xZ + y for some x ∈ F∗q and y ∈ Fq. Fix
0 < ε < 1/16. Then, (1− ε)|X| elements of X can be covered by

Oε

(
|Z(Z + 1)|2|Z/Z|

|X||Y |2

)
translates of Y . Similarly, (1−ε)|X| elements of X can be covered by this many translates
of −Y .

Lemma 12. Let A ⊆ F∗q. There exists a subset A
′ ⊆ A with |A′ | ≈ |A| such that

|A′ − A′| � |A(A+ 1)|4|A/A|2

|A|5
.

Next, we record a popularity pigeonholing argument. A proof is provided in [3,
Lemma 9].

Lemma 13. Let X be a finite set and let f be a function such that f(x) > 0 for all
x ∈ X. Suppose that ∑

x∈X

f(x) > K.

Let Y = {x ∈ X : f(x) > K/2|X|}. Then∑
y∈Y

f(y) >
K

2
.

Additionally, if f(x) 6M for all x ∈ X, then |Y | > K/(2M).

For sets X, Y ⊆ Fq, we define the multiplicative energy between X and Y as the
quantity

E×(X, Y ) = |{(x1, x2, y1, y2) ∈ X2 × Y 2 : x1y1 = x2y2}|

and write simply E×(X) instead of E×(X,X). For ξ ∈ Y/X, let

rY :X(ξ) = |{(x, y) ∈ X × Y : y/x = ξ}|.

Then, we have the identities ∑
ξ∈Y/X

rY :X(ξ) = |X||Y |, (10)
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∑
ξ∈Y/X

r2Y :X(ξ) = E×(X, Y ). (11)

By a simple application of the Cauchy-Schwarz inequality we have

E×(X, Y )|XY | > |X|2|Y |2. (12)

The remaining two lemmas together form the basis for the proof of Theorem 1.
Lemma 15 is a slight generalisation of [7, Lemma 3].

Lemma 14. Let X, Y ⊂ Fq, with |Y | 6 |X|. There exists a set D ⊆ Y/X and an integer
N 6 |Y | such that E×(X, Y ) � (log |X|)|D|N2 and |D|N < |X||Y |. Also, for ξ ∈ D we
have rY :X(ξ) ≈ N . Namely, the set of points

P = {(x, y) ∈ X × Y : y/x ∈ D}

is supported on |D| lines through the origin, with each line containing Θ(N) points of P.

Proof. For j > 0, let Lj = {ξ ∈ Y/X : 2j 6 rY :X(ξ) < 2j+1}. Then, by (11), we have

blog2 |X|c∑
j=0

∑
ξ∈Lj

r2Y :X(ξ) = E×(X, Y ).

By the pigeonhole principle there exists some N > 1 such that, letting D = {ξ ∈ Y/X :
N 6 rY :X(ξ) < 2N}, we have

E×(X, Y )

log |X|
�
∑
ξ∈D

r2Y :X(ξ)� |D|N2.

Furthermore, by (10), we have

|D|N <
∑
ξ∈D

rY :X(ξ) 6 |X||Y |.

Lemma 15. Let X, Y ⊂ Fq. Suppose P ⊂ X × Y is a set of points supported on L lines
through the origin, with each line containing Θ(N) points of P , so that |P | ≈ LN . For
x∗ ∈ X and y∗ ∈ Y , we write Yx∗ = {y ∈ Y : (x∗, y) ∈ P} and Xy∗ = {x ∈ X : (x, y∗) ∈
P}. There exists a popular abscissa x0 and a popular ordinate y0, so that

|Yx0 | �
LN

|X|
, |Xy0| �

LN

|Y |
.

For ξ ∈ Fq, we write Pξ = {x : (x, ξx) ∈ P}. There exists a subset Ỹx0 ⊆ Yx0 with

|Ỹx0| �
L2N2

|X|2|Y |
, (13)

such that for every z ∈ Ỹx0, we have

|Pz/x0 ∩Xy0 | �
L2N3

|X|2|Y |2
. (14)
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Proof. Observing that ∑
y∈Y

|Xy| = |P | ≈ LN,

by Lemma 13, there exists a subset Y
′ ⊆ Y such that, for all y ∈ Y ′ , we have |Xy| �

LN/|Y |. Let P
′
= {(x, y) ∈ P : y ∈ Y ′} so that |P ′ | � LN . Then∑

x∈X

|Yx ∩ Y
′ | =

∑
y∈Y ′
|Xy| = |P

′ | � LN.

By Lemma 13, there exists a subset X
′ ⊆ X such that for all x ∈ X ′ we have

|Yx ∩ Y
′ | � LN

|X|
. (15)

Letting P
′′

= {(x, y) ∈ P ′ : x ∈ X ′}, we have |P ′′ | � LN.
Let D = {y/x : (x, y) ∈ P ′′} and let D

′ ⊆ D denote the set of elements ξ such that
the lines lξ, determined by ξ, each contain Ω(N) points of P

′′
. It follows by Lemma 13

that |D′ | � L. Now, we proceed to establish a lower bound on the sum

Σ =
∑

(x,y)∈X′×Y ′

∑
z∈Yx

|Pz/x ∩Xy|. (16)

We write z ∼ x, if (x, z) is a point of P . Then

Σ�
∑

(x,y)∈X′×Y ′
z:z∼x

|Pz/x ∩Xy|

� N
∑
ξ∈D′

∑
y∈Y ′
|P ′′ξ ∩Xy|.

For a fixed ξ ∈ D′ , the inner sum may be bounded by the observation that∑
y∈Y ′
|P ′′ξ ∩Xy| =

∑
x∈P ′′ξ

|Yx ∩ Y
′|.

Recall that |D′| � L and that for ξ ∈ D′ , we have |P ′′ξ | � N . Then, by (15), we have

Σ� N · L ·N · LN
|X|

.

By the pigeonhole principle, applied to (16), there exist (x0, y0) ∈ X
′ × Y ′ such that∑

z∈Yx0

|Pz/x0 ∩Xy0| �
L2N3

|X|2|Y |
.
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By our assumption, that every line through the origin contains O(N) points of P , it

follows that for all z ∈ Y , we have |Pz/x0| � N . Then, letting Ỹx0 ⊆ Yx0 to denote the
set of z ∈ Yx0 with the property that

|Pz/x0 ∩Xy0 | �
L2N3

|X|2|Y |2
,

by Lemma 13, we have

|Ỹx0| �
L2N2

|X|2|Y |
.

3 Proof of Theorem 1

It suffices to prove the required result for α = 1. Then the general statement immediately
follows since under condition (6) the set A can be replaced by any of its dilates cA, for
c ∈ F∗q. Without loss of generality assume 0 6∈ A. By Lemma 12, combined with (9),

there exists a subset A
′ ⊆ A, with |A′| ≈ |A|, such that

|A′ − A′ | � |A(A+ 1)|8

|A|7
.

By Lemma 10 there exists a further subset A
′′ ⊆ A

′
, with |A′′ | ≈ |A′ |, such that

|A′′ − A′′ − A′′ − A′′| � |A
′ − A′|3

|A|2
.

Since |A′′ | ≈ |A|, we reset the notation A
′′

back to A and henceforth assume the inequal-
ities

|A− A| � |A(A+ 1)|8

|A|7
, (17)

|A− A− A− A| � |A(A+ 1)|24

|A|23
. (18)

We apply Lemma 14 to identify a set D ⊆ A/(A+ 1) and an integer N > 1 such that for
ξ ∈ D we have rA:(A+1)(ξ) ≈ N . Additionally, letting L = |D|, in view of (12), we have

M := LN2 � E×(A+ 1, A)

log |A|
>

|A|4

|A(A+ 1)| log |A|
. (19)

We define P ⊆ (A+ 1)× A by

P = {(x, y) ∈ (A+ 1)× A : y/x ∈ D}.

Then |P | ≈ LN . Now, since LN < |A|2 and N < |A|, we get

N,L >
M

|A|2
. (20)
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For ξ ∈ D, we define the projection onto the x-axis of the line with slope ξ as

Pξ = {x : (x, ξx) ∈ P} ⊂ A+ 1.

Similarly for λ ∈ D−1 let
Qλ = {y : (λy, y) ∈ P} ⊂ A.

Then for ξ ∈ D and λ ∈ D−1, we have

|Pξ|, |Qλ| ≈ N, ξPξ ⊂ A and λQλ ⊂ A+ 1. (21)

By Lemma 15, with X = A + 1 and Y = A, there exists a pair of elements (x0, y0) ∈
(A+ 1)× A such that the sets Ax0 ⊆ A and By0 ⊆ A+ 1 satisfy

|Ax0|, |By0| �
LN

|A|
, x−10 Ax0 ⊂ D and y−10 By0 ⊂ D−1. (22)

Moreover, there exists a further subset Ãx0 ⊆ Ax0 , with

|Ãx0| �
LM

|A|3
, (23)

such that for all z ∈ Ãx0 , letting Sz = Pz/x0 ∩By0 , we have

|Sz| �
LMN

|A|4
. (24)

We require the following corollary of Lemma 11 throughout the remainder of the proof.

Claim 16. For n 6 4 let a1, . . . , an denote arbitrary elements of Ãx0. Given any set
C ⊂ A+ 1, there exists a subset C

′ ⊂ C, with |C ′ | ≈ |C|, such that the sets aiC
′

can each
be covered by

O

(
|A(A+ 1)|4

|C||A|N2

)
(25)

translates of ±x0A.
Suppose b1, . . . , b4 ∈ By0. Let

Γ :=
|A|2|A(A+ 1)|4

M2
. (26)

There exists a subset A
′ ⊆ Ãx0, with |A′ | ≈ |Ãx0|, such that for 1 6 i 6 4 the sets biA

′

can each be covered by O(Γ) translates of ±y0A.

Proof. We apply Lemma 11, with X = aiC, Y = aiPai/x0 , Z = A, x = ai, y = ai and
0 < ε < 1/16. Then there exist sets Cai ⊆ C with |Cai | > (1 − ε)|C| such that each of
aiCai can be covered by

Oε

(
|A(A+ 1)|2|A/A|
|C||aiPai/x0|2

)
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translates of aiPai/x0 ⊂ x0A and by at most as many translates of −x0A. Let C
′

=
Ca1 ∩ · · · ∩ Can , so that |C ′| > (1 − nε)|C| > (3/4)|C|. Then, by (9) and (21), it follows
that (25) denotes the number of translates of ±x0A required to cover the sets aiC

′
for

1 6 i 6 n.
Next, we apply Lemma 11, with X = biÃx0 , Y = biQbi/y0 , Z = A, x = bi and y = 0.

Recalling (21), (22), (23) and proceeding similarly as above, we can identify a subset
A
′ ⊆ Ãx0 , with |A′ | ≈ |Ãx0|, such that the sets biA

′
are each fully contained in O(Γ)

translates of ±y0A.

We split the proof into four cases based on the nature of the quotient set R(Ãx0).
Case 1: R(Ãx0) 6= R(By0).
Case 1.1: There exist elements a, b, c, d ∈ Ãx0 such that

r =
a− b
c− d

∈ R(Ãx0) \R(By0).

By Lemma 3, for any subset Y ⊆ By0 with |Y | ≈ |By0 |, we have

|By0|2 ≈ |Y |2 = |Y − rY | 6 |aY − bY − cY + dY |. (27)

By Claim 16 and (22), there exists a subset B
′ ⊆ By0 , with |B′ | ≈ |By0|, such that dB

′
is

contained in

O

(
|A(A+ 1)|4

LN3

)
translates of −x0A and aB

′
, bB

′
, cB

′
are contained in at most the same number of trans-

lates of x0A. Thus, setting Y = B
′
, by (27), we have(

LN

|A|

)2

� |A− A− A− A|
(
|A(A+ 1)|4

LN3

)4

.

Then, by (18), we get
M6N2|A|21 � |A(A+ 1)|40.

By (19) and (20), we conclude the inequality

|A(A+ 1)|48 � (log |A|)−8|A|49.

Case 1.2: There exist elements a, b, c, d ∈ By0 such that

r =
a− b
c− d

∈ R(By0) \R(Ãx0).

Then for any subset Y ⊆ Ãx0 with |Y | ≈ |Ãx0|, by Lemma 3, we have

|Ãx0|2 ≈ |Y |2 = |Y − rY | 6 |aY − bY − cY + dY |. (28)
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By the second part of Claim 16, there exists a subset A
′ ⊂ Ãx0 , with |A′ | ≈ |Ãx0|, such

that the sets aA
′
, bA

′
and cA

′
are each fully contained in O(Γ) translates of y0A and dA

′

can be covered by O(Γ) translates of −y0A. Thus, setting Y = A
′
, by (28), we have(

LM

|A|3

)2

� |A− A− A− A|
(
|A|2|A(A+ 1)|4

M2

)4

.

Applying (18) yields
M10L2|A|9 � |A(A+ 1)|40.

Hence, by (19) and (20), we get

|A(A+ 1)|52 � (log |A|)−12|A|53.

Case 2: 1 +R(Ãx0) * R(Ãx0). There exist elements a, b, c, d ∈ Ãx0 such that

r = 1 +
a− b
c− d

6∈ R(Ãx0) = R(By0).

Let Y1 ⊆ By0 and Y2 ⊆ Sa be any sets with |Y1| ≈ |By0| and |Y2| ≈ |Sa|. By Lemma 10,
with X = (c− d)Y1, there exists a subset Y

′
1 ⊆ Y1, with |Y ′1 | ≈ |Y1|, such that

|Y ′1 − rY2| 6 |(c− d)Y
′

1 − (c− d)Y2 − (a− b)Y2| (29)

� |Y1 − Y2|
|Y1|

|(c− d)Y1 − (a− b)Y2|.

Recall that Y
′
1 ⊆ By0 and Y2 ⊆ Sa ⊆ By0 . Then Lemma 3 gives

|Y ′1 ||Y2| = |Y
′

1 − rY2|.

Thus, by (29) we have

|Y ′1 ||Y1||Y2| � |Y1 − Y2||cY1 − dY1 − aY2 + bY2|. (30)

Since Y1, Y2 ⊆ By0 ⊆ A+ 1, we have

|Y1 − Y2| 6 |A− A|.

Recall that |Y ′1 | ≈ |Y1| ≈ |By0| and |Y2| ≈ |Sa|. Then by (22), (24) and noting that
aY2 ⊆ x0A, we have(

LN

|A|

)2(
LMN

|A|4

)
� |A− A||cY1 − dY1 − x0A+ bY2|. (31)

Now, by Claim 16, there exist positively proportioned subsets B
′
y0
⊆ By0 and S

′
a ⊆ Sa

such that cB
′
y0

and dB
′
y0

can be covered by

O

(
|A(A+ 1)|4

LN3

)
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translates of x0A and bS
′
a can be covered by

O

(
|A|3|A(A+ 1)|4

LMN3

)
translates of −x0A. Thus, setting Y1 = B

′
y0

and Y2 = S
′
a, by (31) it follows that(

LN

|A|

)2(
LMN

|A|4

)
� |A− A||A− A− A− A|

(
|A|3|A(A+ 1)|4

LMN3

)(
|A(A+ 1)|4

LN3

)2

.

Using (17) and (18), this is further reduced to

M8|A|21 � |A(A+ 1)|44.

Thus, by (19), we get
|A(A+ 1)|52 � (log |A|)−8|A|53.

Case 3: x−10 Ãx0 ·R(Ãx0) * R(Ãx0). There exist elements a, b, c, d, e ∈ Ãx0 such that

r =
a

x0

b− c
d− e

6∈ R(Ãx0) = R(By0).

Given any set Y1 ⊆ By0 , recalling that Sa ⊆ By0 , it follows from Lemma 3 that

|Y1||Sa| = |Y1 − rSa|.

For an arbitrary set Y2, we apply Lemma 9, with X = b−c
d−eY2, to get

|Y2||Y1||Sa| = |Y2||Y1 − rSa|

6

∣∣∣∣Y1 +
b− c
d− e

Y2

∣∣∣∣∣∣∣∣Y2 − a

x0
Sa

∣∣∣∣
6 |dY1 − eY1 + bY2 − cY2||Y2 − A|.

By Claim 16, we can identify sets C1 ⊆ Sd and C2 ⊆ Pc/x0 with |C1| ≈ |Sd| and
|C2| ≈ |Pc/x0| ≈ N , such that eC1 is covered by

O

(
|A|3|A(A+ 1)|4

LMN3

)
translates of x0A and bC2 is covered by

O

(
|A(A+ 1)|4

|A|N3

)
translates of −x0A. We set Y1 = C1 and Y2 = C2. Then, by (21), (24) and particularly
noting that dY1, cY2 ⊂ x0A and Y2 ⊂ A+ 1, we have

N

(
LMN

|A|4

)2

� |A− A||A− A− A− A|
(
|A|3|A(A+ 1)|4

LMN3

)(
|A(A+ 1)|4

|A|N3

)
.
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Using (17) and (18) we get

M6N3|A|20 � |A(A+ 1)|40.

By (19) and (20), we conclude

|A(A+ 1)|49 � (log |A|)−9|A|50.

Case 4: Suppose that Cases 1-3 do not happen. Observing that R(x−10 Ãx0) = R(Ãx0),
by Lemma 5 we deduce that R(Ãx0) is the field generated by x−10 Ãx0 . Then according to
the assumptions of Theorem 1, we consider the following three cases.

Case 4.1: R(Ãx0) = Fq and |Ãx0| > q1/2. Let Y denote an arbitrary subset of Ãx0
with |Y | ≈ |Ãx0|. By Lemma 7, there exists an element ξ ∈ F∗q such that q � |Y + ξY |.
Since R(By0) = R(Ãx0) = Fq, there exist elements a, b, c, d ∈ By0 , such that

q � |aY − bY + cY − dY |.

By Claim 16, we can identify a positively proportioned subset A
′ ⊂ Ãx0 , such that aA

′
,

bA
′

and dA
′

can be covered by O(Γ) translates of y0A and cA
′

can be covered by O(Γ)
translates of −y0A. Thus, setting Y = A

′
, we have

q � |A− A− A− A|
(
|A|2|A(A+ 1)|4

M2

)4

.

By (18), we get
M8|A|15q � |A(A+ 1)|40.

By (19), this gives the bound

|A(A+ 1)|48 � q(log |A|)−8|A|47.

We point out that if |Ãx0| > q1/2 then one only needs to consider Cases 1.1 and 4.1, since
by Lemma 4 we have R(Ãx0) = Fq.

Case 4.2: Either R(Ãx0) = Fq and |Ãx0| 6 q1/2 or R(Ãx0) is a proper subfield and
|A∩ cR(Ãx0)| � |R(Ãx0)|1/2 for all c ∈ Fq. Since R(Ãx0) is the field generated by x−10 Ãx0 ,
we have Ãx0 ⊆ x0R(Ãx0). Hence

|Ãx0|2 = |Ãx0 ∩ x0R(Ãx0)|2 6 |A ∩ x0R(Ãx0)|2 � |R(Ãx0)|.

Now, recalling that R(Ãx0) = R(By0), by Lemma 6, there exist elements a, b, c, d ∈ By0

such that for any subset Y ⊆ Ãx0 with |Y | ≈ |Ãx0|, we have

|Y |2 � |aY − bY + cY − dY |. (32)

By Claim 16, there exists a subset A
′ ⊆ Ãx0 , with |A′| ≈ |Ãx0|, such that cA

′
can be

covered by O(Γ) translates of −y0A and aA
′
, bA

′
, dA

′
can be covered by O(Γ) translates

of y0A. We set Y = A
′

so that, by (32), we obtain(
LM

|A|3

)2

� |A− A− A− A|
(
|A|2|A(A+ 1)|4

M2

)4

.
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Applying (18) gives
M10L2|A|9 � |A(A+ 1)|40.

Then, by (19) and (20), we have

|A(A+ 1)|52 � (log |A|)−12|A|53.

Case 4.3: R(Ãx0) is a proper subfield and |A ∩ x0R(Ãx0)| � |A|25/26. Recall that
Ãx0 ⊂ x0R(Ãx0). Then, by (23) and (20), we get

M2

|A|5
� |Ãx0| � |A|25/26.

Using (19), we recover the bound

|A(A+ 1)|52 � (log |A|)−52|A|53.

4 Proof of Corollary 2

Let α ∈ F∗q and denote S = A ∩ (A − α). Observing that S, S + α ⊂ A, we deduce
|S(S +α)| 6 |AA|. Then, estimate (8) follows by applying Theorem 1 to the set S. Now,
since S ⊂ A, if A satisfies restriction (7), then S can fail to satisfy restriction (6) only if
|S| � |AA|52/53, which in fact gives the required estimate. This concludes the proof of
estimate (8).

Next, noting that

|A ∩ (A− α)| = |{(a1, a2) ∈ A2 : a1 − a2 = α}|,

similarly to (10) and (11), we have the identities

|A|2 =
∑

α∈A−A

|A ∩ (A− α)| and E+(A) =
∑

α∈A−A

|A ∩ (A− α)|2.

In particular, it follows that

E+(A)� |A|2 ·max
α∈F∗q
|A ∩ (A− α)|.

Thus the required bound on E+(A) follows from (8).
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