On growth of the set A(A + 1) in arbitrary finite fields

Ali Mohammadi

School of Mathematics Institute for Research in Fundamental Sciences (IPM) Tehran, Iran

a.mohammadi@ipm.ir

Submitted: Feb 3, 2019; Accepted: Sep 8, 2020; Published: Oct 2, 2020 © The author. Released under the CC BY-ND license (International 4.0).

Abstract

Let \mathbb{F}_q be a finite field of order q, where q is a power of a prime. For a set $A \subset \mathbb{F}_q$, under certain structural restrictions, we prove a new explicit lower bound on the size of the product set A(A+1). Our result improves on the previous best known bound due to Zhelezov and holds under more relaxed restrictions.

Mathematics Subject Classifications: 11B75

1 Introduction

Let p denote a prime, \mathbb{F}_q the finite field consisting of $q = p^m$ elements and $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$. For sets $A, B \subset \mathbb{F}_q$, we define the sum set $A + B = \{a + b : a \in A, b \in B\}$ and the product set $AB = \{ab : a \in A, b \in B\}$. Similarly, we define the difference set A - B and the ratio set A/B.

The sum-product phenomenon in finite fields is the assertion that for $A \subset \mathbb{F}_q$, the sets A+A and AA cannot both simultaneously be small unless A closely correlates with a coset of a subfield. A result in this direction is due to Li and Roche-Newton [6], who showed that if $|A \cap cG| \leq |G|^{1/2}$ for all subfields G and elements c in \mathbb{F}_q , then

$$\max\{|A+A|, |AA|\} \gg (\log|A|)^{-5/11}|A|^{1+1/11}.$$

In the same spirit and under a similar structural assumption on the set A, one expects that, for all $\alpha \in \mathbb{F}_q^*$, either of the product sets AA or $(A+\alpha)(A+\alpha)$ must be significantly larger than A. Zhelezov [12] proved the estimate

$$\max\{|AB|, |(A+1)C|\} \gtrsim |A|^{1+1/559},\tag{1}$$

for sets $A, B, C \subset \mathbb{F}_q$, under the condition that

$$|AB \cap cG| \leqslant |G|^{1/2} \tag{2}$$

for all subfields G of \mathbb{F}_q and elements $c \in \mathbb{F}_q$. Then, taking B = A and C = A + 1, under restriction (2), we have

$$\max\{|AA|, |(A+1)(A+1)|\} \gtrsim |A|^{1+1/559}.$$
 (3)

For sets $B_1, B_2, X \subset \mathbb{F}_q^*$, we recall Plünnecke's inequality (see Lemma 9)

$$|B_1B_2| \leqslant \frac{|B_1X||B_2X|}{|X|}.$$

From this we can deduce that

$$|A(A+1)|^2 \ge |A| \cdot \max\{|AA|, |(A+1)(A+1)|\}.$$

Hence, by (3), we have the estimate

$$|A(A+1)| \gtrsim |A|^{1+\delta} \tag{4}$$

with $\delta = 1/1118$, which holds under restriction (2) with B = A. Alternatively, by (1), with B = A + 1 and C = A, the estimate (4) holds with $\delta = 1/559$.

For large sets, $A \subset \mathbb{F}_q$ with $|A| \geqslant q^{1/2}$, Garaev and Shen [2] proved the bound

$$|A(A+1)| \gg \min\{q^{1/2}|A|^{1/2}, |A|^2/q^{1/2}\}.$$
 (5)

Furthermore, it was demonstrated in [2] that in the range $|A| > q^{2/3}$, the bound (5) is optimal up to the implied constant.

In the realm of small sets $A \subset \mathbb{F}_q$, with $|A| \leq p^{5/8}$, Stevens and de Zeeuw [9] obtained

$$|A(A+1)| \gg |A|^{1+1/5}$$
.

Warren [11], further improved this bound to $(\log |A|)^{-7/6}|A|^{1+2/9}$ under the constraint $|A| \leq p^{1/4}$. Both of these results are based on a bound on incidences between lines and Cartesian products, proved in [9], which in turn relies on a bound on incidences between points and planes due to Rudnev [8]. We point out that the main result of [8] has led to many quantitatively strong sum-product type estimates, however these estimates are restricted to sets which are bounded in size in terms of the characteristic p.

Our main result, stated below, relies on a somewhat more primitive approach towards the sum-product problem in finite fields, often referred to as the additive pivot technique. Specifically, we adopt our main tools and ideas from [4] and [6].

Theorem 1. Let $A \subseteq \mathbb{F}_q$. Suppose that

$$|A \cap cG| \ll \max\{|G|^{1/2}, |A|^{25/26}\} \tag{6}$$

for all proper subfields G of \mathbb{F}_q and elements $c \in \mathbb{F}_q$. Then for all $\alpha \in \mathbb{F}_q^*$, we have

$$|A(A+\alpha)| \gtrsim \min\{|A|^{1+1/52}, q^{1/48}|A|^{1-1/48}\}.$$

Theorem 1 provides a quantitative improvement over the relevant estimates implied by (1) and holds under a more relaxed condition than those given by (2). It also improves on (5) in the range $q^{1/2} \leq |A| \lesssim q^{1/2+1/102}$.

Given a set $A \subset \mathbb{F}_q$, we define the additive energy of A as the quantity

$$E_{+}(A) = |\{(a_1, a_2, a_3, a_4) \in A^4 : a_1 + a_2 = a_3 + a_4\}|.$$

As an application of Theorem 1, we give a bound on the additive energy of subsets of \mathbb{F}_q .

Corollary 2. Let $A \subseteq \mathbb{F}_q$. Suppose that

$$|A \cap cG| \ll \max\{|G|^{1/2}, |AA|^{50/53}\}\tag{7}$$

for all proper subfields G of \mathbb{F}_q and elements $c \in \mathbb{F}_q$. Then for any $\alpha \in \mathbb{F}_q^*$, we have

$$|A \cap (A - \alpha)| \lesssim |AA|^{1 - 1/53} + q^{-1/47} |AA|^{1 + 1/47}.$$
 (8)

Consequently, under restriction (7), we have

$$E_{+}(A) \lesssim |A|^{2} (|AA|^{1-1/53} + q^{-1/47}|AA|^{1+1/47}).$$

Asymptotic notation

We use standard asymptotic notation. In particular, for positive real numbers X and Y, we use X = O(Y) or $X \ll Y$ to denote the existence of an absolute constant c > 0 such that $X \leqslant cY$. If $X \ll Y$ and $Y \ll X$, we write $X = \Theta(Y)$ or $X \approx Y$. We also use $X \lesssim Y$ to denote the existence of an absolute constant c > 0, such that $X \ll (\log Y)^c Y$.

2 Preparations

For $X \subset \mathbb{F}_q$, let R(X) denote the quotient set of X, defined by

$$R(X) = \left\{ \frac{x_1 - x_2}{x_3 - x_4} : x_1, x_2, x_3, x_4 \in X, x_3 \neq x_4 \right\}.$$

We present a basic extension of [10, Lemma 2.50].

Lemma 3. Let $X \subset \mathbb{F}_q$ and $r \in \mathbb{F}_q^*$. If $r \notin R(X)$, for any nonempty subsets $X_1, X_2 \subseteq X$, we have

$$|X_1||X_2| = |X_1 - rX_2|.$$

Proof. Consider the mapping $\phi: X_1 \times X_2 \to X_1 - rX_2$ defined by $\phi(x_1, x_2) = x_1 - rx_2$. Suppose that $(x_1, x_2), (y_1, y_2) \in X_1 \times X_2$ are distinct pairs satisfying $x_1 - rx_2 = y_1 - ry_2$. Then we get

$$r = \frac{x_1 - y_1}{x_2 - y_2},$$

which contradicts the assumption that $r \notin R(X)$. We deduce that ϕ is injective, which in turn implies the required result.

The next lemma, which appeared in [10, Corollary 2.51], is a simple corollary of Lemma 3.

Lemma 4. Let $X \subset \mathbb{F}_q$ with $|X| > q^{1/2}$, then $R(X) = \mathbb{F}_q$.

We have extracted Lemma 5, stated below, from the proof of the main result in [6].

Lemma 5. Let $X \subset \mathbb{F}_q$ be such that

$$1 + R(X) \subseteq R(X)$$
 and $X \cdot R(X) \subseteq R(X)$.

Then R(X) is the subfield of \mathbb{F}_q generated by X.

The next result has been stated and proved in the proof of [7, Theorem 1].

Lemma 6. Let $X \subset \mathbb{F}_q$ with $|R(X)| \gg |X|^2$. Then there exists $r \in R(X)$ such that for any subset $X' \subset X$ with $|X'| \approx |X|$, we have

$$|X' + rX'| \gg |X|^2.$$

The following lemma enables us to extend our main result to sets which are larger than $q^{1/2}$. See [1, Lemma 3] for a proof.

Lemma 7. Let $X_1, X_2 \subset \mathbb{F}_q$. There exists an element $\xi \in \mathbb{F}_q^*$ such that

$$|X_1 + \xi X_2| \geqslant \frac{|X_1||X_2|(q-1)}{|X_1||X_2| + (q-1)}.$$

Next, we recall Ruzsa's triangle inequality. See [10, Lemma 2.6] for a proof.

Lemma 8. Let X, B_1, B_2 be nonempty subsets of an abelian group. We have

$$|B_1 - B_2| \leqslant \frac{|X + B_1||X + B_2|}{|X|}.$$

In particular, for $A \subset \mathbb{F}_q^*$, by a multiplicative application of Lemma 8, we have the useful inequality

$$|A/A| \leqslant \frac{|A(A+1)|^2}{|A|}. (9)$$

In the next two lemmas we state variants of the Plünnecke-Ruzsa inequality, which can also be found in [5].

Lemma 9. Let X, B_1, \ldots, B_k be nonempty subsets of an abelian group. Then

$$|B_1 + \dots + B_k| \leqslant \frac{|X + B_1| \dots |X + B_k|}{|X|^{k-1}}.$$

Lemma 10. Let X, B_1, \ldots, B_k be nonempty subsets of an abelian group. For any $0 < \epsilon < 1$, there exists a subset $X' \subseteq X$, with $|X'| \ge (1 - \epsilon)|X|$ such that

$$|X' + B_1 + \dots + B_k| \ll_{\epsilon,k} \frac{|X + B_1| \cdots |X + B_k|}{|X|^{k-1}}.$$

The following two lemmas are due to Jones and Roche-Newton [4].

Lemma 11. Let $Z \subseteq \mathbb{F}_q^*$. Suppose that $X, Y \subseteq xZ + y$ for some $x \in \mathbb{F}_q^*$ and $y \in \mathbb{F}_q$. Fix $0 < \epsilon < 1/16$. Then, $(1 - \epsilon)|X|$ elements of X can be covered by

$$O_{\epsilon}\left(\frac{|Z(Z+1)|^2|Z/Z|}{|X||Y|^2}\right)$$

translates of Y. Similarly, $(1-\epsilon)|X|$ elements of X can be covered by this many translates of -Y.

Lemma 12. Let $A \subseteq \mathbb{F}_q^*$. There exists a subset $A' \subseteq A$ with $|A'| \approx |A|$ such that

$$|A' - A'| \ll \frac{|A(A+1)|^4 |A/A|^2}{|A|^5}.$$

Next, we record a popularity pigeonholing argument. A proof is provided in [3, Lemma 9].

Lemma 13. Let X be a finite set and let f be a function such that f(x) > 0 for all $x \in X$. Suppose that

$$\sum_{x \in X} f(x) \geqslant K.$$

Let $Y = \{x \in X : f(x) \ge K/2|X|\}$. Then

$$\sum_{y \in Y} f(y) \geqslant \frac{K}{2}.$$

Additionally, if $f(x) \leq M$ for all $x \in X$, then $|Y| \geq K/(2M)$.

For sets $X,Y\subseteq \mathbb{F}_q$, we define the multiplicative energy between X and Y as the quantity

$$E_{\times}(X,Y) = |\{(x_1, x_2, y_1, y_2) \in X^2 \times Y^2 : x_1y_1 = x_2y_2\}|$$

and write simply $E_{\times}(X)$ instead of $E_{\times}(X,X)$. For $\xi \in Y/X$, let

$$r_{Y:X}(\xi) = |\{(x,y) \in X \times Y : y/x = \xi\}|.$$

Then, we have the identities

$$\sum_{\xi \in Y/X} r_{Y:X}(\xi) = |X||Y|, \tag{10}$$

$$\sum_{\xi \in Y/X} r_{Y:X}^2(\xi) = E_{\times}(X,Y). \tag{11}$$

By a simple application of the Cauchy-Schwarz inequality we have

$$E_{\times}(X,Y)|XY| \geqslant |X|^2|Y|^2. \tag{12}$$

The remaining two lemmas together form the basis for the proof of Theorem 1. Lemma 15 is a slight generalisation of [7, Lemma 3].

Lemma 14. Let $X,Y \subset \mathbb{F}_q$, with $|Y| \leq |X|$. There exists a set $D \subseteq Y/X$ and an integer $N \leq |Y|$ such that $E_{\times}(X,Y) \ll (\log |X|)|D|N^2$ and |D|N < |X||Y|. Also, for $\xi \in D$ we have $r_{Y:X}(\xi) \approx N$. Namely, the set of points

$$P = \{(x, y) \in X \times Y : y/x \in D\}$$

is supported on |D| lines through the origin, with each line containing $\Theta(N)$ points of P. Proof. For $j \ge 0$, let $L_j = \{\xi \in Y/X : 2^j \le r_{Y:X}(\xi) < 2^{j+1}\}$. Then, by (11), we have

$$\sum_{j=0}^{\lfloor \log_2 |X| \rfloor} \sum_{\xi \in L_j} r_{Y:X}^2(\xi) = E_{\times}(X,Y).$$

By the pigeonhole principle there exists some $N \ge 1$ such that, letting $D = \{\xi \in Y/X : N \le r_{Y:X}(\xi) < 2N\}$, we have

$$\frac{E_{\times}(X,Y)}{\log|X|} \ll \sum_{\xi \in D} r_{Y:X}^2(\xi) \ll |D|N^2.$$

Furthermore, by (10), we have

$$|D|N < \sum_{\xi \in D} r_{Y:X}(\xi) \leqslant |X||Y|.$$

Lemma 15. Let $X, Y \subset \mathbb{F}_q$. Suppose $P \subset X \times Y$ is a set of points supported on L lines through the origin, with each line containing $\Theta(N)$ points of P, so that $|P| \approx LN$. For $x_* \in X$ and $y_* \in Y$, we write $Y_{x_*} = \{y \in Y : (x_*, y) \in P\}$ and $X_{y_*} = \{x \in X : (x, y_*) \in P\}$. There exists a popular abscissa x_0 and a popular ordinate y_0 , so that

$$|Y_{x_0}| \gg \frac{LN}{|X|}, \quad |X_{y_0}| \gg \frac{LN}{|Y|}.$$

For $\xi \in \mathbb{F}_q$, we write $P_{\xi} = \{x : (x, \xi x) \in P\}$. There exists a subset $\widetilde{Y}_{x_0} \subseteq Y_{x_0}$ with

$$|\widetilde{Y}_{x_0}| \gg \frac{L^2 N^2}{|X|^2 |Y|},$$
 (13)

such that for every $z \in \widetilde{Y}_{x_0}$, we have

$$|P_{z/x_0} \cap X_{y_0}| \gg \frac{L^2 N^3}{|X|^2 |Y|^2}.$$
 (14)

Proof. Observing that

$$\sum_{y \in Y} |X_y| = |P| \approx LN,$$

by Lemma 13, there exists a subset $Y' \subseteq Y$ such that, for all $y \in Y'$, we have $|X_y| \gg LN/|Y|$. Let $P' = \{(x,y) \in P : y \in Y'\}$ so that $|P'| \gg LN$. Then

$$\sum_{x \in X} |Y_x \cap Y'| = \sum_{y \in Y'} |X_y| = |P'| \gg LN.$$

By Lemma 13, there exists a subset $X' \subseteq X$ such that for all $x \in X'$ we have

$$|Y_x \cap Y'| \gg \frac{LN}{|X|}.\tag{15}$$

Letting $P^{"} = \{(x, y) \in P' : x \in X'\}$, we have $|P^{"}| \gg LN$.

Let $D = \{y/x : (x,y) \in P''\}$ and let $D' \subseteq D$ denote the set of elements ξ such that the lines l_{ξ} , determined by ξ , each contain $\Omega(N)$ points of P''. It follows by Lemma 13 that $|D'| \gg L$. Now, we proceed to establish a lower bound on the sum

$$\Sigma = \sum_{(x,y)\in X'\times Y'} \sum_{z\in Y_x} |P_{z/x} \cap X_y|. \tag{16}$$

We write $z \sim x$, if (x, z) is a point of P. Then

$$\Sigma \gg \sum_{\substack{(x,y) \in X' \times Y' \\ z: z \sim x}} |P_{z/x} \cap X_y|$$
$$\gg N \sum_{\xi \in D'} \sum_{y \in Y'} |P''_{\xi} \cap X_y|.$$

For a fixed $\xi \in D'$, the inner sum may be bounded by the observation that

$$\sum_{y \in Y'} |P''_{\xi} \cap X_y| = \sum_{x \in P''_{\xi}} |Y_x \cap Y'|.$$

Recall that $|D'| \gg L$ and that for $\xi \in D'$, we have $|P''_{\xi}| \gg N$. Then, by (15), we have

$$\Sigma \gg N \cdot L \cdot N \cdot \frac{LN}{|X|}.$$

By the pigeonhole principle, applied to (16), there exist $(x_0, y_0) \in X' \times Y'$ such that

$$\sum_{z \in Y_{x_0}} |P_{z/x_0} \cap X_{y_0}| \gg \frac{L^2 N^3}{|X|^2 |Y|}.$$

By our assumption, that every line through the origin contains O(N) points of P, it follows that for all $z \in Y$, we have $|P_{z/x_0}| \ll N$. Then, letting $\widetilde{Y}_{x_0} \subseteq Y_{x_0}$ to denote the set of $z \in Y_{x_0}$ with the property that

$$|P_{z/x_0} \cap X_{y_0}| \gg \frac{L^2 N^3}{|X|^2 |Y|^2},$$

by Lemma 13, we have

$$|\widetilde{Y}_{x_0}| \gg \frac{L^2 N^2}{|X|^2 |Y|}.$$

3 Proof of Theorem 1

It suffices to prove the required result for $\alpha=1$. Then the general statement immediately follows since under condition (6) the set A can be replaced by any of its dilates cA, for $c\in\mathbb{F}_q^*$. Without loss of generality assume $0\not\in A$. By Lemma 12, combined with (9), there exists a subset $A'\subseteq A$, with $|A'|\approx |A|$, such that

$$|A' - A'| \ll \frac{|A(A+1)|^8}{|A|^7}.$$

By Lemma 10 there exists a further subset $A'' \subseteq A'$, with $|A''| \approx |A'|$, such that

$$|A'' - A'' - A'' - A''| \ll \frac{|A' - A'|^3}{|A|^2}.$$

Since $|A''| \approx |A|$, we reset the notation A'' back to A and henceforth assume the inequalities

$$|A - A| \ll \frac{|A(A+1)|^8}{|A|^7},$$
 (17)

$$|A - A - A - A| \ll \frac{|A(A+1)|^{24}}{|A|^{23}}.$$
 (18)

We apply Lemma 14 to identify a set $D \subseteq A/(A+1)$ and an integer $N \geqslant 1$ such that for $\xi \in D$ we have $r_{A:(A+1)}(\xi) \approx N$. Additionally, letting L = |D|, in view of (12), we have

$$M := LN^2 \gg \frac{E_{\times}(A+1,A)}{\log|A|} \geqslant \frac{|A|^4}{|A(A+1)|\log|A|}.$$
 (19)

We define $P \subseteq (A+1) \times A$ by

$$P = \{(x, y) \in (A + 1) \times A : y/x \in D\}.$$

Then $|P| \approx LN$. Now, since $LN < |A|^2$ and N < |A|, we get

$$N, L > \frac{M}{|A|^2}. (20)$$

For $\xi \in D$, we define the projection onto the x-axis of the line with slope ξ as

$$P_{\xi} = \{x : (x, \xi x) \in P\} \subset A + 1.$$

Similarly for $\lambda \in D^{-1}$ let

$$Q_{\lambda} = \{ y : (\lambda y, y) \in P \} \subset A.$$

Then for $\xi \in D$ and $\lambda \in D^{-1}$, we have

$$|P_{\varepsilon}|, |Q_{\lambda}| \approx N, \quad \xi P_{\varepsilon} \subset A \quad \text{and} \quad \lambda Q_{\lambda} \subset A + 1.$$
 (21)

By Lemma 15, with X = A + 1 and Y = A, there exists a pair of elements $(x_0, y_0) \in (A + 1) \times A$ such that the sets $A_{x_0} \subseteq A$ and $B_{y_0} \subseteq A + 1$ satisfy

$$|A_{x_0}|, |B_{y_0}| \gg \frac{LN}{|A|}, \quad x_0^{-1} A_{x_0} \subset D \quad \text{and} \quad y_0^{-1} B_{y_0} \subset D^{-1}.$$
 (22)

Moreover, there exists a further subset $\tilde{A}_{x_0} \subseteq A_{x_0}$, with

$$|\tilde{A}_{x_0}| \gg \frac{LM}{|A|^3},\tag{23}$$

such that for all $z \in \tilde{A}_{x_0}$, letting $S_z = P_{z/x_0} \cap B_{y_0}$, we have

$$|S_z| \gg \frac{LMN}{|A|^4}. (24)$$

We require the following corollary of Lemma 11 throughout the remainder of the proof.

Claim 16. For $n \leq 4$ let a_1, \ldots, a_n denote arbitrary elements of \tilde{A}_{x_0} . Given any set $C \subset A+1$, there exists a subset $C' \subset C$, with $|C'| \approx |C|$, such that the sets a_iC' can each be covered by

$$O\left(\frac{|A(A+1)|^4}{|C||A|N^2}\right) \tag{25}$$

translates of $\pm x_0 A$.

Suppose $b_1, \ldots, b_4 \in B_{y_0}$. Let

$$\Gamma := \frac{|A|^2 |A(A+1)|^4}{M^2}.$$
 (26)

There exists a subset $A' \subseteq \tilde{A}_{x_0}$, with $|A'| \approx |\tilde{A}_{x_0}|$, such that for $1 \leqslant i \leqslant 4$ the sets $b_i A'$ can each be covered by $O(\Gamma)$ translates of $\pm y_0 A$.

Proof. We apply Lemma 11, with $X = a_i C$, $Y = a_i P_{a_i/x_0}$, Z = A, $x = a_i$, $y = a_i$ and $0 < \epsilon < 1/16$. Then there exist sets $C_{a_i} \subseteq C$ with $|C_{a_i}| \geqslant (1 - \epsilon)|C|$ such that each of $a_i C_{a_i}$ can be covered by

$$O_{\epsilon}\left(\frac{|A(A+1)|^2|A/A|}{|C||a_iP_{a_i/x_0}|^2}\right)$$

translates of $a_i P_{a_i/x_0} \subset x_0 A$ and by at most as many translates of $-x_0 A$. Let $C' = C_{a_1} \cap \cdots \cap C_{a_n}$, so that $|C'| \ge (1 - n\epsilon)|C| \ge (3/4)|C|$. Then, by (9) and (21), it follows that (25) denotes the number of translates of $\pm x_0 A$ required to cover the sets $a_i C'$ for $1 \le i \le n$.

Next, we apply Lemma 11, with $X = b_i \tilde{A}_{x_0}$, $Y = b_i Q_{b_i/y_0}$, Z = A, $x = b_i$ and y = 0. Recalling (21), (22), (23) and proceeding similarly as above, we can identify a subset $A' \subseteq \tilde{A}_{x_0}$, with $|A'| \approx |\tilde{A}_{x_0}|$, such that the sets $b_i A'$ are each fully contained in $O(\Gamma)$ translates of $\pm y_0 A$.

We split the proof into four cases based on the nature of the quotient set $R(\tilde{A}_{x_0})$.

Case 1: $R(\tilde{A}_{x_0}) \neq R(B_{y_0})$.

Case 1.1: There exist elements $a, b, c, d \in \tilde{A}_{x_0}$ such that

$$r = \frac{a-b}{c-d} \in R(\tilde{A}_{x_0}) \setminus R(B_{y_0}).$$

By Lemma 3, for any subset $Y \subseteq B_{y_0}$ with $|Y| \approx |B_{y_0}|$, we have

$$|B_{y_0}|^2 \approx |Y|^2 = |Y - rY| \leqslant |aY - bY - cY + dY|. \tag{27}$$

By Claim 16 and (22), there exists a subset $B' \subseteq B_{y_0}$, with $|B'| \approx |B_{y_0}|$, such that dB' is contained in

$$O\left(\frac{|A(A+1)|^4}{LN^3}\right)$$

translates of $-x_0A$ and aB', bB', cB' are contained in at most the same number of translates of x_0A . Thus, setting Y = B', by (27), we have

$$\left(\frac{LN}{|A|}\right)^2 \ll |A-A-A-A| \left(\frac{|A(A+1)|^4}{LN^3}\right)^4.$$

Then, by (18), we get

$$M^6 N^2 |A|^{21} \ll |A(A+1)|^{40}$$
.

By (19) and (20), we conclude the inequality

$$|A(A+1)|^{48} \gg (\log |A|)^{-8} |A|^{49}$$
.

Case 1.2: There exist elements $a, b, c, d \in B_{y_0}$ such that

$$r = \frac{a-b}{c-d} \in R(B_{y_0}) \setminus R(\tilde{A}_{x_0}).$$

Then for any subset $Y \subseteq \tilde{A}_{x_0}$ with $|Y| \approx |\tilde{A}_{x_0}|$, by Lemma 3, we have

$$|\tilde{A}_{x_0}|^2 \approx |Y|^2 = |Y - rY| \le |aY - bY - cY + dY|.$$
 (28)

By the second part of Claim 16, there exists a subset $A' \subset \tilde{A}_{x_0}$, with $|A'| \approx |\tilde{A}_{x_0}|$, such that the sets aA', bA' and cA' are each fully contained in $O(\Gamma)$ translates of y_0A and dA' can be covered by $O(\Gamma)$ translates of $-y_0A$. Thus, setting Y = A', by (28), we have

$$\left(\frac{LM}{|A|^3}\right)^2 \ll |A-A-A-A| \left(\frac{|A|^2 |A(A+1)|^4}{M^2}\right)^4.$$

Applying (18) yields

$$M^{10}L^2|A|^9 \ll |A(A+1)|^{40}$$

Hence, by (19) and (20), we get

$$|A(A+1)|^{52} \gg (\log |A|)^{-12} |A|^{53}$$
.

Case 2: $1 + R(\tilde{A}_{x_0}) \nsubseteq R(\tilde{A}_{x_0})$. There exist elements $a, b, c, d \in \tilde{A}_{x_0}$ such that

$$r = 1 + \frac{a-b}{c-d} \notin R(\tilde{A}_{x_0}) = R(B_{y_0}).$$

Let $Y_1 \subseteq B_{y_0}$ and $Y_2 \subseteq S_a$ be any sets with $|Y_1| \approx |B_{y_0}|$ and $|Y_2| \approx |S_a|$. By Lemma 10, with $X = (c - d)Y_1$, there exists a subset $Y_1' \subseteq Y_1$, with $|Y_1'| \approx |Y_1|$, such that

$$|Y_{1}^{'} - rY_{2}| \leq |(c - d)Y_{1}^{'} - (c - d)Y_{2} - (a - b)Y_{2}|$$

$$\leq \frac{|Y_{1} - Y_{2}|}{|Y_{1}|} |(c - d)Y_{1} - (a - b)Y_{2}|.$$
(29)

Recall that $Y_1' \subseteq B_{y_0}$ and $Y_2 \subseteq S_a \subseteq B_{y_0}$. Then Lemma 3 gives

$$|Y_1'||Y_2| = |Y_1' - rY_2|.$$

Thus, by (29) we have

$$|Y_1'||Y_1||Y_2| \ll |Y_1 - Y_2||cY_1 - dY_1 - aY_2 + bY_2|.$$
(30)

Since $Y_1, Y_2 \subseteq B_{y_0} \subseteq A + 1$, we have

$$|Y_1 - Y_2| \leqslant |A - A|.$$

Recall that $|Y_1'| \approx |Y_1| \approx |B_{y_0}|$ and $|Y_2| \approx |S_a|$. Then by (22), (24) and noting that $aY_2 \subseteq x_0 A$, we have

$$\left(\frac{LN}{|A|}\right)^2 \left(\frac{LMN}{|A|^4}\right) \ll |A - A||cY_1 - dY_1 - x_0 A + bY_2|. \tag{31}$$

Now, by Claim 16, there exist positively proportioned subsets $B'_{y_0} \subseteq B_{y_0}$ and $S'_a \subseteq S_a$ such that cB'_{y_0} and dB'_{y_0} can be covered by

$$O\left(\frac{|A(A+1)|^4}{LN^3}\right)$$

translates of x_0A and bS'_a can be covered by

$$O\left(\frac{|A|^3|A(A+1)|^4}{LMN^3}\right)$$

translates of $-x_0A$. Thus, setting $Y_1 = B'_{y_0}$ and $Y_2 = S'_a$, by (31) it follows that

$$\left(\frac{LN}{|A|}\right)^2 \left(\frac{LMN}{|A|^4}\right) \ll |A-A||A-A-A-A| \left(\frac{|A|^3 |A(A+1)|^4}{LMN^3}\right) \left(\frac{|A(A+1)|^4}{LN^3}\right)^2.$$

Using (17) and (18), this is further reduced to

$$M^8|A|^{21} \ll |A(A+1)|^{44}$$

Thus, by (19), we get

$$|A(A+1)|^{52} \gg (\log |A|)^{-8} |A|^{53}$$

Case 3: $x_0^{-1}\tilde{A}_{x_0} \cdot R(\tilde{A}_{x_0}) \nsubseteq R(\tilde{A}_{x_0})$. There exist elements $a, b, c, d, e \in \tilde{A}_{x_0}$ such that

$$r = \frac{a}{x_0} \frac{b - c}{d - e} \not\in R(\tilde{A}_{x_0}) = R(B_{y_0}).$$

Given any set $Y_1 \subseteq B_{y_0}$, recalling that $S_a \subseteq B_{y_0}$, it follows from Lemma 3 that

$$|Y_1||S_a| = |Y_1 - rS_a|.$$

For an arbitrary set Y_2 , we apply Lemma 9, with $X = \frac{b-c}{d-e}Y_2$, to get

$$|Y_2||Y_1||S_a| = |Y_2||Y_1 - rS_a|$$

$$\leq \left| Y_1 + \frac{b - c}{d - e} Y_2 \right| \left| Y_2 - \frac{a}{x_0} S_a \right|$$

$$\leq |dY_1 - eY_1 + bY_2 - cY_2||Y_2 - A|.$$

By Claim 16, we can identify sets $C_1 \subseteq S_d$ and $C_2 \subseteq P_{c/x_0}$ with $|C_1| \approx |S_d|$ and $|C_2| \approx |P_{c/x_0}| \approx N$, such that eC_1 is covered by

$$O\left(\frac{|A|^3|A(A+1)|^4}{LMN^3}\right)$$

translates of x_0A and bC_2 is covered by

$$O\left(\frac{|A(A+1)|^4}{|A|N^3}\right)$$

translates of $-x_0A$. We set $Y_1 = C_1$ and $Y_2 = C_2$. Then, by (21), (24) and particularly noting that dY_1 , $cY_2 \subset x_0A$ and $Y_2 \subset A + 1$, we have

$$N\bigg(\frac{LMN}{|A|^4}\bigg)^2 \ll |A-A||A-A-A-A|\bigg(\frac{|A|^3|A(A+1)|^4}{LMN^3}\bigg)\bigg(\frac{|A(A+1)|^4}{|A|N^3}\bigg).$$

Using (17) and (18) we get

$$M^6 N^3 |A|^{20} \ll |A(A+1)|^{40}$$

By (19) and (20), we conclude

$$|A(A+1)|^{49} \gg (\log |A|)^{-9} |A|^{50}$$
.

Case 4: Suppose that Cases 1-3 do not happen. Observing that $R(x_0^{-1}\tilde{A}_{x_0}) = R(\tilde{A}_{x_0})$, by Lemma 5 we deduce that $R(\tilde{A}_{x_0})$ is the field generated by $x_0^{-1}\tilde{A}_{x_0}$. Then according to the assumptions of Theorem 1, we consider the following three cases.

Case 4.1: $R(\tilde{A}_{x_0}) = \mathbb{F}_q$ and $|\tilde{A}_{x_0}| > q^{1/2}$. Let Y denote an arbitrary subset of \tilde{A}_{x_0} with $|Y| \approx |\tilde{A}_{x_0}|$. By Lemma 7, there exists an element $\xi \in \mathbb{F}_q^*$ such that $q \ll |Y + \xi Y|$. Since $R(B_{y_0}) = R(\tilde{A}_{x_0}) = \mathbb{F}_q$, there exist elements $a, b, c, d \in B_{y_0}$, such that

$$q \ll |aY - bY + cY - dY|.$$

By Claim 16, we can identify a positively proportioned subset $A' \subset \tilde{A}_{x_0}$, such that aA', bA' and dA' can be covered by $O(\Gamma)$ translates of y_0A and cA' can be covered by $O(\Gamma)$ translates of $-y_0A$. Thus, setting Y = A', we have

$$q \ll |A - A - A - A| \left(\frac{|A|^2 |A(A+1)|^4}{M^2}\right)^4$$
.

By (18), we get

$$M^8|A|^{15}q \ll |A(A+1)|^{40}$$
.

By (19), this gives the bound

$$|A(A+1)|^{48} \gg q(\log|A|)^{-8}|A|^{47}$$
.

We point out that if $|\tilde{A}_{x_0}| > q^{1/2}$ then one only needs to consider Cases 1.1 and 4.1, since by Lemma 4 we have $R(\tilde{A}_{x_0}) = \mathbb{F}_q$.

Case 4.2: Either $R(\tilde{A}_{x_0}) = \mathbb{F}_q$ and $|\tilde{A}_{x_0}| \leqslant q^{1/2}$ or $R(\tilde{A}_{x_0})$ is a proper subfield and $|A \cap cR(\tilde{A}_{x_0})| \ll |R(\tilde{A}_{x_0})|^{1/2}$ for all $c \in \mathbb{F}_q$. Since $R(\tilde{A}_{x_0})$ is the field generated by $x_0^{-1}\tilde{A}_{x_0}$, we have $\tilde{A}_{x_0} \subseteq x_0 R(\tilde{A}_{x_0})$. Hence

$$|\tilde{A}_{x_0}|^2 = |\tilde{A}_{x_0} \cap x_0 R(\tilde{A}_{x_0})|^2 \leqslant |A \cap x_0 R(\tilde{A}_{x_0})|^2 \ll |R(\tilde{A}_{x_0})|.$$

Now, recalling that $R(\tilde{A}_{x_0}) = R(B_{y_0})$, by Lemma 6, there exist elements $a, b, c, d \in B_{y_0}$ such that for any subset $Y \subseteq \tilde{A}_{x_0}$ with $|Y| \approx |\tilde{A}_{x_0}|$, we have

$$|Y|^2 \ll |aY - bY + cY - dY|. \tag{32}$$

By Claim 16, there exists a subset $A' \subseteq \tilde{A}_{x_0}$, with $|A'| \approx |\tilde{A}_{x_0}|$, such that cA' can be covered by $O(\Gamma)$ translates of $-y_0A$ and aA', bA', dA' can be covered by $O(\Gamma)$ translates of y_0A . We set Y = A' so that, by (32), we obtain

$$\left(\frac{LM}{|A|^3}\right)^2 \ll |A-A-A-A| \left(\frac{|A|^2 |A(A+1)|^4}{M^2}\right)^4.$$

Applying (18) gives

$$M^{10}L^2|A|^9 \ll |A(A+1)|^{40}$$

Then, by (19) and (20), we have

$$|A(A+1)|^{52} \gg (\log |A|)^{-12} |A|^{53}$$
.

Case 4.3: $R(\tilde{A}_{x_0})$ is a proper subfield and $|A \cap x_0 R(\tilde{A}_{x_0})| \ll |A|^{25/26}$. Recall that $\tilde{A}_{x_0} \subset x_0 R(\tilde{A}_{x_0})$. Then, by (23) and (20), we get

$$\frac{M^2}{|A|^5} \ll |\tilde{A}_{x_0}| \ll |A|^{25/26}.$$

Using (19), we recover the bound

$$|A(A+1)|^{52} \gg (\log |A|)^{-52} |A|^{53}$$
.

4 Proof of Corollary 2

Let $\alpha \in \mathbb{F}_q^*$ and denote $S = A \cap (A - \alpha)$. Observing that $S, S + \alpha \subset A$, we deduce $|S(S+\alpha)| \leq |AA|$. Then, estimate (8) follows by applying Theorem 1 to the set S. Now, since $S \subset A$, if A satisfies restriction (7), then S can fail to satisfy restriction (6) only if $|S| \ll |AA|^{52/53}$, which in fact gives the required estimate. This concludes the proof of estimate (8).

Next, noting that

$$|A \cap (A - \alpha)| = |\{(a_1, a_2) \in A^2 : a_1 - a_2 = \alpha\}|,$$

similarly to (10) and (11), we have the identities

$$|A|^2 = \sum_{\alpha \in A-A} |A \cap (A-\alpha)|$$
 and $E_+(A) = \sum_{\alpha \in A-A} |A \cap (A-\alpha)|^2$.

In particular, it follows that

$$E_{+}(A) \ll |A|^{2} \cdot \max_{\alpha \in \mathbb{F}_{q}^{*}} |A \cap (A - \alpha)|.$$

Thus the required bound on $E_{+}(A)$ follows from (8).

Acknowledgements

The author would like to thank Igor Shparlinski for helpful conversations. The author also gratefully acknowledges the financial support provided by IPM during the preparation of this paper.

References

- [1] J. Bourgain and A. Glibichuk. Exponential sum estimates over a subgroup in an arbitrary finite field. *J. Anal. Math.*, 115(1):51–70, 2011.
- [2] M. Z. Garaev and C.-Y. Shen. On the size of the set A(A+1). Mathematische Zeitschrift, 265(1):125–132, 2010.
- [3] T. G. F. Jones. Explicit incidence bounds over general finite fields. *Acta Arith.*, 150(3):241–262, 2011.
- [4] T. G. F. Jones and O. Roche-Newton. Improved bounds on the set A(A+1). J. Combin. Theory, Ser. A., 120(3):515–526, 2013.
- [5] N. H. Katz and C.-Y. Shen. A slight improvement to Garaev's sum product estimate. *Proc. Amer. Math. Soc.*, 136(7):2499–2504, 2008.
- [6] L. Li and O. Roche-Newton. An improved sum-product estimate for general finite fields. SIAM J. Discrete Math., 25(3):1285–1296, 2011.
- [7] M. Rudnev. An improved sum-product inequality in fields of prime order. *Int. Math. Res. Not. IMRN*, 16:3693–3705, 2012.
- [8] M. Rudnev. On the number of incidences between planes and points in three dimensions. *Combinatorica*, 38(1):219–254, 2018.
- [9] S. Stevens and F. de Zeeuw. An improved point-line incidence bound over arbitrary fields. *Bull. London Math. Soc.*, 49(5):842–858, 2017.
- [10] T. Tao and V. Vu. Additive combinatorics. Cambridge Univ. Press, 2006.
- [11] A. Warren. On products of shifts in arbitrary fields. *Mosc. J. Comb. Number Theory*, 8(3):247–261, 2019.
- [12] D. Zhelezov. On additive shifts of multiplicative almost-subgroups in finite fields. arXiv:1507.05548 (to appear in Proc. Amer. Math. Soc.).