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Abstract

Let G be a bridgeless multigraph with m edges and n2 vertices of degree two and
let cc(G) be the length of its shortest cycle cover. It is known that if cc(G) < 1.4m in
bridgeless graphs with n2 6 m/10, then the Cycle Double Cover Conjecture holds.
Fan (2017) proved that if n2 = 0, then cc(G) < 1.6258m and cc(G) < 1.6148m
provided that G is loopless; morever, if n2 6 m/30, then cc(G) < 1.6467m. We
show that for a bridgeless multigraph with m edges and n2 vertices of degree two,
cc(G) < 1.6148m+ 0.0741n2. Therefore, if n2 = 0, then cc(G) < 1.6148m even if G
has loops; if n2 6 m/30, then cc(G) < 1.6173m; and if n2 6 m/10, then cc(G) <
1.6223|E(G)|. Our improvement is obtained by randomizing Fan’s construction.
Mathematics Subject Classifications: 05C38, 05C70

1 Introduction

A cycle is a graph with all vertices of even degree and a circuit is an inclusion-wise
minimal nonempty cycle. The length of a cycle/circuit C is the number of its edges. A
collection of cycles of a graph G covers G if each edge of G is contained in at least one
of the cycles. Such a collection is called a cycle cover. The length of a cycle cover is the
sum of lengths of its cycles. By cc(G) we denote the length of the shortest cycle cover of
G. Note that a graph has a cycle cover if and only if it is bridgeless.

Graphs in this paper may have loops and parallel edges. Let G be a bridgeless
graph with m edges and n2 vertices of degree 2. The best known general upper bound,
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cc(G) 6 5m/3, was independently established by Alon and Tarsi [1] and Bermond, Jack-
son and Jaeger [2] more than 35 years ago. On the other hand the Shortest Cycle Cover
Conjecture [1, 11] asserts that cc(G) 6 1.4m and is tight for infinitely many graphs. This
conjecture is surprisingly strong as it implies the well-known Cycle Double Cover Con-
jecture [9]. This remains true even if we restrict the Shortest Cycle Cover Conjecture to
subcubic graphs with at most m/10 vertices of degree 2.

Due to the lack of progress in the general case, much attention has been paid to special
classes of graphs. Among the most general classes considered are bridgeless graphs with
minimal degree 3: Kaiser et al. [10] proved that cc(G) < 1.6296m for loopless graphs which
in turn Fan [6] improved to cc(G) < 1.6148m in the loopless case and to cc(G) < 1.6257m
if G is allowed to have loops. Results for graphs with loops can be easily transformed to
results for graphs where a small number of vertices of degree 2 is allowed—we may just
add loops to the vertices of degree 2. In this way Fan [6] proved that if n2 6 m/30, then
cc(G) < 1.6467m . However, if we only know that n2 6 m/10, then the general upper
bound beats the bound obtained by Fan.

We improve Fan’s result by proving following theorem.

Theorem 1. Let G be a bridgeless graph (loops allowed) with m edges and n2 vertices of
degree 2. Then cc(G) < 1.6148m+ 0.0741n2.

Therefore, if n2 = 0, then cc(G) < 1.6148m even if G has loops; if n2 6 m/30, then
cc(G) < 1.6173m; and if n2 6 m/10, then cc(G) < 1.6223m. Theorem 1 gives better
results than the general bound whenever n2 6 0.7000m, which is always the case when
n2 6 0.7777|V (G)|.

The proof of Theorem 1 essentially follows Fan’s proof. However, on several places
where a choice is made, instead of an arbitrary selection we make a random one (from a
defined distribution). Then we analyze the expected length of the resulting cycle cover.
As many parts of the proof are identical with Fan’s proof, we keep the proofs short. We
refer the reader to [6] for further details.

2 The proof

We prove the following theorem which implies Theorem 1 (it suffices to add one loop to
each vertex of degree two). The degree of a vertex equals the number of incident non-loop
edges plus twice the number of incident loops.

Theorem 2. Let G be a bridgeless graph of minimum degree 3 which contains m non-loop
edges and s loops. Then cc(G) < 218/135 ·m+ 29/27 · s.

A graph is called 5-odd-edge-connected if it includes no odd edge-cuts of order smaller
than 5. A proper spanning cycle of a graph G is a spanning cycle F of G such that each
component has an edge, each component with a loop has only one edge (the loop), and
G/F is 5-odd-edge-connected.
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Lemma 3. Let G be a bridgeless graph on at least two vertices with minimum degree 3 such
that every loop is incident with a vertex of degree 4. There exists a probability distribution
over proper spanning cycles F of G such that for every edge e we have P (e ∈ F ) = 2/3 if
it is a non-loop and P (e ∈ F ) = 1/3 if it is a loop.

Proof. For each vertex v of G which is not of degree 3 we sequentially replace v without
affecting other incidences as follows. Let us denote Gs the graph before the operation
and Ge the graph after the operation. If v is incident with a loop (and thus v is incident
with exactly two other edges), we replace v and the loop with a 2-circuit, so that both
vertices of the 2-circuit have degree 3 (Figure 1a). Thus if we contract an edge of the
new 2-circuit in Ge into a single vertex v, then we get Gs. Otherwise, we replace v by a
tree in such a way that the new vertices have degree 3 and Ge is bridgeless (Figure 1b).
Thus if we contract the tree in Ge into a vertex v we obtain Gs. We can always perform
this operation without introducing a bridge due to the Splitting Lemma (Lemma III.26
in [7]). After performing this operation for all vertices we get a bridgeless cubic graph.
We denote it Gc.
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Figure 1: Transformation of vertices which are not of degree 3.

The characterization of the perfect matching polytope by Edmonds [5] implies (see
Lemma 10 in [4]) that for each bridgeless cubic graph there exists a probability distribution
over the set of its 2-factors of such that each edge is present in a random 2-factor with
probability 2/3. Let Dc be such distribution for Gc. Consider a 2-factor Fc which appears
in Dc with non-zero probability. Note that Gc/Fc is 5-odd-edge-connected. Indeed, let
X be a 3-cut of Gc. By parity, |X ∩ Fc| ∈ {0, 2}. As each edge is present in Fc with
probability 2/3, the linearity of expectation implies that E(|X ∩ Fc|) = 2, and therefore
P (|X ∩ Fc| = 0) = 0.

Pick at random a 2-factor Fc of Gc from Dc. Let us contract all trees which we have
introduced in the beginning the proof. For each introduced 2-cycle we contract one of its
edges. If one of the edges is in Fc and the other is not, we contract the edge from Fc.
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In this way we, again, obtain G and denote the subgraph obtained from Fc by F . The
subgraph F obtained by this procedure defines a probability distribution D of subgraphs
of G. We show that this distribution satisfies the lemma statement.

As Gc/Fc is 5-odd-edge-connected, so is G/F . Similarly, as we contract a forest, a
spanning cycle where each component has an edge remains a spanning cycle where each
component has an edge. Finally, due to the choice made while contracting the introduced
2-cycles all loops of F are isolated components. Thus F is a proper spanning cycle.

Each non-loop edge appears in F with exactly the same probability as it appears in
Fc, which is 2/3. A loop incident with a vertex v appears in F if and only if a non-loop
edge incident with v (chosen arbitrarily) does not appear in F (and thus neither in Fc).
This occurs with probability 1/3.

A Z2×Z2-flow on a graph G is a function f : E(G)→ Z2×Z2 such that for every vertex
the sum of the values of its incident edges is 0. Compared to the standard definition of flow,
Z2×Z2 contains only involutions, thus we omit the orientation. For convenience, we denote
the elements of Z2 × Z2 as R, G

¯
, B, and 0. We define f−1(X,H) = {e ∈ H | f(e) ∈ X},

where X ⊆ Z2 × Z2 and H is either a subgraph or a set of edges of G. A flow f on G is
called nowhere-zero if f−1({0}, G) = ∅.

Consider a bridgeless graph of minimal degree 3. Fix a proper spanning cycle F of G.
Let di be the number of components of F of size i. For simplicity, in the rest of the text,
by |H|, where H is a graph, we mean |E(H)|, and in X − Y and X ∩ Y , if X and/or Y
is a graph, then we take E(X) and/or E(Y ) as the operand in the operation.

As G/F is 5-odd-edge-connected, there exists a nowhere-zero (Z2 × Z2)-flow on G/F
[8]. We use the following Fan’s lemma to modify the flow.

Lemma 4. [6, Lemma 2.2, Theorem 3.3] Let G be a graph, let f be a (Z2 × Z2)-flow on
G and let C be a cycle of G. Then there exists a flow g such that

• |f−1(0, G− C)| = |g−1(0, G− C)|

• |g−1(0, C)| 6 |C|/4 and if |C| < 20, then this inequality is strict.

By sequentialy applying this lemma to each component of F we get a flow f0 such that
for each component C of F , f−10 ({0}, C) 6 |C|/4 and if |C| < 20, then this inequality
is strict. We permute the elements R, G

¯
, B in f0 using a random permutation (picked

uniformly from the six choices) and call the resulting flow f . Let S be the set of loops of
G.

Claim 5. The graph G has a cycle cover of length at most

2|G− F − S|+ |S − F |+ |F |+
∞∑
i=2

2

⌊
i

4

⌋
di −

∑
i∈{4,8,12,16}

2di.

Proof. We define a cycle cover based on f consisting of three cycles C1, C2, and C3 as
follows:

E(C1) = f−1({R,G
¯
}, G− F − S) ∪ f−1({0,B}, F ) ∪ (S − F ),
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E(C2) = f−1({R,B}, G− F − S) ∪ f−1({0,G
¯
}, F ),

E(C3) = f−1({G
¯
,B}, G− F − S) ∪ f−1({0,R}, F );

Given a (Z2 × Z2)-flow two distinct nonzero elements induce a cycle. Note that C1 (C2,
C3) is a symetric difference of two cycles: f−1({R,G

¯
}, G − (S − F )) and F ∪ (S − F )

(f−1({R,B}, G−(S−F )) and F , f−1({G
¯
,B}, G−(S−F )) and F ) and thus C1 (C2, C3) is,

indeed, a cycle. The total length of the cover is 2·|G−F−S|+|F |+2·|f−1({0}, G)|+|S−F |.
The claim follows from the bound on |f−1({0}, C)| for each component C of F .

Claim 6. The graph G has a cycle cover of length at most

|G− F − S|+ |S − F |+ |F |+ d1 +
∞∑
i=2

(⌊
i

2

⌋
+ 3

)
di

Proof. We restrict f to G/F . The restricted flow is nowhere-zero. As long as there is a
cycle consisting of edges with flow value R or a cycle consisting of edges with flow value
G
¯
, we change the flow values on all the edges in the cycle to B; this is still a flow on

G/F . After this procedure, both edges with flow value R and edges with flow value G
¯will constitute a forest in G/F . We extend the resulting flow to a flow g on G arbitrarily.

Note that, if we add an arbitrary value from Z2 ×Z2 to the flow values of all edges in
a component of F , the resulting function is still a flow. Thus we can pick g in such a way
that |g−1({R,B}, C)| 6 |C|/2 for each component C of F and thus

|g−1({R,B}, F )| 6
∞∑
i=1

bi/2cdi (1)

We define a cycle cover based on g consisting of three cycles C1, C2, and C3 as follows:

E(C1) = g−1({R,G
¯
}, G− F − S) ∪ g−1({R,G

¯
}, F ) ∪ (S − F ),

E(C2) = g−1({R,G
¯
}, G− F − S) ∪ g−1({0,B}, F ),

E(C3) = g−1({R,B}, G− F − S) ∪ g−1({R,B}, F );

Here, C1 is a disjoint union of two cycles: g−1({R,G
¯
}, G − (S − F )) and (S − F ); C2

a symetric difference of two cycles: g−1({R,G
¯
}, G − (S − F )) and F ; and C3 is just

g−1({R,B}, G− (S − F )), which is a cycle.
Let Ex = g−1({x}, G − F − S), for x ∈ {R,G

¯
}. The length of the cover is |G − F −

S|+ 2|ER|+ |EG
¯
|+ |F |+ |g−1({R,B}, F )|+ |S − F |. Let x ∈ {R,G

¯
}. If we restrict G/F

to the edges of Ex we obtain a forest Tx. We can bound |Ex| as |V (G/F )| (which equals∑∞
i=1 di) minus the number of components of Tx. To bound the number of components of

Tx we just bound the number of isolated vertices of Tx created by contracting a loop in G.
Consider a vertex v of G/F created by contracting a loop. The two edges incident with v
have the same value under f . As the permutation of flow values was selected randomly,
the probability that the two edges do not have value x in f is 2/3. When creating the
flow g we only change flow values to B, thus the two edges do not have value x under g
with probability at least 2/3. We have E(|Ex|) 6 (

∑∞
i=1 di) − 2/3 · d1 = d1/3 +

∑∞
i=2 di.

Together with (1) the expected length of the cover is at most the expression in the claim
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statement and at least one of the six permutations leads to a cover with at most this
length.

By combining Claims 5 and 6 we obtain the following.

Claim 7. Graph G has a cycle cover of length at most
16

9
· |G− S − F |+ |S − F |+ |F |+ 2

9
· d1 +

∞∑
i=2

8

15
· idi

Proof. We pick the cover from Claim 5 with probability 7/9 and the cover from Claim 6
with probability 2/9. The expected length of the cover is then bounded by the expression
in the claim statement. For i < 20 one has to check that the inequality holds separately
for each coefficient. For i > 20 one can get the bound by ignoring the rounding. The
bound is tight for i = 5 and i = 20. Thus note that if F contains few components of
length 5 or 20 a better bound can be obtained.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. If there is a loop incident with a vertex of degree more than 4, then
we may remove it and cover it separately. Thus assume that each loop is incident with
a vertex of degree 4. Pick a proper spanning cycle F of G from the distribution from
Lemma 3. Using F we construct a cycle cover according to Claim 7. As F is a proper
spanning cycle, d1 = |F ∩S|. Also

∑∞
i=1 idi = |F |. Thus the length of the cover is at most

16

9
· |G− S − F |+ |S − F |+ 23

15
· |F | − 14

45
· |F ∩ S|.

Due to the choice of F we have E(|G − S − F |) = 1/3 · |G − S|, E(|S − F |) = 2/3 · |S|,
E(|F |) = 2/3 · |G− S|+ 1/3 · |S| and E(|F ∩ S|) = 1/3 · |S|. Thus the expected length of
the cover matches the value in the theorem statement. This implies that there exists F
from the probability distribution from Lemma 3 such that the length of the cycle cover
created using F is bounded by the expression in the theorem statement.
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