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Abstract

Let G denote a finite generalized dihedral group with identity 1 and let S denote
an inverse-closed subset of G\{1}, which generates G and for which there exists s ∈
S, such that 〈S \ {s, s−1}〉 6= G. In this paper we obtain the complete classification
of distance-regular Cayley graphs Cay(G;S) for such pairs of G and S.

Mathematics Subject Classifications: 05E18, 05E30

1 Introduction

Two of the most extensively studied phenomena in graph theory are regularity and sym-
metry properties of graphs. While it is usually quite easy to see that a certain degree of
symmetry that a graph possesses implies also certain degree of regularity (for example,
every vertex-transitive graph is also regular in a sense that every vertex has the same de-
gree), the opposite question seems to be much harder to handle. It is therefore necessary
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to restrict to a particular class of graphs when one studies the relation between the above
two concepts.

A connected finite graph is distance-regular if the cardinality of the intersection of two
spheres depends only on their radii and the distance between their centres. Even though
this condition is purely combinatorial, the notion of distance-regular graphs is closely
related to certain topics in algebra, and has motivated a development of various new
algebraic notions, as well as shed some new light on the existing ones. Distance-regular
graphs are examples of highly regular graphs. However, the problem of determining which
of them are Cayley over a group G with respect to a connection set S (see Section 2 for
the definition of a Cayley graph) still seems to be difficult to handle. In the existing
literature on this topic researchers therefore usually impose certain restrictions either on
the diameter of the studied graphs, on their valency, on their eigenvalues, or on the group
G and/or the connection set S.

Among distance-regular Cayley graphs, those of diameter 2 (also called strongly regular
Cayley graphs) have been investigated most thoroughly. Such graphs are equivalent to so-
called regular partial difference sets (see [7] for the survey of this topic), and many results
on strongly regular Cayley graphs are formulated in the language of partial difference sets.
Though many authors investigated such graphs, a complete classification still seems to
be beyond reach. In fact, not even strongly regular Cayley graphs of abelian groups have
been classified. However, cyclic groups seem to be easier to handle. Strong regularity of
circulants (that is Cayley graphs of cyclic groups) has been investigated by several authors
and a complete classification of strongly regular circulants was independently achieved by
Bridges and Mena [2], Ma [8], and partially by Marušič [9]. More recently Leifman and
Muzychuck [6] classified strongly regular Cayley graphs on Zpn × Zpn , p a prime.

While in the references cited in the above paragraph the diameter of the graph was
restricted to be 2, van Dam and Jazaeri [5] choose to restrict the valency of a distance-
regular graph. They determined all distance-regular Cayley graphs with valency 3 and 4,
and they characterized the Cayley graphs among all distance-regular graphs with valency
5 and with one of the known feasible intersection arrays. They also considered distance-
regular graphs with girth 3 and valency 6 or 7.

Regarding the restrictions on the eigenvalues, in [1] the authors classified the distance-
regular Cayley graphs with least eigenvalue −2 and diameter at most three.

As for the restrictions on the group G, distance-regular Cayley graphs over cyclic and
dihedral groups were (almost) classified in [10, 11].

In [12], the authors chose to restrict the group G as well as the connection set S.
We say that the connection set S is minimal, if it generates G, but there exists an
element s ∈ S such that S \ {s, s−1} does not generate G. In [12] the authors obtained a
complete classification of distance-regular graphs, which are Cayley over an abelian group
and the corresponding connection set S is minimal. In this paper the work from [12]
is extended by classifying distance-regular graphs, which are Cayley over a generalized
dihedral group, and for which the corresponding connection set S is minimal. Our main
result is the following theorem (see Section 2 for the definitions of the graphs appearing
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in the theorem).

Theorem 1. Let G be a generalized dihedral group of order at least 4 with identity 1 and
let S be an inverse closed subset of G \ {1} which generates G and for which there exists
s ∈ S such that 〈S \ {s, s−1}〉 6= G. Then the Cayley graph Cay(G;S) is distance-regular
if and only if it is isomorphic to one of the following graphs:

(i) The complete bipartite graph minus a 1-factor K6,6 − 6K2.

(ii) The Pappus graph.

(iii) The cycle Cn for n > 4 even.

(v) The Hamming graph H(d, n), where d > 2 and n ∈ {2, 4}.

(vi) The Doobs graph D(n,m) where n,m > 1.

(vii) The antipodal quotient of the Hamming graph H(d, 2), where d > 4.

Surprisingly enough, considerably enlarging the set of admissible groups yields only
one new distance-regular Cayley graph with respect to a minimal connection set. More
precisely, the Pappus graph is the only distance-regular Cayley graph of a generalized
dihedral group with respect to a minimal connection set, that is not also a Cayley graph
of an abelian group with respect to a minimal connection set.

Our paper is organized as follows. After some preliminaries in Section 2 we first show
that every graph from Theorem 1 is indeed a Cayley graph over a generalized dihedral
group with respect to a certain minimal connection set in Section 3. In Section 4 we
obtain a characterization of distance-regular graphs which are Cartesian products of two
non-trivial graphs. In Sections 5 and 6 we finally prove that every Cayley graph over a
generalized dihedral group with respect to a certain minimal connection set is contained
in the list of Theorem 1.

2 Preliminaries

In this section we review some definitions and basic facts about distance-regular graphs
and Cayley graphs. More background information on distance-regular graphs can be
found in [3].

Throughout this paper all graphs are assumed to be finite, undirected and without
loops or multiple edges. For a graph Γ we let V = V (Γ), E = E(Γ) and ∂Γ (or just ∂)
denote the vertex set, the edge set and the path length distance function, respectively.
The diameter max{∂(x, y)|x, y ∈ V (Γ)} of Γ will be denoted by dΓ (or just d, when the
graph Γ is clear form the context).

For a vertex x ∈ V (Γ) and an integer i we let NΓ
i (x) = {y | ∂(x, y) = i} denote the

i-th sphere centred at x. We abbreviate NΓ
i = Ni when Γ is clear from the context. We
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also abbreviate N(x) = N1(x). For a connected graph Γ and x, y ∈ V with ∂(x, y) = i we
denote

ci(x, y) = |Ni−1(x)∩N(y)|, ai(x, y) = |Ni(x)∩N(y)|, bi(x, y) = |Ni+1(x)∩N(y)|.

If ci(x, y) (ai(x, y), bi(x, y) respectively) does not depend on the choice of x, y with
∂(x, y) = i (but only depends on the distance i between x and y), then we say that
the intersection number ci (ai, bi, respectively) exists for Γ and we set ci = ci(x, y)
(ai = ai(x, y), bi = bi(x, y)), where x, y ∈ V with ∂(x, y) = i. Observe that if the inter-
section numbers a1, a2, . . . , ai all exist, then a1 = a2 = · · · = ai = 0 holds if and only if
for each j ∈ {3, 5, . . . , 2i + 1} there is no cycle of length j in Γ. Observe also that a0, c0,
c1 and bd always exist and a0 = 0, c0 = 0, c1 = 1 and bd = 0 holds. A connected graph
Γ with diameter d is said to be distance-regular whenever the intersection numbers ci, ai
and bi exist for all 0 6 i 6 d. Note that a distance-regular graph Γ is regular with valency
k = b0, and

ai + bi + ci = k (0 6 i 6 d). (1)

Note also that bi 6= 0 for 0 6 i 6 d− 1 and ci 6= 0 for 1 6 i 6 d. The array

{b0, b1, . . . , bd−1; c1, c2, . . . , cd} (2)

is called the intersection array of Γ.

For a positive integer n we denote by Kn the complete graph on n vertices, and by
Cn (n > 3) the cycle on n vertices.

For graphs Γ1 and Γ2, their Cartesian product is the graph Γ1�Γ2 with vertex-set
V (Γ1)× V (Γ2), where vertices (u1, v1), (u2, v2) ∈ V (Γ1)× V (Γ2) are adjacent if and only
if u1 = u2 and v1, v2 are adjacent in Γ2, or u1, u2 are adjacent in Γ1 and v1 = v2. It is well
known that

∂Γ1�Γ2((u1, v1), (u2, v2)) = ∂Γ1(u1, u2) + ∂Γ2(v1, v2). (3)

For positive integers d and q, the Hamming graph H(d, q) is the Cartesian product of d
copies of the complete graph Kq. Note that in the case of q = 2 (these graphs are known as
the hypercube graphs) each vertex has a unique counterpart, the so-called antipodal vertex,
at maximal distance d. Such a pair of antipodal vertices is thus a block of imprimitivity
for the automorphism group of H(d, 2). The antipodal quotient of the graph H(d, 2)
has as vertices the above mentioned blocks consisting of pairs of antipodal vertices with
two such blocks adjacent whenever there is an edge between these blocks in H(d, 2).
By [3][Proposition 4.2.2] the antipodal quotient of H(d, 2) is a distance-regular graph.
For a nonnegative integer n and a positive integer m, the Doobs graph D(n,m) is the
Cartesian product of H(n, 4) with m copies of the Shrikhande graph [13] (where in the
case of n = 0 we just take the Cartesian product of m copies of the Shrikhande graph).
The Doobs graph D(n,m) is distance-regular with the same intersection numbers as
H(n + 2m, 4) (see [3, page 262]).

For a group G and an element g ∈ G we denote the order of g by |g|. Moreover, for a
subgroup H 6 G we denote its index in G by [G : H].
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Let G denote a finite group with identity 1 and let S denote an inverse-closed subset
of G \ {1}. The Cayley graph Cay(G;S) of the group G with respect to the connection
set S is the graph with vertex-set G, in which g ∈ G is adjacent with h ∈ G if and only
if h = gs for some s ∈ S. Observe that Cay(G;S) is regular with valency k = |S| and
is connected if and only if 〈S〉 = G. We say that the connection set S is minimal with
respect to s ∈ S if G = 〈S〉 but 〈S \ {s, s−1}〉 6= G. Note also that the left regular
representation of G acts as a regular subgroup of the automorphism group of Cay(G;S).
It thus clearly follows that if H 6 G then for each g1, g2 ∈ G the subgraphs of Cay(G;S)
induced on the cosets g1H and g2H are isomorphic.

A group G is a generalized dihedral group if it has an index 2 abelian subgroup A and
an involution t ∈ G \ A such that tat = a−1 holds for all a ∈ A. In other words, G is
the semidirect product A o 〈t〉, where A is abelian and t is an involution inverting each
a ∈ A by conjugation. In this case, we denote this generalized dihedral group by GD(A).
Observe that if G = GD(A) then G = A ∪ tA. Moreover, the only abelian generalized
dihedral groups are the elementary abelian 2-groups. Therefore, GD(A) is not cyclic,
unless A is trivial.

3 The graphs from the main theorem

In this section we show that the graphs from Theorem 1 are all indeed distance-regular
Cayley graphs of generalized dihedral groups with respect to a minimal connection set.
That all of them are distance-regular follows from [3]. The following claims can be verified
easily.

The graph K6,6−6K2 can be obtained as the Cayley graph of the (generalized) dihedral
group GD(〈a〉), where |a| = 6, with respect to the connection set S = {a±1, t, ta2, ta4}.
Note that S is minimal with respect to a.

The Pappus graph can be obtained as the Cayley graph of the generalized dihedral
group GD(〈a〉×〈b〉), where |a| = |b| = 3, with respect to the connection set S = {t, ta, tb}.
The set S is minimal with respect to ta.

The cycle C2n, where n > 2, is clearly the Cayley graph of the dihedral group Dn =
GD(〈a〉), where |a| = n, with respect to S = {t, ta}.

The hypercube H(d, 2), where d > 2, is the Cayley graph of the elementary abelian
group GD(〈a1〉 × · · · × 〈ad−1〉), where |a1| = · · · = |ad−1| = 2, with respect to S =
{t, a1, . . . , ad−1}.

The Hamming graph H(d, 4), where d > 2, is the Cayley graph of the generalized
dihedral group G = GD(〈a〉 × 〈b1〉 × · · · × 〈bd−1〉), where |a| = 2 and |bi| = 4 for all 1 6
i 6 d−1, with respect to the connection set S = {t, a, ta, b±1

1 , b2
1, b
±1
2 , b2

2, . . . , b
±1
d−1, b

2
d−1}. To

see this, first note that each element of G can be uniquely represented as bi11 · · · b
id−1

d−1 a
jt`,

where i1, i2, . . . , id−1 ∈ Z4 and j, ` ∈ Z2. A corresponding isomorphism can thus be
obtained by taking each bi11 · · · b

id−1

d−1 a
jt` to the d-tuple (i1, i2, . . . , id−1, id), where id =

0, 1, 2, 3, respectively, if the pair (j, `) is (0, 0), (0, 1), (1, 1), (1, 0), respectively. The set S
is minimal with respect to bi for any 1 6 i 6 d− 1.
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The antipodal quotient of the hypercube H(d, 2), where d > 4, can be realised as
the graph with vertex set Zd−1

2 , in which two (d − 1)-tuples are adjacent whenever
they differ in exactly one position or in all positions. Therefore, this graph is the
Cayley graph of the generalized dihedral group G = GD(〈a〉 × 〈b1〉 × · · · × 〈bd−4〉),
where |a| = 4 and |bi| = 2 for all 1 6 i 6 d − 4, with respect to the connection set
S = {a±1, b1, b2, . . . , bd−4, t, ta

2b1b2 · · · bd−4}. To see this, first note that each element of G

can be uniquely represented as bi11 · · · b
id−1

d−1 a
jt`, where i1, i2, . . . , id−4, ` ∈ Z2 and j ∈ Z4.

A corresponding isomorphism can thus be obtained by taking each bi11 · · · b
id−4

d−4 a
jt` to the

(d−1)-tuple (i1, i2, . . . , id−4, j1, j2, `), where the pair (j1, j2) equal (0, 0), (0, 1), (1, 1), (1, 0),
respectively, whenever j is 0, 1, 2, 3, respectively. The set S is minimal with respect to a.

It can be verified that the Shrikhande graph is isomorphic to the Cayley graph of
the generalized dihedral group GD(〈a〉 × 〈b〉), where |a| = 2 and |b| = 4, with respect
to S = {t, ta, tb, tab3, b±1}. But this graph is also isomorphic to the Cayle graph of
the abelian group 〈c〉 × 〈d〉, where |c| = |d| = 4, with respect to the connection set
S = {c±1, d±1, (cd)±1}. Therefore, the Doobs graph D(n,m), where n,m > 1, can be
obtained as follows. Let G be the generalized dihedral group

GD(〈a〉 × 〈b〉 × 〈c1〉 × · · · × 〈cm−1〉 × 〈d1〉 × · · · × 〈dm−1〉 × 〈e1〉 × · · · × 〈en〉),

where |a| = 2 and |b| = |ci| = |di| = |ej| = 4 for all 1 6 i 6 m − 1 and 1 6 j 6 n.
Furthermore, let S = S0 ∪ S1 ∪ S2, where S0 = {t, ta, tb, tab3, b±1},

S1 = {c±1
1 , . . . , c±1

m−1, d
±1
1 , . . . , d±1

m−1, (c1d1)±1, . . . , (cm−1dm−1)±1},

and S2 = {e±1
1 , e2

1, . . . , e
±1
n , e2

n}. A corresponding isomorphism can now be obtained sim-
ilarly as in the above two cases. Moreover, the set S is minimal with respect to any ei,
1 6 i 6 n.

4 Distance-regular Cartesian products

In this short section we give a characterization of distance-regular Cartesian products of
graphs.

Proposition 2. Let Γ1 and Γ2 be nontrivial graphs with diameter d1 and d2, respec-
tively. Let Γ = Γ1�Γ2. Then Γ is distance-regular if and only if Γ1 is distance-regular
with the same intersection numbers as H(d1, q) and Γ2 is distance-regular with the same
intersection numbers as H(d2, q) for some q > 2.

Proof. If Γ1 is distance-regular with the same intersection numbers as H(d1, q) and Γ2 is
distance-regular with the same intersection numbers as H(d2, q), then the result follows
from [14]. Assume now that Γ is distance-regular. We will prove that Γ1 is distance-
regular. The proof that Γ2 is distance-regular is analogous. By (3) the diameter of Γ is
d1 + d2. Let ai, bi, ci (0 6 i 6 d1 + d2) be the intersection numbers of Γ. Pick a vertex
w ∈ V (Γ2) and note that a subgraph of Γ, induced on {(x, y) | x ∈ V (Γ1)} is isomorphic
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to Γ1. As Γ is regular, so is Γ1. Pick vertices x, y of Γ1 and let i = ∂Γ1(x, y). Note
that ∂Γ((x,w), (y, w)) is also equal to i. Let Ci(x, y) = NΓ1

i−1(x) ∩ NΓ1(y), Ai(x, y) =

NΓ1
i (x)∩NΓ1(y), Bi(x, y) = NΓ1

i+1(x)∩NΓ1(y). It follows from the definition of Cartesian
product that NΓ

i−1((x,w)) ∩NΓ((y, w)) = Ci(x, y)× {w} and NΓ
i ((x,w)) ∩NΓ((y, w)) =

Ai(x, y)× {w}. As Γ is distance-regular, we have that |Ci(x, y)| = ci and |Ai(x, y)| = ai.
Since Γ1 is regular (say of valency k1), we also have that |Bi(x, y)| = k1−ci−ai. It follows
that Γ1 is distance-regular. The result now follows from [14].

If q 6= 4, then the Hamming graph H(d, q) is uniquely characterised by its intersection
numbers. If however Γ has the same intersection array as the Hamming graph H(d, 4),
then either Γ is isomorphic to H(d, 4) or to the Doobs graph D(d−2m,m) for some m > 1
(see [3, p. 262] for details). We therefore have the following corollary of Proposition 2.

Corollary 3. Let Γ = Γ1�Γ2, where Γ1 and Γ2 are nontrivial graphs. If Γ is distance-
regular then Γ is either isomorphic to a Hamming graph H(d, q) or to a Doobs graph
D(n,m).

5 The case s ∈ A

In this and the next section we complete the proof of Theorem 1. Throughout these two
sections we will thus be working with a Cayley graph Γ = Cay(G;S) of a generalized
dihedral group G = GD(A) for some abelian group A of order at least 2 with respect to a
connection set S, such that S is minimal with respect to some s ∈ S. We distinguish two
main cases depending on whether s ∈ A or not. In this section we focus on the former
case.

Note that if S = {s, s′}, where s, s′ are involutions, then Γ is isomorphic to the cycle
of length |s′s−1| = |G|. For the rest of this section we will thus restrict ourselves to the
case that |S| > 3. For ease of reference we also fix the following notation.

Notation 4. Let G = GD(A) denote a finite generalized dihedral group with identity 1,
where A is a nontrivial abelian group. Let S denote an inverse-closed subset of G\{1} with
|S| > 3, which generates G and for which there exists s ∈ A, such that H = 〈S \ {s, s−1}〉
is a proper subgroup of G. Assume that Γ = Cay(G;S) is distance-regular with diameter
d and with intersection numbers ai, bi, ci (0 6 i 6 d). Let Γ′ = Cay(H;S \ {s, s−1}).

With reference to Notation 4, note that G is the disjoint union of the cosets siH,
where 0 6 i 6 [G : H] − 1, and that |s| is a multiple of [G : H]. Recall also that the
subgraphs of Γ, induced on siH (0 6 i 6 [G : H]−1) are isomorphic to Γ′, and that these
subgraphs are connected.

Proposition 5. With reference to Notation 4, the following (i)-(iii) hold:

(i) For every h ∈ H and for every 0 6 i 6 [G : H] − 1, the only neighbours of sih
outside siH are si−1h ∈ si−1H and si+1h ∈ si+1H.

(ii) For every h ∈ H and for every 0 6 i 6 [G : H]−1, the vertex sih has two neighbours
in si+1H if and only if [G : H] = 2 and |s| > 4.
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(iii) The intersection number c2 satisfies c2 > 2.

Proof. (i) Let ε ∈ {−1, 1}. If h ∈ A, then we have

sihsε = sisεh = si+εh ∈ si+εH.

If however h = ta for some a ∈ A, then

sihs−ε = sitas−ε = sits−εa = sisεta = si+εh ∈ si+εH.

Therefore, sih is adjacent with both si−1h and si+1h. If however, s′ ∈ S \ {s, s−1}, then
s′ ∈ H, and so clearly sihs′ ∈ siH.

(ii) This is a straightforward corollary of (i) above, since if [G : H] > 2, then si−1H 6=
si+1H.

(iii) Since G is not cyclic, there exists h ∈ S \ 〈s〉. Consider the vertices 1 and sh. By
item (i) above the vertices 1 and sh ∈ sH are not adjacent (since h 6= s−2). Moreover, as
s and h are clearly their common neighbours, s 6= h implies that c2 > 2.

Proposition 6. With reference to Notation 4 we have [G : H] ∈ {2, 4}.

Proof. By way of contradiction, assume [G : H] /∈ {2, 4}. Suppose first that [G : H] > 5
and consider the vertices 1 and s2 of Γ. By Proposition 5 the vertices 1 and s2 are not
adjacent and s is their unique neighbour. This contradicts Proposition 5(iii).

Suppose now that [G : H] = 3. Assume that |s| > 6. We will first show that in this
case we have |s| = 6. Consider the vertices 1 and s2 and note that these vertices are at
distance 2 and that s is their common neighbour. By Proposition 5, the vertices 1 and
s2 must have at least one more common neighbour and the only possibilities for them are
s3 and s−1. In both cases we get that {s3, s−3} ⊆ S, and so s3 and s−1 are both common
neighbours of 1 and s2, implying that c2 = 3. Consider now the vertices 1 and s4. By
Proposition 5 they are not adjacent, and so s3 ∈ S implies that they are at distance 2.
Besides their common neighbours s and s3 they must thus have an additional common
neighbour, which can only be s−1 = s5. In particular, s6 = 1, implying that |s| = 6.

As G is generated by S, there exists a ∈ A such that ta ∈ S. Consider now the
vertices 1 and tas−1 = sta and observe that ∂(1, sta) = 2 and that s, ta are their common
neighbours. As c2 = 3, the vertices 1 and sta must have an additional common neighbour,
which by Proposition 5 must be s−1 = stas−1. But then sta = 1, a contradiction.

Therefore |s| = 3 and now a similar argument as in the proof of Proposition 7 shows
that Γ ∼= K3�Γ′. As a Cartesian product of graphs can be factorized uniquely as a
product of prime factors, Corollary 3 implies that Γ is isomorphic to the Hamming graph
H(d, 3). However, as Γ is of even order, this is not possible.

Proposition 7. With reference to Notation 4 assume that [G : H] = 4. Then |s| = 4 and
Γ is isomorphic to the Hamming graph H(d, 2).
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Proof. Suppose first that |s| > 5. Similarly as in the first paragraph of the proof of
Proposition 6 we find that s is the unique common neighbour of 1 and s2, contradicting
Proposition 5(iii). Therefore |s| = 4. We claim that Γ = Γ′�C4. Let sih, where h ∈ H,
be a vertex of Γ. By Proposition 5 this vertex has precisely two neighbours outside siH,
namely si−1h ∈ si−1H and si+1h ∈ si+1H. Moreover, any neighbour of sih from siH is
of the form sihs′ for some s′ ∈ S \ {s, s−1}. Since hs′ ∈ H, Proposition 5 implies that
the two neighbours of sihs′ outside siH are si+1hs′ and si−1hs′. These two vertices are
clearly adjacent to si+1h and si−1h, respectively. Therefore, Γ ∼= Γ′�C4, as claimed.

By Corollary 3, Γ is either isomorphic to a Hamming graph H(d, q) for some q, or to
a Doobs graph D(n,m) for some m,n. However, note that it follows from Proposition
5 that 1 and s are adjacent vertices with no common neighbours, which forces a1 = 0.
Consequently, Γ is isomorphic to a Hamming graph H(d, 2).

With reference to Notation 4, in the last part of this section we study the case [G :
H] = 2. We first consider the case |s| = 2.

Proposition 8. With reference to Notation 4 assume that [G : H] = |s| = 2. Then Γ is
isomorphic to the Hamming graph H(d, 2).

Proof. By Proposition 5 we have that Γ ∼= K2�Γ′. As a Cartesian product of graphs can
be factorized uniquely as a product of prime factors, it follows from Corollary 3 that Γ is
isomorphic to the Hamming graph H(d, 2).

We now consider the case [G : H] = 2 and |s| > 4.

Proposition 9. With reference to Notation 4 assume that [G : H] = 2 and |s| > 4. Then
the following (i), (ii) hold.

(i) The intersection number a1 ∈ {0, 2}. Moreover, a1 = 2 if and only if s2 ∈ S.

(ii) The intersection number c2 ∈ {2, 4}. Moreover, if |s| > 6 then c2 = 4.

Proof. (i) Consider adjacent vertices 1 and s. By Proposition 5 the only possible common
neighbours of these vertices are s2 and s−1. However, s2 is a common neighbour of 1 and
s if and only if s2 ∈ S which occurs if and only if s−2 ∈ S. But it is easy to see that
this occurs if and only if s−1 is a common neighbour of 1 and s. As |s| > 4 we have that
s2 6= s−1, and the result follows.

(ii) Pick a ∈ A such that ta ∈ S and consider the vertices 1 and tas−1 = sta. Observe
that ∂(1, sta) = 2 and that ta and s are their common neighbours. By Proposition 5 the
only other possible common neighbours of these vertices are s−1 and s2ta. However, s−1

is a common neighbour of 1 and sta if and only if s2ta ∈ S which occurs if and only if
s2ta is a common neighbour of 1 and sta. As s−1 6= s2ta, we have that c2 ∈ {2, 4}. To
complete the proof assume |s| > 6 and that c2 = 2. As a1 ∈ {0, 2} (with a1 = 2 if and
only if s2 ∈ S), the vertices 1 and s2 must have exactly two common neighbours. As
|s| > 6, Proposition 5 implies that s is the unique common neighbour of 1 and s2, which
is contained in sH. Therefore, there exists h ∈ H, which is adjacent to both 1 and s2,
and so {s, s−1, h, h−1, s−2h, h−1s2} ⊆ S. However, as h 6= s2, we have that ∂(1, s−1h) = 2,
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but h, s−1 and s = s−1hh−1s2 are three distinct common neighbours of these two vertices,
contradicting c2 = 2.

Proposition 10. With reference to Notation 4 assume that [G : H] = 2 and |s| > 6.
Then Γ is isomorphic to K6,6 − 6K6, the complete bipartite graph K6,6 minus a 1-factor.

Proof. Recall that by Proposition 9 we have that a1 ∈ {0, 2} and c2 = 4. Assume first
that a1 = 2, that is, assume that s2 ∈ S. We first claim that {s2, s4, . . . , s|s|−2} ⊆ S.
Indeed, assume that {s2, s4, . . . , s2i} ⊆ S for some 1 6 i < (|s| − 2)/2. Since s2i+1 6= s−1,
Proposition 5 implies that ∂(1, s2i+1) = 2, and so the vertices 1 and s2i+1 must have 4
common neighbours. Again by Proposition 5 these common neighbours are s, s−1, s2i and
s2i+2, which shows that s2i+2 ∈ S. This proves the claim. It follows that s, s4, s6, . . . , s|s|−2

are common neighbours of 1 and s2, and so a1 = 2 forces |s| = 6.

Pick now a ∈ A such that ta ∈ S and note that ∂(1, sta) = 2. Therefore 1 and sta
must have 4 common neighbours, and these common neighbours are s, s−1, ta and s2ta,
forcing s2ta ∈ S. But now s, s4 and s2ta are common neighbours of 1 and s2, contradicting
a1 = 2.

Therefore, a2 = 0. Pick h ∈ S \ 〈s〉 and note that ∂(1, sh) = 2. A similar argument as
in the first paragraph of this proof shows that {h, s2h, s4h, . . . , s|s|−2h} ⊆ S. This implies
that s, h, s2h, s4h, . . . , s|s|−2h are all common neighbours of 1 and s2, and so c2 = 4 forces
that |s| = 6. Since s, h, s2h, s4h are four distinct common neighbours of 1 and s2 the
above argument in fact shows that S \ 〈s〉 = {h, s2h, s4h}. Since s2, s3, s4 /∈ S (as a1 = 0
and since S is minimal with respect to s) this in fact implies that S = {s, s−1, h, s2h, s4h}.
Since Γ is connected, it now follows that |G| = 12 and that Γ ∼= K6,6−6K6, as claimed.

This leaves us with the case [G : H] = 2 and |s| = 4. The arguments in this case
are much longer and technical. Nevertheless, it turns out that one can simply repeat the
corresponding proof from [12] in the same situation in the case of distance-regular Cayley
graphs of abelian groups (Subsections 7.1 and 7.2). All the arguments go through in our
setting. The only thing one needs to change is that whenever in [12] we have a vertex
of the form xsi one has to write it as six (which, as the group is abelian in that case,
changes nothing). In this way we get the following result.

Proposition 11. With reference to Notation 4 assume that [G : H] = 2 and |s| = 4.
Then Γ is isomorphic to the antipodal quotient of the Hamming graph H(2d, 2) or the
antipodal quotient of the Hamming graph H(2d + 1, 2), to the Hamming graph H(d, 4) or
to the Doobs graph D(n,m) with n,m > 1 and d = n + 2m.

6 The case s ∈ tA

In this section we classify the distance-regular Cayley graphs of generalized dihedral
groups GD(A) with respect to some minimal connection set S with respect to some
s ∈ tA ∩ S. Note that all elements of tA are involutions that invert each element of A
by conjugation, so that we can assume s = t. Observe that in the case that |S| = 2
the corresponding graph is a cycle of even length. For the rest of this section we will
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thus be considering examples with |S| > 3. Note that this also implies that |A| > 3, as
otherwise |S| > 3 contradicts the assumption that S is minimal with respect to t. For
ease of reference we adopt the following notation and assumptions.

Notation 12. Let G = GD(A) denote a finite generalized dihedral group with identity 1,
where A is an abelian group of order at least 3. Let S denote an inverse-closed subset of
G \ {1} with |S| > 3, which generates G and such that H = 〈S \ {t}〉 6= G. Assume that
Γ = Cay(G;S) is distance-regular with diameter d. We define S1 = S ∩A, S2 = {a ∈ A |
ta ∈ S, ta−1 ∈ S} and S3 = {a ∈ A | ta ∈ S, ta−1 /∈ S}.

Lemma 13. With reference to Notation 12 each vertex from H has a unique neighbour
outside H. Moreover, the following (i), (ii) hold:

(i) For every a ∈ H ∩ A the unique neighbour of a outside H is ta−1 ∈ tH.

(ii) For every tb ∈ H \ A the unique neighbour of tb outside H is b−1 ∈ b−1H ∩ Ht.
Moreover, for any tb, tc ∈ H \ A the unique neighbour of tc outside H is contained
in b−1H.

Proof. Since H = 〈S \ {t}〉, it is clear that each vertex x from H has a unique neighbour
outside H and this neighbour is xt. Now, if x ∈ A then xt = tx−1, proving (i). If however,
x = tb for some b ∈ A (recall that [G : A] = 2) then xt = tbt = b−1 ∈ b−1H. On the other
hand, since x ∈ H we also have that xt ∈ Ht. Finally, if tb, tc ∈ H \A, then c−1b ∈ H∩A,
and so c−1 = b−1(c−1b), implying that tct = c−1 ∈ b−1H.

Proposition 14. With reference to Notation 12, we have c2 ∈ {1, 2}. Moreover, the
following (i), (ii) hold.

(i) If c2 = 1, then S1 = ∅ and S2 = {1}. In particular, Γ is bipartite.

(ii) If c2 = 2, then S3 = ∅ and [G : H] = 2.

Proof. Pick s ∈ S \ {t}. Since s ∈ H, Lemma 13 implies that ∂(t, s) = 2 and that st
and 1 are the only potential common neighbours of s and t. Therefore, 1 6 c2 6 2, as
claimed. Moreover, c2 = 1 if and only if st is not a neighbour of t for each s ∈ S \ {t},
while c2 = 2 if and only if st is a neighbour of t for each s ∈ S \ {t}.

Suppose first that c2 = 1. Since for each s ∈ S1 we have s−1 ∈ S and st = ts−1,
the above paragraph implies that S1 = ∅. This clearly implies that S ⊆ tA, and so Γ is
bipartite. Moreover, as for each a ∈ S2 \ {1} we have that ta, ta−1 ∈ S, it follows that
tta−1 = a−1 = tat is a neighbour of t, contradicting c2 6= 2. Thus S2 = {1}, as claimed.

Suppose now that c2 = 2 and let a ∈ A be such that ta ∈ S. By the first paragraph of
this proof a−1 = tat is adjacent to t, implying that ta−1 ∈ S, and so a ∈ S2. Consequently,
S3 = ∅, as claimed. To prove that [G : H] = 2, note first that by Lemma 13 at ∈ tH for
each a ∈ H ∩A. Next, fix b ∈ S2 (note that as Γ is connected, we have that S2 6= ∅), and
observe that by the above argument we have that tbt = b−1 ∈ tH. Now Lemma 13(ii)
implies that for every tc ∈ H \ A, the unique neighbour of tc outside H is in tH. This
shows that Ht ⊆ tH, and so Ht = tH. But then the edges corresponding to multiplication
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by t induce a perfect matching between H and tH, and so connectedness of Γ implies
that G = V (Γ) = H ∪ tH, forcing [G : H] = 2.

Proposition 15. With reference to Notation 12, assume that c2 = 2. Then Γ is isomor-
phic to the Hamming graph H(d, 2).

Proof. We claim that Γ ∼= Γ′�K2, where Γ′ is the subgraph of Γ induced on H. By
Proposition 14 and its proof we have that G = H ∪ tH and that the edges corresponding
to multiplication by t induce a perfect matching between H and tH. As the left regular
representation of H is a subgroup of automorphisms of Γ it thus suffices to show that
for each s ∈ S \ {t} we have that t and st are adjacent. If s ∈ A then s−1 ∈ S, and so
st = ts−1 is a neighbour of t. If however, s /∈ A then by Proposition 14 we have that
s = ta for some a ∈ A with ta−1 ∈ S. Thus st = tat = a−1 = tta−1 is also a neighbour of
t. This proves our claim.

To complete the proof, note that Corollary 3 and uniqueness of decomposition of
Cartesian products into prime factors implies that Γ ∼= H(d, 2).

Proposition 16. With reference to Notation 12, assume that c2 = 1. Then the following
(i)–(iii) hold.

(i) c3 > 2.

(ii) If [G : H] > 3, then c3 = 2.

(iii) If [G : H] = 2, then for every a, b ∈ S3, a 6= b we have

|{(c, c′) ∈ S3 × S3 | cc′ = a−1b}| = c3 − 2.

Proof. Pick a, b ∈ S3, a 6= b and consider tatb = a−1b. By Proposition 14 the graph Γ is
bipartite, and so Lemma 13 implies that ∂(t, a−1b) = 3.

(i) Since ttbta = tb−1a = tab−1 = a−1bt, we find that ta ∈ H and tab−1 ∈ tH are two
neighbours of a−1b which are both at distance 2 from t. This shows that c3 > 2.

(ii) Let us consider all the paths of length 3 from a−1b to t. As c2 = 1, there are c3 of such
paths and each neighbour of a−1b is contained in at most one such path. In particular,
only one such path has its second vertex in tH (namely P1 = (a−1b, tab−1, b, t)). Note
that P2 = (a−1b, ta, 1, t) is also a path from a−1b to t. Therefore, if c3 > 2 then there must
also exist a path starting with (a−1b, tab−1c) for some c ∈ S3 \ {b}. If the third vertex
of this path was in H, then by Lemma 13 it would have to be 1, contradicting c2 = 1 as
ta and tab−1c would be common neighbours of 1 and a−1b. Therefore, the third vertex
is tab−1ct = a−1bc−1. As this vertex is a neighbour of t and is not 1, Lemma 13 implies
that it is contained in tH. But then Lemma 13(ii) implies that Ht ⊆ tH, contradicting
[G : H] > 3.

(iii) The above argument shows that, besides the two paths P1 and P2, each path of length
3 from a−1b to t is of the form (a−1b, tab−1c, a−1bc−1, tab−1cc′), where c, c′ ∈ S3. Since
tab−1cc′ = t it follows that the number of paths of length 3 from a−1b to t, different from
P1 and P2, equals the number of pairs (c, c′) ∈ S3 × S3, for which cc′ = a−1b.
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Proposition 17. With reference to Notation 12, assume that c2 = 1. Then [G : H] = 3.

Proof. By Proposition 14 the graph Γ is bipartite. Suppose to the contrary that [G :
H] 6= 3. We first show that then [G : H] = 2. If this is not the case then [G : H] > 4.
Consider now any a ∈ S3 and note that since Γ is bipartite and ta−1 /∈ S we have that
∂(t, a−1) = 3. By Proposition 16 we have that c3 = 2, and so there must exist a path P
of length 3 from t to a−1, different from (t, 1, ta, a−1). By Lemma 13 this path must be of
the form (t, b, tb−1, a−1) for some b ∈ S3. But as [G : H] > 4, Lemma 13 implies that tb−1

and a−1 do not belong to the same left coset of H, and consequently tb−1t = a−1, that is
b = a−1, which contradicts a, b ∈ S3.

We can thus assume that [G : H] = 2. Pick a ∈ S3 and note that ta ∈ H implies
a−1 = tat ∈ tH. As above, ∂(t, a−1) = 3. Since c2 = 1, there are c3 paths of length 3 from
t to a−1. One of these paths is (t, 1, ta, a−1) and a similar argument as in the proof of
Proposition 16 shows that all of the remaining ones are contained in tH. They are thus
of the form (t, b, tb−1b′, bb′−1b′′) for some b, b′, b′′ ∈ S3 with bb′−1b′′ = a−1.

If b′ = a, then b′′ = b−1, contradicting the fact that b ∈ S3. Therefore, b′ 6= a.
By Proposition 16 it follows that for each b′ ∈ S3 \ {a} there are precisely c3 − 2 pairs
(b, b′′) ∈ S3×S3 such that bb′′ = a−1b′, showing that there are (|S3| − 1)(c3− 2) + 1 paths
of length 3 from t to a−1. Therefore,

c3 − 1 = (|S3| − 1)(c3 − 2).

Since |S3| = |S| − 1 > 2, we thus have that c3 > 3, and so

b0 − 2 = |S3| − 1 =
c3 − 1

c3 − 2
= 1 +

1

c3 − 2
.

Since b0 is an integer, this shows that c3 = 3 and b0 = 4. By [4], the intersection
array of Γ is {4, 3, 3, 1; 1, 1, 3, 4}, which is uniquely realized by the incidence graph of the
Desarguesian affine plane of order 4 minus a parallel class of lines. However, one can verify
(using a computer) that this graph has no presentation as a Cayley graph of a generalized
dihedral group with respect to a minimal connection set. Therefore, [G : H] = 3, as
claimed.

Remark 18. We would like to point out that the incidence graph of the Desarguesian affine
plane of order 4 minus a parallel class of lines from the above proof is indeed a Cayley
graph (see for instance [5, Proposition 3.2]). In fact, it is a Cayley graph of the generalized
dihedral group GD(Z4 × Z4). But as already mentioned there exists no corresponding
minimal connection set for it.

Proposition 19. With reference to Notation 12, assume that c2 = 1. Then A is an
elementary abelian 3-group of rank at least 2, that is A ∼= Z`

3 for some ` > 2.

Proof. By Proposition 17 we have that [G : H] = 3. By Proposition 14 we have that
S1 = ∅, S2 = {1}, and so Lemma 13 implies that V (Γ) = H ∪ tH ∪a−1H, for any a ∈ S3.
Moreover, Γ is bipartite. By Proposition 17 we also have c3 = 2. Pick a ∈ S3 and observe
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that ∂(t, a−1) = 3. Namely, (t, 1, ta, a−1) is a path of length 3 between t and a−1, while t
and a−1 are not adjacent as a ∈ S3.

As c3 = 2, the vertex t has exactly two neighbours, which are at distance 2 from
a−1. One of them is of course 1. Therefore, there exist a unique b ∈ S3, such that b
is a neighbour of t and is at distance 2 from a−1. But this is only possible if the only
neighbour of b, which is not contained in tH (namely bt = tb−1), is contained in a−1H and
is adjacent with a−1. Therefore, a−1b−1 ∈ S3. But a−1b−1 is also a neighbour of t, which is
at distance 2 from a−1 (their common neighbour is tab), and so we have that b = a−1b−1.
Since a is also the unique neighbour of t which is at distance 3 from b−1, repeating the
above argument yields a = b−1a−1 = b. It follows that a3 = 1. Since this holds for any
a ∈ S3 and S = {t} ∪ {ta | a ∈ S3} it thus clearly follows that all nontrivial elements of
A are of order 3. Therefore, A ∼= Z`

3 for some ` > 1. In fact, ` > 2, as otherwise |H| = 2,
in which case Γ is the cycle of length 6, which contradicts our assumption.

Remark 20. In what follows A will always be isomorphic to the group Z`
3 for some ` > 2.

Note that we can view Z`
3 also as a vector space over Z3. When we take this viewpoint

we will use some vector space terminology for the elements of A (we will for example say
that a, b ∈ A are linearly independent). Observe that in order for Γ to be connected, S3

must contain ` linearly independent elements of A.

Proposition 21. With reference to Notation 12, assume that c2 = 1. If |A| = 9, then Γ
is isomorphic to the Pappus graph.

Proof. As |A| = 9, the graph Γ has 18 vertices. Recall also that, by Proposition 17, we
have [G : H] = 3. As Γ is a bipartite regular graph with valency k and intersection
number c2 = 1, we have that 1 + k + k(k− 1) 6 18, and so k ∈ {3, 4}. By [4] there are no
distance-regular graphs with valency 4 on 18 vertices. So k = 3, which forces S3 = {a, b}
for some linearly independent a, b ∈ A. It is easy to verify that Γ is isomorphic to the
Pappus graph in this case.

Lemma 22. With reference to Notation 12, assume that c2 = 1 and A ∼= Z`
3 for some

` > 3. Then the following (i)–(iii) hold:

(i) For any linearly independent elements a, b ∈ S3 none of ab, a2b, ab2, a2b2 is contained
in S3.

(ii) For any triple of distinct elements a, b, c ∈ S3, ab2c /∈ S3.

(iii) c4 > 3.

Proof. By Proposition 17, we have that [G : H] = 3. Pick linearly independent a, b ∈
S3. If ab ∈ S3, then t = tatabtb ∈ H, a contradiction. Similarly, if ab2 ∈ S3, then
t = tab2tatb ∈ H (recall that b is of order 3), a contradiction. Exchanging the roles of a
and b shows that ba2 /∈ S3. Finally, if a2b2 ∈ S3, then tata2b2 = ab2 = tbta, contradicting
c2 = 1. This proves (i).
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Let a, b, c ∈ S3 be pairwise distinct. As tab2c = tatbtc, c2 = 1 implies that ab2c ∈ S3

can only occur if ta = tab2c, that is c = b−1, contradicting the fact that b, c ∈ S3. This
proves (ii).

To prove (iii) let a, b, c ∈ S3 be linearly independent (recall that ` > 3) and consider
the vertex abc. For any of the 6 choices for x, y, z, where {x, y, z} = {a, b, c}, we get
a walk of length 4 from 1 to abc by taking (1, tx, x2y, tx2y2, xyz). Since c2 = 1 and
c3 = 2 (by Proposition 16) it thus suffices to show that ∂(1, abc) = 4. By (i) above
∂(1, ta2b2) = 3. Since (1, ta, a2b, ta2b2) and (1, tb, ab2, ta2b2) are paths of length 3 from 1
to ta2b2, c2 = 1 and c3 = 2 imply that any other neighbour of ta2b2 is at distance 4 from
1. As abc = ta2b2tc is such a neighbour (recall that a, b, c are linearly independent), this
shows that ∂(1, abc) = 4, as claimed.

Proposition 23. With reference to Notation 12, assume that c2 = 1. Then Γ is isomor-
phic to the Pappus graph.

Proof. By Propositions 14, 16, 17 and 19 we have that S1 = ∅, S2 = {1}, the graph Γ
is bipartite, [G : H] = 3, c3 = 2 and A ∼= Z`

3 for some ` > 2. By Proposition 21 it thus
suffices to show that ` = 2.

By way of contradiction assume that ` > 3 and recall that in this case Lemma 22
implies that c4 > 3. Pick linearly independent a, b, c ∈ S3 and consider the vertex ab2c =
ttatbtc ∈ A ∩ tH (recall that ta, tb, tc ∈ H). Since [G : H] = 3, Lemma 13 implies that
ab2ct /∈ H, while Lemma 22 implies that ab2c /∈ S3, and so ∂(1, ab2c) > 4. Since

(1, t, a, ta2b, ab2c) and (1, t, c, tbc2, ab2c)

are two paths of length 4 from 1 to ab2c, this shows that ∂(1, ab2c) = 4. As c3 = 2 and
c4 > 3, there thus exists a neighbour tx of ab2c, different from ta2b and tbc2, such that
∂(1, tx) = 3.

Recall that, since [G : H] = 3, Lemma 13 implies that G = H ∪ tH ∪ a−1H. We first
show that tx ∈ a−1H. If this is not the case, then tx ∈ tH, and so the fact that c3 = 2
implies that tx has two neighbours which are at distance 2 from 1. By Lemma 13 at least
one of them is contained in tH, let us call it y. By Lemma 13 the only neighbour of y
outside tH is in a−1H, and so cannot be adjacent to 1, and so y must be adjacent to t. But
as tx, ta2b and tc2b are now three distinct vertices in N(ab2c) ∩N2(t) and ∂(t, ab2c) = 3,
this contradicts c3 = 2.

We are thus left with the possibility that tx ∈ a−1H, in which case Lemma 13 implies
that tx = ab2ct = ta2bc2, that is x = a2bc2. By Lemma 13 any path of length 3 from tx to
1 must be of the form (tx, x2y, txy2, 1) for some y ∈ S3 such that xy2 ∈ S3 as well. There
thus exists y ∈ S3 such that xy2 = a2bc2y2 ∈ S3. Note that, by Lemma 22, y /∈ {a, b, c}.
But now there are at least three different paths of length 3 from 1 to ta2cy (namely
(1, tb, a2c2y2, ta2cy), (1, tc, ac2, ta2cy) and (1, ty, ay2, ta2cy)), so that c3 = 2 and the fact
that Γ is bipartite imply that ta2cy is adjacent to 1. But then a2cy ∈ S3, contradicting
Lemma 22. This finally proves that ` = 2, as claimed.

Combining together the remarks from Section 3 and the results of Sections 5 and 6 we
finally get a proof of Theorem 1.
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