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Abstract

In this paper we fill in a fundamental gap in the extremal bootstrap percolation
literature, by providing the first proof of the fact that for all d > 1, the size of
the smallest percolating sets in d-neighbour bootstrap percolation on [n]¢, the d-
dimensional grid of size n, is n?~!. Additionally, we prove that such sets percolate
in time at most c¢4n?, for some constant c¢; > 0 depending on d only.

Mathematics Subject Classifications: 05D99

1 Introduction

Bootstrap percolation, suggested by Chalupa, Leath, and Reich [8], is a simple cellular
automaton modelling the spread of an infection on the vertex set of a graph G. For
some positive integer 7, given a set of initially infected vertices A C V(G), in consecutive
rounds we infect all vertices with at least r already infected neighbours. Formally, taking
Ay = A and with N(v) denoting the set of neighbours of a vertex v in G, the set A; of
vertices infected at time ¢ > 1 is

At = At,1 U {u € V(G) . ’N(u) N Atfl‘ 2 7"}.

We say that percolation occurs if every vertex of GG is eventually infected.

The majority of research into bootstrap percolation processes has been focused on the
probabilistic properties of the model. More precisely, if we initially infect every vertex
independently at random with some probability p, how likely is the system to percolate?
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The monotonicity of the model (i.e., the fact that infected vertices never heal) makes it
reasonable to ask about the value of the critical probability p, above which percolation
becomes more likely to occur than not. This quantity has been analysed for many different
families of graphs G and for various infection rules, and often very sharp results have
been obtained by, e.g., Aizenman and Lebowitz [1], Holroyd [12], and Balogh, Bollobés,
Duminil-Copin, and Morris [3].

Another family of questions related to bootstrap percolation that have been studied
is concerned with the extremal properties of the model. Morris [14] analysed the size of
the largest minimal percolating sets in 2-neighbour bootstrap percolation on the n x n
square. For the same setup, Benevides and Przykucki [7] determined the maximum time
the process can take until it stabilises. However, the first extremal question that attracted
attention in bootstrap percolation was about the size of the smallest percolating sets. For
grid graphs, this has been studied by Pete [17] (the summary of Pete’s results can be
found in Balogh and Pete [5]). For the hypercube, the size of the smallest percolating
sets for all values of the infection threshold was found by Morrison and Noel [15]. Feige,
Krivelevich, and Reichman [11] analysed the size of these sets in random graphs, while
Coja-Oghlan, Feige, Krivelevich, and Reichman [9] studied such sets in expander graphs.

1.1 The d-neighbour process in d dimensions

Let us introduce some notation. For n € N, let [n] = {1,2,...,n}. The d-dimensional
grid graph of size n is the graph with vertex set [n]?, in which u,v € [n]? are adjacent if
and only if they differ by a value of 1 in exactly one coordinate. For d,r,n € N, let G4, (n)
denote the size of the smallest percolating sets in r-neighbour bootstrap percolation on
[n]¢. For aset A C [n]¢, let (A), be the closure of A in r-neighbour bootstrap percolation,
i.e., the set of all vertices that become infected in the process that was started from A.

Among the results stated in [17] (see also the Perimeter Lemma in the Appendix to [5])
is the following theorem.

Theorem 1. For all n,d € N, we have Ggq4(n) = n®!.

This is obviously trivial for d = 1, and the case when d = 2 constitutes a lovely and
well-known puzzle. Indeed, finding a percolating set of size n is easy: just take one of
the diagonals of the square. To show that there is no percolating set of size strictly less
than n, we can refer to the famous perimeter argument: the perimeter of the infected
set (understood as the number of edges between an infected and a healthy vertex, if we
naturally embed our square [n]? in the infinite grid Z?) can never grow. Indeed, whenever
a new vertex becomes infected, it is by virtue of at least two perimeter edges. Thus at
least two edges are removed from the perimeter of the infected set, and at most two new
ones are added, and the aforementioned monotonicity of the perimeter follows. Since the
whole n x n grid has perimeter 4n, and any initially infected vertex contributes at most
4 edges to the perimeter, we need at least n initially infected vertices to percolate.

Somewhat surprisingly, the perimeter argument carries immediately to higher di-
mensions, giving us the appropriate lower bound Ggg(n) > n® ! for all d € N. As
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for the upper bound, there is a natural candidate, sometimes referred to as a “cyclic
combination” of the one-dimensional lower set. More precisely, for d < k < dn, let
Vi={v=_(v1,...,0a) € [n)?: 320, v; = k}. Tt is then natural to believe that the set

A=A(d) =V (1)

percolates in d-neighbour bootstrap percolation on [n]¢, and indeed this is the construction
that was used to deduce the upper bound in [17]. One can imagine how two “neighbouring
hyperplanes”, V{(;_1), and Vj,, fill in the space between them with infection until the two
growths meet, from which point on the process quickly finishes. The fact that Gy q(n) =
n?! has become a “folklore knowledge” in the area of bootstrap percolation, and has
sometimes even been referred to as an “observation”. Up to our best knowledge [16], no
formal proof of Theorem 1 was provided in [17], and no such proof exists in the literature.

However, problems arise quickly when one tries to describe how exactly the space
between the two hyperplanes is filled in. Any vertex in V(;_1y,41 with at least one coor-
dinate equal to 1 has fewer than d infected neighbours in V;_),, and consequently does
not become infected in step 1. Similarily, after one step, any vertex in V(;_1),42 with at
least one coordinate equal to at most 2 has fewer than d infected neighbours in V{;_1),41,
and also remains healthy. This problem builds up (analogous constraints can be easily
formulated for the layers being infected “from above” by V;,) and, in fact, the two growths
barely meet - two hyperplanes at distance n+ 1 apart would have stayed separated, while
hyperplanes at distance n — 1 would result in some vertices being infected by more than
d infected neighbours, and consequently no percolation by the perimeter argument.

What is however even more troublesome, describing the growth from the moment of the
meeting onwards is where the real challenges occur. By the perimeter argument, we know
that we have no elbow room in this description: no proper subset of A percolates, and even
a small perturbation of A would not percolate if any vertex ever became infected by virtue
of more than d infected neighbours. In Figure 1 we present the growth of the infected
set, starting from A as defined in (1), in 3-neighbour bootstrap percolation on [6]*>. Even
though we are in just three dimensions, and the size of the grid is very small, the process
already feels quite difficult to describe and lasts as many as 14 steps. Consequently, we
believe that Theorem 1 requires a proper, formal proof, which we provide as the main
result of this paper in Section 2.

Another reason to convince oneself about the fact that the process of filling in the
space between V{;_1), and Vj, is nontrivial becomes apparent when we look at the results
of numerical simulations, and analyse the time the process takes to terminate. It quickly
becomes apparent that, for a fixed d, this time grows quadratically with n. This should
be somewhat surprising, as by averaging there is some ¢ such that the volume between
Vii—1)n and Vj, is of the order nd. For a percolating set A, let T(A) be the time (i.e., the
number of time steps) the process takes to infect the whole vertex set. Let

ma(n) = min {T(A) : (4); = [n]?,|A4] = n?'}. (2)
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Figure 1: Example showing the spread of infection in [6]® starting from a set of size
Gi5(6) = 62 = 36.

In Section 3, we come back to the question of percolation time and we prove the following
theorem.

Theorem 2. We have my(n) = [n/2], ma(n) =n—1, and for d > 3,

dn

5 T O(1) < mg(n) < (d+2)n* +n.

Before we proceed to the main part of this work, let us emphasise the importance of
the extremal results in bootstrap percolation. The lower bound in [1], where the order
of magnitude of the critical probability in 2-neighbour bootstrap percolation on [n]? was
determined, follows very easily from the fact that Ga2(n) = n. In [4], Balogh, Bollobds,
and Morris used the value of G42(n) for arbitrary d as a vital tool to determine the critical
probability in 2-neighbour bootstrap percolation on high-dimensional grids. Finally, we
remark that Balister, Bollobds, Johnson, and Walters [2] observed that Gg4(n) < cgn?!,
where ¢4 > 0 is some constant depending on d only, as infecting the boundary of [n]? (of
size at most 2dn?~1) gives us a percolating set in the d-neighbour bootstrap process.

2 Proof of the main result

In this section we prove Theorem 1. The result Gg4(n) = n?! follows from our discussion
of the monotonicity of the perimeter of the infected set. Therefore we need to prove that
Gaa(n) < n®1. Unlike for d = 1,2, in the general case proving the upper bound turns
out to be much more challenging.

Proof of Theorem 1. Let G = [n]¢ be the d-dimensional grid of size n. We define

Vo= {(v="(v1,...,va) €M) : v =k} ford<k<dn,
"o otherwise.

Note that JI", Vi = V([n]?).
We will show that the set A = U?zl Vin percolates in d-neighbour bootstrap percolation
on [n]?. (We can immediately see that |A| = n?~! as for fixed values of vy, ..., vy, there
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is exactly one choice of v; such that v = (vq,...,v4) € A.) To do this, we will prove that,
forall 1 < s <d,

n—1

Fs = U ‘/Es—l)n—l—i g <W5—1)n U ‘/sn>d (3)

i=1
Define ¢ € N so that d = gn —r with 0 < r < n. Note that we have Vp,..., V-1 =0, and
consequently the sets V,,, ..., V{4_1), are empty. First we deal with the “bottom corner”

of the grid.
Claim 3. We have U?Zl Vi € (Van)a-

Proof. Any vertex v € V,_1 has Zle v; = gn — 1. If there was some 1 < i < d such
that v; = n, then the vertex v — (n — 1)e; would lie in V{,_1y, which we know is empty, a
contradiction. Hence, v; < n for all 1 <17 < d.

Therefore, again for all 1 <4 < d, we have v + ¢; € V,,, infected. Therefore v has at
least d infected neighbours and itself becomes infected. Since v € V,,—1 was arbitrary, all
of V,,—1 becomes infected. We proceed in this manner, in consecutive rounds infecting all

vertices in V9, Vgn—s, ..., Va. This completes the proof of the claim. O

Observe that Vg, = {(n,...,n)} C A, hence we do not need to deal with the “upper
corner”. Therefore from now on we shall analyse the dynamics of the process “sandwiched”

between two initially infected hyperplanes. Fix 1+¢ < s < d and assume that Vi,_;), UV,

is infected. Given v € Fj, let t, = Zle v; — (s — 1)n. Next, for v € F;, we define

Pre(v) ={v+e;:v; <t,}U{v—e;:v; >t} (4)

For all v € Fy, we have |Pre(v)| = d. Therefore, if all vertices in Pre(v) are infected, then
v also becomes infected.

We define the infection witness tree of v, IW(v), to be a directed labelled d-ary tree,
with all edges directed away from the root and with vertices labelled with the elements of
F; U V(s_1)n U Vi, where these labels can be repeated in the tree. We construct IW(v) as
follows. We start by declaring the root of the tree active and labelling it with v. Then,
in consecutive rounds, we select an arbitrary active vertex. If the label u of the vertex
belongs to V(s_1), U Vsy, then this vertex becomes a leaf of IW(v) and we simply change its
status to inactive. Otherwise, if the label u of the vertex belongs to Fy, then we attach d
active children to this vertex and label them with the elements of Pre(u). Then, we again
declare the selected vertex inactive. See Figure 2 for an example of a tree constructed in
our algorithm.

By definition, all leaves of the tree IW(v) are initially infected. Since IW(v) is a d-ary
tree, if IW(v) is finite then v becomes infected. Since every non-leaf of IW(v) belongs to
F; which is a finite set, an infinite directed path in IW(v) would contain infinitely many
instances of the same label. Hence, the finiteness of IW(v) follows immediately from the
next lemma.

m

Lemma 4. For any v € F,, IW(v) has no directed path u',... u™ u = u', where

u' € Pre(u?) for all1 <i < m.

ot
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Figure 2: The infection witness tree of v = (4,2,2), IW((4,2,2)), when n =5 and d = 3.
Here, the format of the vertex labels is u/t,. The round vertices have labels in the initially
infected set A. Observe that, as vertices are included in A based only on the sum of their
coordinates and not on the order of their values, any two vertices whose coordinates are a
permutation of each other become infected simultaneously. Hence, for clarity, rather than
drawing multiple children, we use edge labels to denote the number of children whose
coordinates are a permutation of a given label (e.g., both (4,3,2) and (4,2, 3) belong to
Pre((4,2,2))).

Proof. Suppose for a contradiction that the lemma does not hold, so there exists a directed
path u!, ... ™ u™ = u!', where u'™' € Pre(u’) for all 1 < ¢ < m. Then, since the
algorithm that we use to construct IW(v) is deterministic, we know that we have an
infinite directed path with labels (u');>1, where u'*! € Pre(u’) for all ¢ > 1, and there is
some m > 1 (in fact we could only have m > 2 even) such that ™™ = v’ for all 7 > 1.

Hence, we can assume without loss of generality that C' =t, = lr?elx tyi.

As we traverse the directed path (u');>1, whenever u'*! € Pre(u’) with u'™' = v’ + ¢;
for some 1 < j < d, by (4) we know that u} <t =t —1 <ty —1=C—1. So we

deduce that v/ < C. Now, given a vertex v € [n]?, we define

S o

1<j<d:
v;2C+1

We will show that Lo does not increase when we follow directed paths down IW(v), and
that in order to come back to the same label it would need to strictly decrease at some
point along the path. This will contradict the existence of such looping paths.

Clearly, Lc(v) is the sum of all coordinates of v that are larger than C. Therefore,
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when t,i+1 > t,;, we know that

Lo(u™) = Z utt = Z u = Lo(u').

1<j<d: 1<j<d:
u;.+1>c+1 ui>C+1

However, if u'™! € Pre(u’) with u*! = u’ — e; for some 1 < j < d, then it is clear that
Lo(u™) < Le(u?). Additionally, by the maximality of ¢,1, we have that t,2 = t,1 — 1. So
we deduce that u* = u' —e; for some 1 < j < d. Then, by (4), we have u; > t,1+1 = C+1.
Hence, as u} = uj — 1, we clearly have Lo (u?) < Le(u'). Thus, following from the fact
that Lc never increases as we go along our directed path, Lo(u™™) < Le(ul). This
implies that u™*! # u!, a contradiction to our previous assumption.

Hence, IW(v) has no directed paths on which the same label is repeated more than
once and, as discussed earlier, the whole tree is finite. O

The following corollary is immediate, and concludes the proof of Theorem 1.

Corollary 5. For any verter v € Fy, IW(v) is finite. Consequently, v becomes infected
i finite time and, since v € Fy was chosen arbitrarily, all of Fs becomes infected.

[]

3 Percolation time

In this section, we exploit the machinery developed in Section 2 to prove Theorem 2.
In particular, by tightening our analysis of the height of IW(v), we will show that the
bootstrap percolation process started from the set A, defined in (1), terminates after at
most (d+2)n?+n time steps. (We remark that Benevides and Przykucki [6] showed that
the maximum percolation time for a set of size n in [n]? is equal to the integer nearest to
(5n? — 2n)/8).

Proof of Theorem 2. The case d = 1 is trivial; to minimise the percolation time we simply
place one infected vertex at [n/2].

The case d = 2 is an interesting puzzle. As for the upper bound on ms(n), we can
clearly see that a diagonal percolates [n]? in n — 1 steps. For the lower bound, we observe
that, by the perimeter argument, at least one of the following two neighbouring vertices:
([n/2],[n/2]) and (|n/2], [(n+ 1)/2]), must be initially healthy. (For n even these two
vertices are neighbours in the central 2 x 2 subsquare, while for n odd the former one is in
the very centre of the grid, with the latter one being its neighbour on the left.) Now, we
keep applying the perimeter argument: every time a vertex becomes infected, it must be
by virtue of exactly 2 infected neighbours. Moreover, it is an immediate observation that
the perimeter of the infected set would also decrease if two neighbouring vertices became
infected at the same time step. Hence, only the corner vertices can become infected
without having any of their neighbours still healthy after their infection. This means
that, for any percolating set of size n, we can construct a path of neighbouring vertices,
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starting at either ([n/2], [n/2]) or (|n/2], [(n+1)/2]) and finishing in one of the corners
of the grid, such that the consecutive vertices of the path become infected at strictly later
time steps. All such paths contain at least n — 1 vertices: for n even we could take a path
from ([n/2],[n/2]) to (1,1), while for n odd from (|n/2],[(n + 1)/2]) to (1,1). This
gives us the desired lower bound on mgy(n).

Hence, let us assume that d > 3. Here, the lower bound follows by an identical
argument to the one we used for d = 2. Consider the vertices

([n/2],[n/2],...,[n/2]) and ([n/2] +1,[n/2],...,[n/2]),

and observe that at least one of them has to be initially healthy by the perimeter argument.
Then, every path from one of these vertices to a corner of the grid contains at least
dn/2 + O(1) vertices, meaning that mg(n) > dn/2 + O(1) as claimed. The upper bound
on mg(n) in Theorem 2 follows immediately from the next lemma, which sharpens the
analysis in Lemma 4.

Lemma 6. Let v € F, for 1 < s < d and let u' = v,us,...,u™ be a directed path in
IW(v), with u* € Pre(u’™1) for all2 <i <m. Then m < (d+2)n? +n + 1.

Proof. Given u € Fy, let h(u) = S_%  u2 be the sum of squares of the coordinates of u.
The idea of the proof is to show that long paths in IW(v), corresponding to large values
of m, result in very small values of h; we want to show that m > (d +2)n* +n + 1 would
give h(u™) < 0, which is a clear contradiction.

For notational convenience, we shall denote t; = t,i. Clearly |t,, — t;| < n, since
u' € Fy, and u™ € F, U Vis_1), UV,,. Thus, we can find a subset I C {2,3,...,m} with
|I| > m — 1 —n and |I| even, such that we can group the elements of I into pairs

(i',5Y), (2,52, ..., (112 102y,

with the following property: for all 1 < k < |I]/2, we have
2. tzk = t’ikfl —1 and t]k = tjk,1 + 1.

In other words, all but at most n elements of the subpath 2, ...,u™ can be partitioned
into pairs (u’,u?) such that u’ lies one level below u'~!, as well as one level below u?,
which in turn lies one level above u/~! (where the level of a vertex u is equal to t,, see
Figure 3).

By a reasoning analogous to the one in the proof of Lemma 4 and by the convexity of

x%, we have

h(ui_l) — h(u’) 2 (ti—l + 1)2 — t?_l = Qti_l + 1.
On the other hand, we have

h(u’) = h(w ™) < (tj1 +1) = (t1)* = 2t + 1.
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ul = v w Tl ol

Figure 3: Schematic depiction of the level of consecutive vertices on a directed path

ul = v, uy, ..., u™, with v’ and v’/ paired through (i, ) € I.

However, by the properties of our pairs, we have

Hence, the sum of the changes in the value of h as we move from u~! to u‘, and from v/~!
to w’ (in an arbitrary order), is at most —2. We clearly have h(u') < dn?, and through the
at most n unpaired moves we increase the value of h by at most n(n? — (n — 1)?) < 2n?.
Therefore we must have |I|/2 < (d + 2)n*/2, which gives m < (d + 2)n? +n + 1. This
concludes the proof of the lemma. O

Theorem 2 now follows immediately, as the label u of any vertex of IW(v) becomes
infected at most one step after all the vertices in Pre(u) are infected. The height of IW(v),
being bounded by (d + 2)n? + n, implies the desired bound on the percolation time. [

In fact, our numerical simulations suggest that for d > 3 the percolation time of the
process started from A (as given in (1)) might grow quadratically in n. Based on the
simulations performed for 1 < n < 50 we believe that for d = 3 the process terminates
after n?/2—n+0O(1) time steps, for d = 4 it lasts 2n*/3—2n/3+O(1) steps, and for d = 5
infection takes n? — 3n + O(1) steps. We do not believe that these exact sets A minimise
percolation time of a set of size n?~! in [n]?; for example, taking initially infected sets
A=A = Ule Vin|n/2) appears to lead to strictly smaller coefficients of n*. Moreover,
as pointed out to us by A. Nicholas Day [10], for some values of n their percolation time
can be beaten significantly, suggesting that the lower bound in Theorem 2 could still be
sharp.

It is easy to see that there are two smallest percolating sets in d-neighbour bootstrap
percolation on [2]¢: the set of all vertices with an even sum of coordinate values, and the
set of all vertices with an odd sum of coordinate values. Now, consider n = 2P for some
p > 1. We can think of [2P]? as a [2]? cube of subcubes isomorphic to [2P71]%. We claim
that mg(2P) < d2P = dn.

Indeed, for p = 1 we immediately have mq(2) = 1 < 2d. So, within [2P]¢, by induction
on each of the “even” subcubes isomorphic to [2P~1]? we place a set of size (2P71)¢~! that
infects that subcube in time at most d2P~'. Note that since exactly half of the 2¢ cubes
contain such sets, the size of the initially infected set is

2d—1<2p—1)d—1 — (2p)d—1 — nd—l.
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Once the “even” subcubes isomorphic to [2P7!]? are fully infected, the “odd” subcubes
also necessary become infected from the centre of the grid [2F]% outwards in diagonal
layers. It is again easy to see that this process will last at most d2P~! time steps, giving
total time at most d2P~! 4 d2P~! = d2P = dn, proving our claim.

One could sharpen the above analysis of the percolation time, and the argument could
most likely be generalised to other values of n, e.g., to prime powers. However, it is not
immediately obvious to us how to make it work for general n. Still, we expect the answer
to the following question to be positive.

Question 7. Is my(n) = o(n?) for all d > 37

One could also ask about m(T<), the size of the smallest percolating sets in d-neighbour
bootstrap percolation on T¢, the d-dimensional torus of size n. It is known that m(T?) =
n — 1, but the situation quickly becomes more complicated in higher dimensions. Our
result immediately implies that m(T%) < n?"!, but this bound is not sharp. For example,
for d = 3 we could infect an [n — 1]* cube using (n — 1)? initially infected vertices, and
then use the boundary conditions of the torus to infect

([n] x [n =1 x[n = 1)) U([n = 1] x [n] x [n = 1) U ([n = 1] x [n = 1] x [n])

with only three additional initially infected vertices. It is easy to see that this set perco-
lates the torus, giving us

m(T2) < (n—1)>+3=n>—-2n+4 <n?

for all n > 3. In fact, Jeger and Zehmakan [13] recently showed that m(T%) = n?! +
O(n%=2) but the following question is still open.

Question 8. What is the exact value of m(T%) for d > 37
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