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Abstract

The partition lattice and noncrossing partition lattice are well studied objects
in combinatorics. Given a graph G on vertex set {1, 2, . . . , n}, its bond lattice,
LG, is the subposet of the partition lattice formed by restricting to the partitions
whose blocks induce connected subgraphs of G. In this article, we introduce a
natural noncrossing analogue of the bond lattice, the noncrossing bond poset, NCG,
obtained by restricting to the noncrossing partitions of LG.

Both the noncrossing partition lattice and the bond lattice have many nice com-
binatorial properties. We show that, for several families of graphs, the noncrossing
bond poset also exhibits these properties. We present simple necessary and suf-
ficient conditions on the graph to ensure the noncrossing bond poset is a lattice.
Additionally, for several families of graphs, we give combinatorial descriptions of
the Möbius function and characteristic polynomial of the noncrossing bond poset.
These descriptions are in terms of a noncrossing analogue of non-broken circuit
(NBC) sets of the graphs and can be thought of as a noncrossing version of Whit-
ney’s NBC theorem for the chromatic polynomial. We also consider the shellability
and supersolvability of the noncrossing bond poset, providing sufficient conditions
for both. We end with some open problems.

Mathematics Subject Classifications: 06A07, 05A15, 05C30, 05C31
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1 Introduction

The noncrossing partition lattice on [n] = {1, 2, . . . , n}, denoted by NCn in this paper,
was introduced in 1972 by Kreweras [20] and has received considerable attention from
the combinatorics community since then. It enjoys many nice order-theoretic properties.
For example, it is graded, EL-shellable [6], self-dual (and hence rank-symmetric) [20],
k-Sperner for all k [26], and supersolvable [18]. The Catalan numbers appear in several
contexts of the noncrossing partition lattice, being both the number of elements of the
lattice as well as the Möbius value of the maximum element of the lattice. The maximal
chains of NCn are equinumerous with spanning trees of the complete graph Kn, and
thus also with parking functions. In [28], Stanley showed a beautiful connection between
parking functions and NCn by exhibiting a natural edge labeling indexed by parking
functions. Consequently, Stanley showed that the flag (quasi)symmetric function of NCn

is (up to a simple automorphism) the parking function symmetric function introduced
by Haiman [16]. In addition to their significance in combinatorics, noncrossing partitions
have surprising connections to other mathematics including low-dimensional topology,
geometric group theory, mathematical biology, and noncommutative probability. We refer
the reader to McCammond’s [21] and Simion’s [25] survey articles for more information on
the many properties of noncrossing partitions both within and outside of combinatorics.

The noncrossing partition lattice has been generalized in several ways. In [24], Reiner
introduced a type-B and type-D noncrossing partition lattice and showed that they have
many of the nice properties that NCn (the type-A version) has. Reiner then asked if one
could define a noncrossing partition lattice for any Coxeter group. The work of Bessis [5],
Brady [9], and Brady and Watt [10] showed that not only is this possible, but that these
lattices play an important role in constructing monoids and K(π, 1) spaces for the Artin
groups associated with finite Coxeter groups. One recovers NCn by taking the symmetric
group as the Coxeter group. This family of noncrossing partition lattices associated to
Coxeter groups retains many of the nice order-theoretic properties that NCn possesses.
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For example, they are graded, lattices (see [11] for a uniform proof), shellable (see [3] for
a uniform proof), and self-dual [5].

Other methods of generalizing the noncrossing partition lattice have been studied and
shown to be fruitful. For example, in [13] Edelman introduced the k-divisible noncross-
ing partition lattice, the subposet of NCn where each partition has all of its block sizes
divisible by k. Later, Armstrong [2] introduced and studied the k-divisible noncrossing
partition lattice for each finite Coxeter group. More recently, motivated by the connec-
tion between the noncrossing partition lattice and parking functions, Bruce, Dougherty,
Hlavacek, Kudo, and Nicolas [12] introduced a subposet of the noncrossing partition lat-
tice obtained by removing chains that corresponded to parking functions with certain
restrictions. To solve a conjecture put forward in that article, Mühle [23] defined two new
subposets of the noncrossing partition lattice obtained by removing partitions which do
not contain certain blocks. Mühle [23] showed that these new posets are graded, shellable,
and supersolvable.

In this article, we introduce a new generalization of the noncrossing partition lattice
which is based on the structure of finite graphs. This generalization can be thought of
as the intersection of the noncrossing partition lattice and a bond lattice. Given a graph
with vertex set [n], its bond lattice is a subposet of the partition lattice obtained by
restricting it to the set of partitions such that for each block B in the partition, the
induced subgraph of G with vertex set B is connected. Note that the bond lattice of
the complete graph is the partition lattice since any induced subgraph of the complete
graph is connected. The bond lattice carries important combinatorial information about
the graph. For example, it encodes exactly the same information as the cycle matroid
associated to the graph. In fact, the bond lattice is (isomorphic to) the lattice of flats of
this cycle matroid. Moreover, its characteristic polynomial is (essentially) the chromatic
polynomial of the graph and its chromatic symmetric function can be computed from the
lattice as well. Since the partition lattice is the bond lattice of the complete graph, one
can consider the noncrossing partition lattice as a noncrossing version of a bond lattice.
It is this idea that is the starting point of our work. The noncrossing bond poset of a
graph is the intersection of the noncrossing partition lattice and its bond lattice, i.e. the
poset obtained from its bond lattice by removing any partition that is crossing.

While many of the generalizations of the noncrossing partition lattice discussed above
exhibit the nice properties of NCn, the situation for the noncrossing bond poset is a
bit more nuanced. In general, many of these properties do not hold for the noncrossing
bond poset of generic graphs. We note that this might be expected as the structure
of graphs can vary widely. Nevertheless, we are able to identify families of graphs for
which some of these nice properties still hold. We present simple necessary and sufficient
conditions on the graph for the noncrossing bond poset to be a lattice (see Theorem 6).
The Möbius function and the characteristic polynomial of the bond lattice of a graph can
be interpreted combinatorially in terms of non-broken circuit (NBC) sets via Whitney’s
NBC theorem. We show that, for several families of graphs, similar interpretations hold
for the noncrossing bond poset in terms of what we call noncrossing NBC sets. We
obtain our noncrossing version of Whitney’s NBC theorem in two different ways, one by
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using the theory of non-bounded below (NBB) sets introduced by Blass and Sagan [8]
(see Theorem 15) and the other by using the minimum EL-labeling for geometric lattices
introduced by Björner [6] (see Theorem 23). Both approaches are necessary as there are
some graphs which can be handled by only one of these methods. Moreover, the EL-
labeling approach allows us to provide shellability results for the noncrossing bond poset
of several families of graphs. Additionally, we show that the noncrossing bond poset of
perfectly labeled graphs, which arise from chordal graphs, admit Sn EL-labelings (see
Proposition 33). Using a result of McNamara [22], we get that when these are lattices
they are supersolvable lattices. These results on perfectly labeled graphs parallel the
results for chordal graphs in realm of bond lattices.

We also give two algorithms for non-crossing bond posets in the appendix. Algo-
rithm 48 determines if the noncrossing bond poset of a graph is a lattice. Algorithm
53 determines if a graph belongs to a family of graphs for which the noncrossing NBC
interpretation of the Möbius function and characteristic polynomial hold. Our algorithms
both run in time polynomial in n, the number of vertices of the graph. This is of interest
because brute-force algorithms that do not take advantage of the theory we develop can,
in the worst case, take time super-exponential in n.

The rest of the paper is organized as follows. In Section 2 we discuss the basic structure
of the noncrossing bond poset. After this, we consider the Möbius function and charac-
teristic polynomial in Section 3. Edge labelings are then studied in Section 4. Next, we
look at the properties of several families of graphs in Section 5. Section 6 contains several
open problems. We finish with the appendix on algorithms we previously mentioned.

Some of these results appeared in an earlier version of this paper published in the
Proceedings of Formal Power Series and Algebraic Combinatorics 2019 [14].

2 The Structure of the Noncrossing Bond Poset

We assume the reader is familiar with the basic concepts of graph theory (see [30, Graph
Theory Appendix] for any undefined terms) as well as basic concepts related to posets
(see [30, Chapter 3] for background and notation). Let G be a graph. For the remainder
of this paper, unless otherwise noted, we will assume that the vertex set of G is [n]. We
will use the notation V (G) for the vertex set of G and E(G) for the edge set of G. When
we write out edges, we will write them in the form ij where i < j. Moreover, we will
always draw our graphs so that the vertices lie on a circle with vertex 1 at the top and
the remaining vertices appearing in clockwise order around the circle. Edges will always
be drawn so that they are the line segments between their endpoints. We will refer to this
as the graphical representation of G. We say that two edges of G cross if their respective
line segments intersect in the graphical representation, i.e. a1a2 and b1b2 cross if and only
if a1 < b1 < a2 < b2 or b1 < a1 < b2 < a2. See Figure 1 for several examples of graphical
representations.

A subgraph H of a graph G is called spanning if V (H) = V (G). Note that when
considering a spanning subgraph H of G, it is enough to just know E(H). Because of
this, we will often make no distinction between subsets of E(G) and spanning subgraphs
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Figure 1: A graph and several subgraphs

of G. A subgraph H of a graph G is called induced if whenever u and v are vertices in
H and uv ∈ E(G), then uv ∈ E(H). Given a subset of the vertices, S, let G[S] denote
the induced subgraph of G with vertex set S. Similarly, if E is a set of edges, we will use
G[E] to denote the induced subgraph on the vertices which are endpoints of the edges
in E. We say a spanning subgraph of G is a bond if every connected component of the
subgraph is induced. As an example, consider the graph G in Figure 1. The subgraphs
H, K, and H ∩K are bonds, but L is not since it is missing the edge 16.

To each bond H, one can associate a set partition, π(H), so that i and j are in the
same block of π(H) if and only if i and j are in the same connected component of H.
For example, for the bond H in Figure 1, we have that π(H) = 12345/6. Similarly, for
each partition π = B1/B2/ · · · /Bk, we associate the corresponding spanning subgraph
G[π] whose edge set is the disjoint union of the edges in G[B1], . . . , G[Bk]. We note that
G[B1/B2/ · · · /Bk] is not necessarily a bond since G[Bi] need not be connected.

A partition π = B1/B2/ · · · /Bk is called crossing if there exists i 6= j, a, c ∈ Bi and
b, d ∈ Bj such that a < b < c < d. For example, the partition 1248/56/37 is crossing since
we can pick 2, 4 ∈ 1248 and 3, 7 ∈ 37. A partition is noncrossing if it is not crossing. We
say the bond H is crossing (resp. noncrossing) if π(H) is crossing (resp. noncrossing). It
is not hard to verify the following proposition.

Proposition 1. A bond H is crossing if and only if there exist two distinct connected
components H1 and H2 of H and edges e1 ∈ H1 and e2 ∈ H2 such that e1 and e2 cross.

Note that a noncrossing bond H can contain crossing edges, as long as every pair of
edges that cross belong to the same connected component of H. For example, the bond
H in Figure 1 is noncrossing since it corresponds to 12345/6, but it has crossing edges,
namely 14 and 35.

Definition 2. Let G be a graph. The bond lattice of G, denoted by LG, is the collection
of bonds of G ordered by inclusion. The noncrossing bond poset, denoted by NCG, is the
collection of noncrossing bonds of G ordered by inclusion.

See Figure 2 for an example of a graph, its bond lattice, and noncrossing bond poset.
Unlike the bond lattice, the noncrossing bond poset is not always a lattice. Note that for
the graph G in Figure 2, the bond 13/24 is crossing and so is not in NCG. Thus for this
graph G, NCG not only fails to be a lattice, it even fails to have a maximum element.
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Figure 2: A graph and its bond lattice and noncrossing bond poset.

Note that NCG is not necessarily a meet semi-lattice either; the graph G in Figure 1
gives one such example. The bonds H and K in Figure 1 are noncrossing and thus are
in NCG. However, they do not have a meet in NCG since the noncrossing bonds X that
are below H and K (i.e. are contained in H and K) are those with E(X) = ∅, {14}, or
{35}. These do not contain a unique maximal element, so H and K do not have a meet.

Definition 3. Let G be a graph and let e and f be two crossing edges of G. We say e and
f are crossing closed if there exists a unique induced connected subgraph of G containing
e and f that is minimal among all such subgraphs with respect to containment. If such
a subgraph exists, we denote it by J(e, f). We say G is crossing closed if every pair of
crossing edges in G are crossing closed.

Note that the graph G in Figure 1 is not crossing closed since 14 and 35 are crossing but
not crossing closed. There are two distinct minimal, induced, connected subgraphs of G
that contain 14 and 35, namely the bond H = G[12345/6] and the bond K = G[13456/2]
shown in Figure 1. On the other hand, trees and complete graphs are crossing closed. If
G is a tree and e and f are two crossing edges, then J(e, f) is the unique path in G with
end-edges e and f . If G is a complete graph, then J(e, f) = G[e∪ f ]. However, this is far
from a complete list of families of crossing closed graphs. We will save the discussion of
more families which are crossing closed for later sections after we have developed a few
more concepts.

Before we continue, let us explain the choice of the letter “J” in the notation J(e, f).
As we will see in Theorem 5, in the case that J(e, f) exists it is (essentially) the join of
e and f in NCG. We also wish to explain the reason we use the term “crossing closed”.
As was mentioned in the introduction, the bond lattice is the lattice of flats of the cycle
matroid of the graph. One of the many equivalent ways to define a matroid is through a
closure operator. In terms of the lattice of flats, the closure of a subset of the ground set
is the join of the elements in the lattice of flats. As we mentioned before, crossing closed
edges are exactly the crossing edges which have a join in the graph’s noncrossing bond
poset and crossing closed graphs are exactly the graphs whose noncrossing bond poset is
a lattice. Thus, a graph being crossing closed implies the existence of a closure operator
on the crossing edges that behaves in a similar way that the closure operator does in the
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Figure 3: At least one of the dotted edges incident to x0 and at least of the dotted edges
incident to xk exist in J(e, f).

cycle matroid. Note that this does not give us a matroid structure as our closure operator
is not the same as the one for matroids.

Lemma 4. Let G be a graph and let e and f be two crossing closed edges of G. Then
J(e, f) is of one of the following two forms, depending on whether or not there is an edge
in G connecting a vertex in e to a vertex in f .

1. There is an edge in G connecting a vertex of e to a vertex of f . In this case,
J(e, f) = G[e ∪ f ] and J(e, f) is a subgraph of K4.

2. There does not exist an edge between a vertex of e and a vertex of f . In this case
J(e, f) has the form of the graph depicted in Figure 3. Moreover, all vertices in
J(e, f) not on e or f are cut vertices of G that separate e and f .

Proof. Suppose there is an edge in G connecting a vertex of e to a vertex of f . Then
G[e ∪ f ] is connected, induced, and contains e and f . It is also clearly minimal with
respect to those properties so J(e, f) = G[e ∪ f ].

Now suppose there are no edges in G connecting a vertex of e to a vertex of f . Let
T be a spanning tree of J(e, f) that contains e and f . We claim that T cannot have a
vertex of degree more than 3 with respect to T . To see why, suppose this was not the
case. Then since T is a tree, it must have at least 3 leaves. Both endpoints of e cannot
be leaves of T as then T would then be e and T must also contain f . The same can be
said of f , so e and f together can contain at most two leaves of T . Thus there must be
a third leaf w of T with w not in e or f . J(e, f) \ w is then induced, connected (since it
contains spanning tree T \w), and contains e and f , a contradiction to the minimality of
J(e, f). Thus T is a path containing e and f . The edges e and f must be the two edges
at the ends of T . Otherwise at least one end-vertex of T , say w, would not be on either
e or f and J(e, f) \ w would again contradict the minimality of J(e, f).

Let the vertices of J(e, f) be given in the order v, v′, x0, . . . , xk, w
′, w that they come

along the spanning path T , where e = vv′, f = ww′, and k > 0. E(J(e, f)) is the set of
edges these vertices induce. We claim that, besides the edges in T , there are no additional
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edges in E(J(e, f)) except possibly for the edges x0v and xkw should either of them be
present in G.

Suppose, for the sake of obtaining a contradiction, that the claim at the end of the last
paragraph is not true. Then k > 0. If vxi with i > 0 is present, then v′vxixi+1 . . . xkw

′w
is a path containing e and f whose vertex set is strictly contained in V (J(e, f)) contra-
dicting the minimality of J(e, f). Similarly, we cannot have an edge v′xi with i > 0. By
assumption we have no edges from a vertex of e = vv′ to a vertex of f = ww′. Thus we
have no edges from v or v′ to any vertex other than x0. Similarly we have no edges from
w or w′ to any vertex other than xk. The only remaining possibility is then that we have
an edge xixj with j − i > 2. But then vv′x0 . . . xixj . . . xkw

′w is a path containing e and
f whose vertex set is strictly contained in J(e, f), again contradicting the minimality of
J(e, f).

We now claim that each xi is a cut-vertex of G and separates e and f . Suppose instead
that G \ xi has a component C that contains e and f . Then by the minimality of J(e, f),
C must contain J(e, f) which contains xi, a contradiction.

Theorem 5. Let G be a graph. Let e and f be two crossing edges of G. Then e and f
are crossing closed if and only if e ∨ f exists in NCG. In the case e and f are crossing
closed, J(e, f) is the unique non-trivial component of e∨f and e∨f is the bond with edge
set E(J(e, f)). Furthermore, G is crossing closed if and only if e∨ f exists for every pair
of crossing edges e and f .

Proof. Suppose e and f are crossing edges which are crossing closed. Then J(e, f) exists.
Let e be the bond with edge set {e} and f the bond with edge set {f}. Let H be the
bond with edge set E(J(e, f)). We claim that H = e ∨ f in NCG. Suppose H ′ ∈ NCG

and we have e, f 6 H ′ in NCG. Edges e and f must be in the same component C of H ′

otherwise H ′ would be crossing. Thus J(e, f) is a subgraph of C and so H 6 H ′. Thus
H is the unique minimal element of NCG that contains bonds e and f and so is e ∨ f .

Now suppose H = e∨f exists so that H ∈ NCG. We must have that e and f belong to
the same connected component C of H, otherwise H would be crossing. Since H = e∨ f
is the minimal element of NCG that contains e and f , C must be the unique non-trivial
component of H. We claim that J(e, f) = C. To show this, let H ′ be any connected,
induced subgraph of G that contains e and f . By Definition 3, we must show that J(e, f)
is in H ′. If we view H ′ as the bond with edge set E(H ′) then H ′ is in NCG (since it
contains a unique nontrivial connected component and so is noncrossing). Since e, f 6 H ′

in NCG we must have H = e ∨ f 6 H ′ and thus C is a subgraph of H ′.
It thus follows that G is crossing closed if and only if e ∨ f exists for every pair of

crossing edges e and f of G.

Theorem 6. Let G be a graph. Then NCG is a lattice if and only if G is crossing closed.
Moreover, if G is crossing closed and H,H ′ ∈ NCG, then H ∧H ′ = H ∩H ′. Thus NCG

is a meet semi-lattice of LG.

Proof. First, suppose that NCG is a lattice. Then joins exist and in particular the join
e ∨ f exists for each pair of crossing edges e, f in G. Thus, by the previous theorem,
J(e, f) exists for every pair of crossing edges e, f and G is crossing closed.
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Now suppose G is crossing closed. Then G must be a noncrossing bond of itself. If G
had two connected components C1 and C2 that cross, then there must be edges e ∈ C1

and f ∈ C2 that cross. There can be no connected subgraph of G that contains both e and
f , so J(e, f) cannot exist, contradicting the assumption that G was crossing closed. Thus
G is the unique maximum element of NCG. Since NCG is finite and contains a maximum
element, to show NCG is a lattice, it suffices to show that it is a meet-semilattice.

We claim that if H,H ′ ∈ NCG, then H ∩H ′ ∈ NCG. The meet of H and H ′ in LG is
H ∩H ′. If H ∩H ′ /∈ NCG, there must be crossing edges e and f belonging to different
components of H ∩H ′. But J(e, f) is a subgraph of both H and H ′ and so a subgraph
of H ∩H ′, a contradiction. Thus H ∩H ′ ∈ NCG and we also have H ∧H ′ = H ∩H ′ in
NCG.

In the appendix, we present Algorithm 48 that decides if NCG is a lattice in time
polynomial in n, the number of vertices of the graph G. It does this by deciding the
equivalent question of whether G is crossing closed. We note in the appendix that a brute-
force algorithm for this problem could, in the worst case, take time super-exponential in
n.

A lattice is called atomic if every element is the join of a particular subset of atoms,
where 0̂ is considered to be the empty join. Moreover, we say the lattice is (upper)
semimodular if whenever x ∧ y l x, y, then x, y l x ∨ y. Here and throughout the paper
we use the notation xl y to denote that y covers x in the poset. A finite lattice which is
both atomic and semimodular is called geometric.

It is well-known that there is a bijection between geometric lattices and (simple)
matroids. Since the bond lattice of a graph is the lattice of flats for its cycle matroid,
every bond lattice is geometric. The situation for the noncrossing bond poset differs.

Proposition 7. Let G be a crossing closed graph. Then we have the following.

(a) NCG is atomic.

(b) NCG is a meet-sublattice of LG.

(c) If e and f cross in G, then J(e, f) is the unique non-trivial connected component of
e ∨ f (the component that contains e and f).

(d) NCG is semimodular if and only if G has no crossing edges.

(e) NCG has a 1̂.

Parts (b) and (c) of the previous proposition were proved in Theorem 6 and Theorem
5 respectively. The proofs of (a), (d), and (e) are straightforward.

By Proposition 7 part (e), the noncrossing bond poset of any crossing closed graph
has a 1̂. However, this is not the only way to have a maximal element. For example, the
noncrossing bond poset of the graph G in Figure 1 is not a lattice since G is not crossing
closed but still has a 1̂, which is G itself. The following proposition provides several
characterizations for when a 1̂ exists. The proof is straightforward and thus omitted.
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Proposition 8. Let G be a graph. Then the following are equivalent.

(a) NCG has a 1̂.

(b) Whenever e and f are crossing edges of G, they are in the same connected component
of G.

(c) G is a noncrossing bond of itself.

The following lemma will help us prove results on general graphs by reducing them to
the case of connected graphs.

Lemma 9. Suppose that G consists of connected components C1, C2, . . . , Ck such that no
edges of Ci and Cj cross for all i 6= j. Then NCG

∼= NCC1 ×NCC2 × · · · ×NCCk
.

Proof. Using induction, it suffices to show this result when k = 2. In that case it is easy to
check that the map ϕ : NCG → NCC1 ×NCC2 given by ϕ(H) = (H ∩E(C1), H ∩E(C2))
is an isomorphism.

We will now consider the grading of NCG. Unlike the bond lattice which is always
graded, the noncrossing bond poset need not be graded. Consider the graph in Figure 4.
The bond corresponding to the partition 1/26/35/4 is noncrossing, but the only element
of NCG which covers 1/26/35/4 is 123456. It follows that 1/2/3/4/5/6 l 1/26/3/4/5 l
1/26/35/4l123456 is a maximal chain in NCG. However, there is another maximal chain
1/2/3/4/5/6 l 14/2/3/5/6 l 124/3/5/6 l 1246/3/5 l 12456/3 l 123456 and so NCG is
not graded. Note that this graph is a path and hence is crossing closed. Thus G being a
crossing closed graph does not imply NCG to be graded.

In the previous example, we were able to find a saturated 0̂–1̂ chain in which each cover
is obtained by merging exactly two blocks of the corresponding partition. It turns out
that for graphs whose connected components do not cross (such as connected graphs and
crossing closed graphs) such a chain can always be found. In the following proposition and
throughout the remainder of the paper, we use cc(H) to denote the number of connected
components of a graph H.
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Proposition 10. Let G be a graph on [n] which is a noncrossing bond of itself. Then
NCG is graded if and only for every cover relation H lH ′, there are exactly two blocks
of H that merge to get H ′. Moreover, in the case that NCG is graded, the rank function
is given by ρ(H) = n− cc(H).

Proof. By Proposition 8, NCG has a 1̂ = G and the connected components of G do
not cross. By Lemma 9, if G has more than one connected component, then NCG is
the product of noncrossing bond posets, one for each connected component. Since the
product of graded posets is graded and the rank function of the product is the sum of the
rank functions, it suffices to prove the result for connected graphs and so we may assume
G is connected.

Let T be a spanning tree of G. Let e1, e2, . . . , en−1. be a sequence of edges of T such
that for each forest in the sequence {e1}, {e1, e2}, . . . , {e1, e2, . . . , en−1} there is a unique
nontrivial connected component. For each 1 6 i 6 n− 1, let Hi be the induced subgraph
on {e1, e2, . . . , ei}. Since each Hi has a unique nontrivial connected component, each Hi

is noncrossing. Moreover, 0̂ lH1 l · · · lHn−1 = G is a maximal chain of length n − 1.
Since the minimum element of NCG has n blocks, the maximum element has 1 block,
and there is a maximal chain of length n − 1, NCG is graded if and only if for every
cover relation H lH ′, there are exactly two blocks of H that merge to get H ′. Now the
last statement of the theorem follows immediately since when we merge two blocks, the
number of connected components decreases by one.

3 The Möbius Function and Characteristic Polynomial

In this section, we introduce a family of graphs called upper crossing closed graphs. The
motivation is that this is a class of graphs for which we are able to provide combinatorial
interpretations of the Möbius functions and characteristic polynomials of the correspond-
ing noncrossing bond posets. We briefly recall the definitions of the Möbius function and
characteristic polynomial. For a more information, we refer the reader to [30, Chapter 3].

We will be dealing with the one-variable version of the Möbius function, defined for
posets P with 0̂. This can be recursively defined by

µ(x) =

1 if x = 0̂,

−
∑
y<x

µ(y) otherwise.

Moreover, if P has 0̂ and also is graded with rank function ρ, then the characteristic
polynomial of P is given by

χ(P, t) =
∑
x∈P

µ(x)tρ(P )−ρ(x).

Let ch(G, t) be the chromatic polynomial of the graph G, the polynomial p(t) such
that for all positive integers t, p(t) is the number of proper colorings of G using at most t
colors The chromatic polynomial of a graph G and characteristic polynomial of its bond
lattice are related in the following way.
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Theorem 11. (see [29, Theorem 2.7] ) For all finite graphs G, ch(G, t) = tcc(G)χ(LG, t).

In [33], Whitney gave a combinatorial interpretation for the coefficients of the chro-
matic polynomial in terms of non-broken circuit sets or NBC sets, which are defined as
follows. Let G be a graph. Let � be a total ordering on the edges of G. A broken circuit
of G with respect to � is a collection of edges of G obtained by removing the smallest edge
of a cycle of G with respect to that ordering. We say a subset S of E(G) is a non-broken
circuit set or NBC set if S contains no subsets which are broken circuits. Let nbck(G) be
the number of k-edge NBC sets of G with respect to �. Whitney showed the following.

Theorem 12 (Whitney [33]). Let G be a finite graph on [n]. Then for any total ordering
� of E(G),

ch(G, t) =
∑
k>0

(−1)k nbck(G)tn−k.

Part of the interest of this theorem is its assertion of the non-obvious fact that that the
number of NBC sets of size k does not depend on the ordering of the edges. By Theorem
11 and the fact that LG has rank function ρ(H) = n− cc(H) we have the following.

Theorem 13 (Whitney [33]). Let G be a finite graph. Then for any total ordering � of
E(G),

χ(LG, t) =
∑
k>0

(−1)k nbck(G)tρ(LG)−k.

As an example, consider the twisted 4-cycle graph G in Figure 5. It is not hard to
calculate that

χ(LG, t) = t3 − 4t2 + 6t− 3.

This can be done by calculating the Möbius function of LG and then using the definition
of the characteristic polynomial or by calculating ch(G, t) and then using Theorem 11.
We can also use Theorem 13. Suppose � is lexicographic order, i.e. 12 � 13 � 24 � 34.
Since G is a cycle, the only broken circuit is {13, 24, 34} and hence every subset of E(G)
is an NBC set except for {13, 24, 34} and {12, 13, 24, 34}. Thus the absolute values of the
coefficients of χ(LG, t) are indeed nbc0(G) = 1, nbc1(G) = 4, nbc2(G) = 6, nbc3(G) = 3
and nbck(G) = 0 for k > 3. This agrees with the coefficients one finds by using the
Möbius function or the chromatic polynomial.

Now let us compare this with the characteristic polynomial of NCG. From the Möbius
values shown in Figure 5, we see that

χ(NCG, t) = t3 − 4t2 + 5t− 2.

Since the absolute value of the coefficients of χ(NCG, t) are less than or equal to the
corresponding values in χ(LG, t), it is plausible that the coefficients of χ(NCG, t) might
count a subset of the NBC sets of G.

If � is a total order of E(G) we say that S is a noncrossing NBC set with respect to
�, if S is an NBC set with respect to that order and contains no edges which cross in the
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Figure 5: The twisted 4-cycle and its noncrossing bond poset. Möbius values are in red.

graphical representation of S. We define NCNBCk(G) to be the set of noncrossing NBC
sets of size k and ncnbck(G) to be the number of such sets.

If � is again the lexicographic order on the edges of the twisted 4-cycle, then all
NBC sets are also noncrossing NBC sets except for {13, 24} and {12, 13, 24}. Thus the
sequence ncnbc0(G) = 1, ncnbc1(G) = 4, ncnbc2(G) = 5, ncnbc3(G) = 2 and ncnbck(G) =
0 for k > 3 does match the sequence of absolute values of the coefficients of χ(NCG, t).
Unfortunately, unlike nbck(G), ncnbck(G) does depend on the ordering � (despite the
fact that the notation does not reflect this). For example, if we order the edges as
13 � 24 � 12 � 34, there is only one noncrossing NBC set with 3 edges, instead of 2 and
so this ordering will not give the correct coefficients. However, the upper crossing closed
graphs (defined below), do have edge orderings for which the Möbius values of NCG and
the absolute values of the coefficients of χ(NCG, t) are indeed the counts of noncrossing
NBC sets with respect to those orderings.

Definition 14. We say a graph G is upper crossing closed if it is crossing closed and there
is a total ordering � on E(G) such that for every pair of crossing edges e and f , J(e, f)
contains an edge h such that h � e, f . If � is one such ordering, we say that G is upper
crossing closed with respect to � and also that � is an upper crossing closed ordering of
E(G).

Note that the twisted 4-cycle in Figure 5 is upper crossing closed with respect to
lexicographic order since J(13, 24) = G contains 12 and 12 � 13, 24. Note also that it is
not upper crossing closed with respect to the other ordering 13�24�12�34 we considered
previously since 13 is then the minimum edge in J(13, 24). As we saw earlier, when using
the lexicographic ordering on the twisted 4-cycle (which is upper crossing closed), the

the electronic journal of combinatorics 27(4) (2020), #P4.37 13



coefficients of the characteristic polynomial count noncrossing NBC sets. This is not a
coincidence as we see next.

Theorem 15. Let G be a graph on [n]. If G is upper crossing closed with respect to the
order � on E(G). Then for all H ∈ NCG,

µ(H) = (−1)n−cc(H) ncnbcn−cc(H)(H).

Moreover, if NCG is graded, then

χ(NCG, t) =
∑
k>0

(−1)k ncnbck(G)tρ(NCG)−k.

Before we can prove Theorem 15, we need to discuss the notion of NBB sets developed
by Blass and Sagan in [8].

Definition 16 (Bass and Sagan [8]). Let L be a lattice and let � be a partial order on
the atoms of L. A subset S of the atoms of L is bounded below if there exists an atom a
such that

(a) a� s for all s ∈ S

(b) a <
∨
S

We say a subset S of the atoms of L is a non-bounded below (NBB) set for x if S contains
no bounded below sets and

∨
S = x.

Blass and Sagan’s result generalizes Whitney’s NBC theorem. In particular, if one
considers a graph G and its bond lattice LG, then the edges of G correspond to the atoms
of LG and the NBB sets are exactly the NBC sets of the graph with respect to whatever
ordering is put on the atoms/edges. Blass and Sagan showed that we can use NBB sets
to determine the value of the Möbius function.

Theorem 17 (Blass and Sagan [8]). Let L be a lattice and let � be a partial order on the
atoms of L. Then for all x ∈ L,

µ(x) =
∑
B

(−1)|B|

where the sum is over NBB sets for x.

In Lemma 19 below, we will show that if � is an upper crossing closed ordering of
a graph G then the NBB sets and the NCNBC sets are the same. We illustrate this
using our running example of the twisted 4-cycle in Figure 5. For this example, we use
the lexicographic ordering which was already shown to be upper crossing closed. First,
let us note that the empty set and any singleton subset of atoms is NBB since their
joins only have themselves below them. Moreover, since G is a 4-cycle, any subset of
2 edges which do not cross is NBB for the same reason. Now let us turn our attention
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to the two edges that do cross, 13 and 24. Their join is the entire graph and since 12
is lexicographically smaller than 13 and 24, {13, 24} is a bounded below set. So every
2-element subset of the atoms except {13, 24} is NBB. Finally, we consider the subsets
of size 3. Since G is a 4-cycle the join of any 3-element subset is the entire graph. Since
12 is the smallest edge lexicographically, {13, 24, 34} is bounded below. Of the remaining
3-element subsets, {12, 13, 24} is not NBB since it contains {13, 24}, {12, 13, 34} is NBB,
and {12, 24, 34} is NBB. We conclude that the NBB sets of the twisted 4-cycle with
edges ordered lexicographically are ∅, {12}, {13}, {24}, {34}, {12, 13}, {12, 24}, {12, 34},
{13, 34}, {24, 34}, {12, 13, 34}, {12, 24, 34}, which match up exactly with the noncrossing
NBC sets of the twisted 4-cycle for the lexicographic ordering.

Lemma 18. Let G be a crossing closed graph and let S ∈ NCNBCk(G). Then the join
of the elements in S is the same in LG and NCG

Proof. In this proof, we will use
∨
LG

and
∨
NCG

to denote the join operators in LG and
NCG respectively. First, let us show that

∨
LG
S is a noncrossing bond. Suppose this was

not the case and let C1 and C2 be components of
∨
LG
S which have crossing edges. Let

S1 = S ∩E(C1) and S2 = S ∩E(C2). Then S1 is spanning tree of C1 and S2 is a spanning
tree of C2. Since C1 and C2 cross, there exists edges ac ∈ E(C1) and bd ∈ E(C2) with
a < b < c < d which cross. In S1 there is a path from a to c, but this path must separate
b and d. Similarly, in S2 there is a path between b and d. This path must cross the path
between a and c. However, these two paths are in different connected components. This
implies that S1 and S2 must cross, but then S is crossing which is impossible.

Since S is a collection of edges of G and contains no broken circuits, it forms a
spanning forest of G. It is not hard to see that

∨
LG
S is the bond whose induced connected

components are the connected components of S. As we saw, since S is noncrossing,
∨
LG
S

is a noncrossing bond in LG and hence is an element of NCG. It follows that the partition
associated with

∨
LG
S is noncrossing. It is not hard to see that this is exactly the same

partition associated with
∨
NCG

S. Thus, the result holds.

Lemma 19. Let G be an upper crossing closed graph with total ordering � on E(G).
Suppose G is upper crossing closed with respect to �. Order the atoms of NCG by �.
Then NBBk(G) = NCNBCk(G), where NBBk(G) is the set of non-bounded below sets of
NCG with k elements.

Proof. Suppose that S ∈ NBBk(G), but that S /∈ NCNBCk(G). If S is not an NBC set,
then it contains a broken circuit C. Let e be the edge removed from the cycle to obtain
C. Then it is not hard to see that C is a bounded below set with e as the atom which is
below all the elements of C. This would imply that S /∈ NBBk(G). Thus, S must be an
NBC set. Now suppose that S has crossing edges. Let S ′ be a set consisting of two such
crossing edges. Since G is upper crossing closed,

∨
S ′ contains an edge smaller than all

the edges of S ′. It follows that S ′ is a bounded below set, but then S is not an NBB set
as it contains S ′. Thus S ∈ NCNBCk(G).

Next, suppose that S ∈ NCNBCk(G), but that S /∈ NBBk(G). Then S contains a
bounded below set, T . Note that since T ⊆ S, T is a noncrossing NBC set. Moreover,
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since T is bounded below, there exists an atom e such that e� t for all t ∈ T and e <
∨
T .

By Lemma 18,
∨
T is the same in LG and NCG. Thus, e <

∨
T and e /∈ T , implies that

e must be in some cycle C of
∨
T . To see why, note that

∨
T is the induced subgraph on

T . The fact that e <
∨
T , implies e is in

∨
T . So if e = uv, there is a path from u to v

in
∨
T . The set T must contain a spanning tree for the component containing u and v.

But since e /∈ T , e is not on this spanning tree, so e must be on a cycle. Moreover, since
e is smaller than all the elements of T , C \ e would be a broken circuit of T . But then S
is not an NBC set which is impossible.

We are now ready to prove Theorem 15.

(Proof of Theorem 15). Order the atoms of NCG by �. Using the fact that G is upper
crossing closed, Lemma 19 shows that a subset of atoms of NCG is NBB if and only if
it is a noncrossing NBC set of G. Then using Blass and Sagan’s result, we have that for
each H ∈ NCG,

µ(H) =
∑
B

(−1)|B|

where the sum is over all the noncrossing NBC sets B such that
∨
B = H. Since B is a

noncrossing NBC set, Lemma 18 implies that
∨
B is the same in LG and NCG. We claim

that for a fixed H, all the NBC sets whose join is H in LG have the same size, namely
n− cc(H). To see why, suppose that S is an NBC set and

∨
S = H. It must be the case

that the edges in S form a subgraph of G so that its connected components are exactly
the connected components of H. Moreover, since NBC sets cannot contain cycles, S
must be minimal with respect to spanning the connected components. So each connected
component of S must be a tree. Thus the number of edges in S is n− cc(S) = n− cc(H).
It now follows that

µ(H) =
∑
B

(−1)|B|

=
∑
B

(−1)n−cc(H)

= (−1)n−cc(H)#(noncrossing NBC sets of G whose join is H)

= (−1)n−cc(H) ncnbcn−cc(H)(H).

To finish, note that if NCG is graded, then since G is crossing closed, it has a 1̂ and
so Proposition 10 implies that the rank function of NCG is ρ(H) = n − cc(H). Since
χ(NCG, t) =

∑
H∈NCG

µ(H)tρ(NCG)−ρ(H),

χ(NCG, t) =
∑

H∈NCG

(−1)n−cc(H)#(noncrossing NBC sets of G with join H)tρ(NCG)−ρ(H)

=
∑
k>0

∑
ρ(H)=k

(−1)k#(noncrossing NBC sets of G with join H)tρ(NCG)−k

=
∑
k>0

(−1)k ncnbck(G)tρ(NCG)−k
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as claimed.

In the statement of Theorem 15, we had to make the assumption that NCG is graded
in order to describe the characteristic polynomial. We must do so because there exists
upper crossing closed graphs with the property that their noncrossing bond posets are not
graded. To construct such an example, we will take a subdivision of the graph G given
in Figure 6. As mentioned earlier, the noncrossing bond poset of the graph of G is not
graded. Additionally, since every edge of the graph is crossed, it cannot be upper crossing
closed. This is because if e is the smallest edge and it crosses some edge f , J(e, f) would
need to have an edge smaller than e.

Consider the graph H given in Figure 6 which is obtained from subdividing the edges
24 and 15 and labeling the new vertices 2′ and 6′. H is also a tree and hence is crossing
closed. Any ordering of the edges in which 16′ and 22′ come first is an upper crossing
closed ordering since every J(e, f) contains one of these edges. To see why NCH is not
graded, consider the bond corresponding to the partition 16′/22′6/35/4. If we try to add
any edge to this bond, we create a new crossing. Since H is a tree, if NCH was graded,
each covering relation would be obtained by adding a single edge, a contradiction.

1

2

4

35

6

G

1

2

2′

4

35

6
6′

H

Figure 6: NCG and NCH are not ranked. H is upper crossing closed (G is not).

In this section, we saw that the notion of upper crossing closed allows us to give a
combinatorial description of the Möbius function and characteristic polynomial in terms
of noncrossing NBC sets. As we will see in a later section, the assumption of upper
crossing closed is not always necessary. Indeed there are graphs, which are not even
crossing closed which have such an interpretation. However, there are also graphs for
which no such interpretation is possible. Consider the 5-pointed star in Figure 7. The
characteristic polynomial is given by

χ(NCG, t) = t4 − 5t3 + 5t2 − 1.

The coefficient of t is 0, but the coefficient of t0 is nonzero. If the characteristic polynomial
was the generating function for noncrossing NBC sets, then this would imply that there is
1 noncrossing NBC set of size 4, but none of size 3. However, every subset of a noncrossing
NBC set is a noncrossing NBC set so this is impossible. This argument generalizes. Say
a polynomial P (t) = cnt

n + cn−1t
n−1 + · · ·+ c1t+ c0 has an internal zero if there exists a
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k such that ck = 0, but ck+1, ck−1 6= 0. By the hereditary property of noncrossing NBC
sets, the generating function for noncrossing NBC sets cannot have internal zeros.

1

2

34

5

G

Figure 7: 5-pointed star

We give an algorithm, Algorithm 53 in the appendix, that when given a graph G will
either produce an specific upper crossing closed ordering of E(G) or will produce what
we term an obstruction, a specific subgraph of G that clearly shows there can be no
such ordering. This gives a forbidden subgraph characterization of upper crossing closed
graphs, Theorem 51: a graph is upper crossing closed if and only if it contains no such
subgraph.

We also prove that Algorithm 53 will run in time polynomial in n, the number of
vertices of G and note that a brute-force algorithm will, in the worst case, take time
super-exponential in n.

4 Edge Labelings and Shellability

In this section we discuss edge labelings of the noncrossing bond poset. We pay particular
attention to the minimum labeling, introduced by Björner, which is an EL-labeling for
every geometric lattice. While the minimum labeling is not an EL-labeling for every
noncrossing bond poset, we give a sufficient condition which guarantees it is an EL-
labeling. We do this for two reasons. First, this will show that the poset is shellable.
Second, it will allow us to show that the combinatorial interpretation for the Möbius
function in terms of noncrossing NBC sets holds for more than just upper crossing closed
graphs.

We briefly review edge labelings of posets. We refer the reader to [32] for more in-
formation. Let P be a graded poset. An edge labeling of P is a function λ : E(P ) → Λ
where E(P ) is the set of edges of the Hasse diagram of P and Λ is a set of labels which
is partially ordered. We note here that although the labels are allowed to be partially
ordered, in this article they will always be totally ordered. Now suppose that P is a
graded poset with edge labeling λ. Let c : x0 l x1 l · · ·l xk be a saturated chain in P .
We say c is increasing if

λ(x0 l x1) < λ(x1 l x2) < · · · < λ(xk−1 l xk).
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Moreover, we say c is decreasing if

λ(x0 l x1) > λ(x1 l x2) > · · · > λ(xk−1 l xk).

Before we move on, let us note that while the inequalities for decreasing are allowed to
be weak, in this paper, they are always strict. Thus, there is no need to add the adjective
“weak” to decreasing.

Let λ be an edge labeling of P . We say λ is an EL-labeling if every interval has a
unique increasing maximal chain and this chain precedes every other maximal chain in
the interval in lexicographic order. Björner [6] and Björner and Wachs [7] showed that
there are several nice topological consequences of a poset having an EL-labeling. For
example, they showed that given a poset with an EL-labeling, the order complex of P is
shellable and has the homotopy type of a wedge of spheres. Because of this connection
with the topology of the order complex, EL-labelings also have implications for the Möbius
function. In particular, we have the following simple combinatorial interpretation for the
Möbius function for graded EL-labeled posets.

Theorem 20 (Björner [6]). Let P be a graded poset with an EL-labeling. Then

µ(x) = (−1)ρ(x)#(decreasing saturated chains from 0̂ to x)

We will now consider an edge labeling for the bond lattice that we can also can apply
to the noncrossing bond poset.

Definition 21 (Björner [6]). Let G be a graph. Fix some total order � on E(G). The
minimum labeling of LG is defined by

λ(H lH ′) = min(E(H ′) \ E(H))

where the minimum is taken with respect to �.

Figure 8 contains an example of the minimum labeling where the edges are ordered
lexicographically. We note that the usual definition of the minimum labeling is phrased
in terms of the join of elements. This makes sense for the bond lattice, however, because
the noncrossing bond poset need not be a lattice, we have phrased it in a different (but
equivalent) way. Björner showed the following concerning the minimum labeling of the
bond lattice. In the following theorem and throughout the section, we will use the term
spanning NBC set of a graph X to mean an NBC set S of X such that the induced
subgraph S is X.

Theorem 22 (Björner [6]). Let G be a graph and let � be a total ordering of E(G). Then
we have the following (where the NBC sets are taken with respect to �).

(a) The minimum labeling with respect to � is an EL-labeling of LG and so LG is
shellable.

(b) The labels along any decreasing saturated chain from 0̂ to X form a spanning NBC
set of X.
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Figure 8: A graph and its noncrossing bond posets labeled by the minimum labeling

(c) For every X ∈ LG, each spanning NBC set of X appears exactly once as a saturated
decreasing chain from 0̂ to X.

Note that Theorem 20 and Theorem 22 together imply Whitney’s theorem (Theo-
rem 13) concerning the NBC set interpretation of the Möbius function. Even though the
minimum labeling is an EL-labeling for the bond lattice of any graph, it need not be
an EL-labeling for the noncrossing bond poset. In the next theorem, we give sufficient
conditions for the labeling to be an EL-labeling. We also show that in this setting, we get
noncrossing analogues of Björner’s result on NBC sets described in the previous theorem.
As a result, we get the same combinatorial interpretation for the Möbius function and
characteristic polynomial as we did with upper crossing closed graphs, see Theorem 15.

Theorem 23. Let G be a graph on [n] such that NCG has a 1̂. Let � be a total ordering
of E(G). Suppose that whenever H < H ′ and e = minE(H ′) \ E(H), the bond induced
on E(H) ∪ {e} is noncrossing. Then we have the following (where the noncrossing NBC
sets are taken with respect to �).

(a) NCG is graded and ρ(X) = n− cc(X).

(b) The minimum labeling with respect to � is an EL-labeling and so NCG is shellable.

(c) The labels along any decreasing saturated chain from 0̂ to X form a spanning non-
crossing NBC set of X.

(d) For every X ∈ NCG, each spanning noncrossing NBC set of X appears exactly once
as a saturated decreasing chain from 0̂ to X.

(e) For H ∈ NCG,
µ(H) = (−1)n−cc(H) ncnbcn−cc(H)(H)

and
χ(NCG, t) =

∑
k>0

(−1)k ncnbck(G)tρ(NCG)−k.
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Proof. For (a), suppose that H l H ′. Let e = minE(H ′) \ E(H) and let H ′′ be the
bond induced by E(H) ∪ {e}. By assumption H ′′ is noncrossing. Thus, in NCG we have
H < H ′′ 6 H ′. It follows that H ′′ = H ′ and so by Proposition 10, NCG is graded and
ρ(X) = n− cc(X).

Now let us show (b). Let λ be the minimum labeling with respect to �. Since NCG

is a graded subposet of LG with the same rank function, the sequence of labels along any
saturated chain in NCG also appears as the labels along that chain in LG. Since λ is
an EL-labeling of LG, every interval has at most one increasing maximal chain and this
chain lexicographically precedes all other chains in that interval. Thus it suffices to show
that each interval of NCG has an increasing maximal chain.

Consider an interval [H,H ′] in NCG. We will induct on the length of [H,H ′]. If
the length is 1, the result is trivial. Now assume that the length is larger than 1. Let
e = minE(H ′) \ E(H) and let H ′′ be the bond induced on E(H) ∪ {e}. By assumption
H ′′ is noncrossing and so is in [H,H ′]. Then λ(HlH ′′) = e. By the inductive hypothesis
[H ′′, H ′] has an increasing maximal chain which starts with a label larger than e. Con-
catenating this chain with H lH ′′ will produce an increasing maximal chain of [H,H ′].
It follows that the minimum labeling is an EL-labeling and so NCG is shellable.

Next we show part (c). Let c be a decreasing saturated chain from 0̂ to X in NCG. By
Theorem 22 part (b), the labels along c form an NBC set. Thus, it suffices to show these
NBC sets are noncrossing. Suppose this was not the case and that there were crossing
edges f1 and f2 with f1�f2 in some NBC set of X which appears along a saturated chain
from 0̂ to X in NCG. We may assume that X is minimal among elements of NCG that
have crossing edges in one of its NBC sets.

We claim that f1 is the smallest edge of E(X). First note that every spanning NBC
set of X contains the smallest edge of E(X). To see why, note that if the smallest edge
was a bridge of X, it must be in this spanning set. If it is not a bridge, it is contained in
some cycle and so must be in the spanning set since otherwise X would contain a broken
circuit. Thus, the smallest edge of X is in every spanning NBC set of X. It follows that
the labels along any saturated chain from 0̂ to X must contain the smallest edge. Thus,
the labels along every decreasing saturated chain from 0̂ to X must end with the smallest
edge. Since X is minimal with respect to having a crossing, the last label must either
be f1 or f2. Since f1 � f2, f1 is the smallest edge in E(X). Now consider the interval
[f2, X] in NCG. Then f1 = minE(X) \ {f2} and so by assumption the bond induced on
f1 and f2 is a noncrossing bond. Since f1 and f2 are crossing edges, they cannot share
an endpoint. It follows that the bond induced on f1 and f2 is {f1, f2}. But then the fact
that this bond is noncrossing, contradicts the fact that f1 and f2 cross.

Next, we prove (d). Let F = {e1, e2, . . . , ek} be a spanning noncrossing NBC set of X
with e1 � e2 � · · ·� ek. Let H0 = 0̂ and for 1 6 i 6 k, let Fi be the forest with vertex set
V (G) and edge set {e1, e2, . . . , ei}. Moreover, let Hi be the bond induced on Fi. We claim
that each of these bonds is noncrossing. To see why, note that the partitions associated
to Fj and Hj are the same for all 0 6 j 6 k. Since each Fj is noncrossing, Proposition 1
implies that the partition for Fj is noncrossing and so Hj is a noncrossing bond.

By Theorem 22, each spanning NBC set of X appears exactly once as a saturated
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decreasing chain in LG. By construction, H0 lH1 l · · ·lHk is the saturated chain chain
from 0̂ to X which produces the NBC set F = {e1, e2, . . . , ek}. The claim now follows
since this chain also exists in NCG.

Finally, for (e), note that by Proposition 10 and part (a), ρ(H) = n − cc(H) for all
H ∈ NCG. Parts (c) and (d) provide a bijection between the saturated decreasing
chains from 0̂ to H and noncrossing NBC sets. Then to finish, apply part (b) and
Theorem 20.

After giving this sufficient condition for the minimum labeling to be an EL-labeling, the
next obvious question is which graphs satisfy this condition. We will leave this discussion
for the next section where we will explore several families of graphs which have this
property. In particular, we will show the previous theorem applies to perfectly labeled
graphs (Definition 24), upper crossing closed graphs that are tightly closed (Definition 36),
and strongly upper crossed graphs (Definition 41). The perfectly labeled and strongly
upper crossed graphs include graphs that are not crossing closed (and hence not upper
crossing closed). On the other hand, not every upper crossing closed graph satisfies the
conditions of the previous theorem. Because of this, we genuinely require both Theorem 15
and Theorem 23 to get the results concerning the noncrossing NBC interpretation for the
Möbius function.

We should note that not all graphs G have a shellable NCG. The 5-pointed star in
Figure 7 is one such example, as one can check in SageMath [31].

5 Families of Graphs

In this section, we will consider three families of graphs: perfectly labeled graphs in
Subsection 5.1, tightly closed graphs in Subsection 5.2, and strongly upper crossed graphs
in Subsection 5.3. We present some of the nice properties that the noncrossing bond
posets of these families of graphs have such as gradedness, shellability, and combinatorial
formulas for Möbius values. We finish the section by gathering all the results about the
structure of the noncrossing bond poset for the families of graphs studied within this
article. This information can be found in Table 1.

5.1 Perfectly Labeled Graphs

In this subsection we present two main results, Theorem 31 and Theorem 34, concerning
perfectly labeled graphs. We start with the definition of these graphs.

Definition 24. Let G be a graph. We say G is perfectly labeled if whenever ik, jk ∈ E(G)
with i < j < k, ij ∈ E(G). 1

The graph G in Figure 9 is perfectly labeled. However, H is not perfectly labeled,
since, for example, 14 and 24 are edges, but 12 is not an edge. It turns out that there is
a classification of graphs which can be perfectly labeled.

1We note here that it is common to call a labeling of a graph with this property a perfect elimination
order.
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Figure 9: Two labeled graphs. G is perfectly labeled whereas H is not.
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Figure 10: Several Forests

Definition 25. A graph is chordal if for every cycle of length at least 4 there is an edge
between two vertices in the cycle which are not adjacent in the cycle.

The reader may have noticed that the graphs in Figure 9 are both chordal, but only G
is perfectly labeled. It is well-known that a graph can be perfectly labeled if and only if it is
chordal (see, for example, the note immediately following Corollary 4.10 of [29]). However,
as we saw not every labeling of a chordal graph gives rise to a perfectly labeled graph.
The distinction between perfectly labeled and chordal is immaterial to the structure of the
bond lattice since the lattice does not depend on the labeling of the vertex set. However,
in the case for the noncrossing bond poset, the structure of the poset can depend on the
labeling of the graph. Because of this, we focus on perfectly labeled graphs as opposed
to just chordal graphs. This is also why we use the term “perfectly labeled” as opposed
to saying “G has a perfect elimination order” which is more common in the literature.

As we will see throughout this subsection, increasing spanning trees and forests play
an important role of the combinatorics of the noncrossing bond posets of perfectly labeled
graphs.

Definition 26. Let T be a tree with vertices which are distinct integers. Let r be the
smallest vertex of T . We say T is an increasing tree if the vertices along any path from r
to any other vertex form an increasing sequence. We say a spanning subgraph of a graph
G is an increasing spanning forest of G if each connected component is an increasing tree.

The forests F1 and F2 in Figure 10 are increasing spanning forests of the graph G in
Figure 9, whereas F3 is not since the path from 1 to 2 is not increasing.
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We now present a series of lemmas aimed at showing that perfectly labeled graphs
satisfy the conditions of Theorem 23. This will allow us to show that the noncrossing
bond poset of a perfectly labeled graph is graded, shellable, and has a combinatorial
interpretation for the Möbius function and characteristic polynomial.

Lemma 27. Let G be a connected perfectly labeled graph. Let r be the smallest vertex in
G and let v be any other vertex of G. There exists an increasing path from r to v in G.
That is, there is a path ru1u2 . . . ukv where r < u1 < u2 < · · · < uk < v.

Proof. Suppose this was not the case. Let P be a shortest path from r to v. By assump-
tion, P is not an increasing path. Thus it must contain contain a sequence of vertices ikj
where i < j < k. But then since G is perfectly labeled, ij ∈ E(G), so we may replace the
edges ik, jk with ij and get a shorter path from r to v. This contradicts the minimality
of P .

Lemma 28. Let G be a perfectly labeled graph. Suppose that H 6 H ′ in NCG. Moreover,
suppose that B1, B2, . . . , Bk where minB1 < minB2 < · · · < minBk are the connected
components of H that are merged together to get H ′. Then merging B1 and B2 in H
creates a noncrossing bond of G.

Proof. Let 3 6 i 6 k. If merging B1 and B2 crossed with some Bi, then there exists
a, c ∈ B1 ∪ B2 and b, d ∈ Bi or a, c ∈ Bi and b, d ∈ B1 ∪ B2 with a < b < c < d. If
a, c ∈ B1 ∪ B2 and b, d ∈ Bi, then minB1 < minB2 < b < c < d which implies either B1

and Bi cross or B2 and Bi cross (depending on if c ∈ B1 or c ∈ B2). Neither is possible
since H is noncrossing. A similar argument shows that it is not possible that there exists
a, c ∈ Bi and b, d ∈ B1∪B2 with a < b < c < d. Hence merging B1 and B2 does not cause
a crossing with B3, B4, . . . , Bk. Moreover, merging B1 and B2 cannot create a crossing
with any of other connected components of G since that would mean that H ′ was crossing.

Thus it suffices to show that merging B1 and B2 in H forms a bond of G. It is not
hard to see that any induced subgraph of a perfectly labeled graph is perfectly labeled.
It follows that H ′ is perfectly labeled. By Lemma 27 there is an increasing path in H ′

from minB1 to minB2. Except for minB2, this path must only contain vertices from B1

since otherwise it would not be increasing. So there is an edge, e, between a vertex in B1

and a vertex in B2. Then the bond induced on on E(H) ∪ {e} is exactly the spanning
subgraph obtained by merging B1 and B2 in H. The result now follows.

In the following lemma we will order the edges colexicographically. That is, we say
ab� a′b′ if and only if b < b′ or b = b′ and a < a′. Note that colexicographic order is just
lexicographic order reading right to left instead of left to right.

Lemma 29. Let G be a perfectly labeled graph with the edges colexicographically. If
H < H ′ and e = minE(H ′)\E(H), then the bond induced on E(H)∪{e} is noncrossing.

Proof. Let B1, B2, . . . , Bk be the blocks which merge together to get H ′ where minB1 <
minB2 < · · · < minBk. Since G is perfectly labeled and H ′ is an induced subgraph, it is
perfectly labeled. By Lemma 27, in the connected component containing B1 and B2 there

the electronic journal of combinatorics 27(4) (2020), #P4.37 24



is an increasing path from minB1 to minB2. The last edge on this path must be of the
form aminB2 where a ∈ B1. Let a′ be the smallest vertex in B1 for which there is an edge
a′minB2. Since we are ordering edges colexicographically, a′minB2 = minE(H ′)\E(H).
The bond induced on E(H) ∪ {a′minB2} is the bond obtained by merging B1 and B2.
By Lemma 28 this bond is noncrossing.

As with noncrossing NBC sets, we say an increasing spanning forest is noncrossing if
none of the edges cross. For example, the forests F1 and F2 in Figure 10 are increasing
spanning forests of G in Figure 9, but only F1 is noncrossing. It turns out that when
we use the colexicographic order, there are the same number of noncrossing increasing
spanning forests and noncrossing NBC sets. We use the notation ncisfk(G) for the number
of noncrossing increasing spanning forest of G with k edges. In [17, Theorem 2.4], it was
shown that when G is perfectly labeled and we order the edges lexicographically, the
NBC sets are exactly the increasing spanning forests. The proof given there can easily be
modified to allow for the case when the edges are ordered colexicographically. Thus we
have the following.

Lemma 30. Let G be a perfectly labeled graph with the edges ordered colexicographically.
Then for all k > 0,

ncisfk(G) = ncnbck(G).

We now present the first main theorem of this section. Applying Lemma 29, Lemma 30,
and Theorem 23 we get the following.

Theorem 31. Let G be a perfectly labeled graph on [n] such that NCG has a 1̂. Then we
have the following.

(a) NCG is graded and for H ∈ NCG, the rank of H is given by ρ(H) = n− cc(H).

(b) The minimum labeling with respect to the colexicographic ordering on E(G) is an
EL-labeling of NCG and so NCG is shellable.

(c) For H ∈ NCG,

µ(H) = (−1)n−cc(H) ncnbcn−cc(H)(H) = (−1)n−cc(H) ncisfn−cc(H)(H)

and

χ(NCG, t) =
∑
k>0

(−1)k ncnbck(G)tρ(NCG)−k =
∑
k>0

(−1)k ncisf(G)tρ(NCG)−k,

where the NBC sets are with respect to the colexicographic ordering on E(G).

We note that in [8], Blass and Sagan used NBB sets to show that the Möbius function of
the noncrossing partition lattice counts noncrossing increasing trees and hence is a Catalan
number. The previous theorem generalizes this result since the noncrossing partition
lattice is the noncrossing bond poset of the complete graph which is perfectly labeled.
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Figure 11: A graph and its noncrossing bond poset labeled by the max-min edge labeling.

Let us now turn our attention to other the main result of this subsection. In [27]
Stanley introduced the notion of a supersolvable lattice. A lattice L is called supersolvable
if there exists a maximal chain with the property that it along with any other chain in L
generates (by taking joins and meets of all elements in the chains) a distributive lattice.
It is well-known that a graph is chordal if and only if its bond lattice is supersolvable
(see, for example, Corollary 4.10 and the note that follows it in [29]). As we will see in
Theorem 34, there is an analogue of this result for noncrossing bond posets. However,
we should point out that when we pass to the noncrossing case things become a bit
more complicated. First, as we noted earlier, the noncrossing bond poset depends on the
labeling of the vertices. Because of this there are chordal graphs which are not perfectly
labeled and such that the noncrossing bond poset is not supersolvable. Second, we no
longer have an if and only if statement as there exist noncrossing bond posets that are
supersolvable lattices, but do not come from chordal graphs. Finally, not every perfectly
labeled graph is crossing closed and so the noncrossing bond poset of a perfectly labeled
graph may not even be a lattice.

In order to study supersolvability of the noncrossing bond poset we will consider a
special type of EL-labeling of graded posets. Let λ be an EL-labeling of a poset of rank
n. We say λ is an Sn EL-labeling if every maximal chain of P is labeled by a permutation
of [n] (with natural ordering on [n]). The edge labeling in Figure 11 is an example
of an Sn EL-labeling. We note that the condition that the unique maximal chain in
each interval is lexicographically first is automatically implied if the maximal chains are
labeled by permutations and thus, we only need to check that each interval has a unique
increasing maximal chain. In addition to the properties that EL-labeled posets possess,
there are special properties that a lattice with an Sn EL-labeling possesses. In particular,
McNamara [22] showed that if L is a graded lattice then L is supersolvable if and only
if it has an Sn EL-labeling. We will show that if G is perfectly labeled and connected,
then it has an Sn EL-labeling. To do this, we use a labeling introduced by Björner and
Edelman.
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Definition 32 (Björner-Edelman [6]). Let G be a graph on [n] such that NCG is graded.
The max-min edge labeling is defined by

λ(H lH ′) = max{minB,minB′} − 1

where B and B′ are the blocks merged when going from H to H ′.

See the poset in Figure 11 for an example of this labeling. Björner and Edelman [6]
showed that the max-min edge labeling gives an EL-labeling of the noncrossing partition
lattice (which is also the noncrossing bond poset of the complete graph). As McNamara
points out in [22], this labeling is in fact an Sn EL-labeling. It turns out that among
connected graphs, perfectly labeled graphs are exactly the graphs where the max-min
edge labeling is an Sn EL-labeling of the noncrossing bond poset. Note that in the
hypothesis of the following proposition, we assume G has n+ 1 vertices and is connected.
This guarantees that NCG has rank n.

Proposition 33. Let G be a connected graph on [n + 1] such that NCG is graded. The
max-min edge labeling is an Sn EL-labeling of NCG if and only if G is perfectly labeled.

Proof. Given thatG has n+1 vertices, NCG is a subposet ofNCKn+1 . SinceNCKn+1 is the
noncrossing partition lattice on [n+1], we have that NCG is a subposet of the noncrossing
partition lattice. It follows from the assumption that NCG is graded with the same rank
function as the noncrossing partition lattice (see Proposition 10), we have that the set of
maximal chains in NCG is a subset of the maximal chains of the noncrossing partition
lattice. Since the cover relations in NCG are the same as that in the noncrossing partition
lattice, we also have that the label sequences that appear along the maximal chains in
NCG are the same as those that appear in the noncrossing partition lattice. Since it is
known that the max-min edge labeling is an Sn EL-labeling of the noncrossing partition
lattice, to finish the proof we can show that each interval of NCG has an increasing
maximal chain if and only if G is perfectly labeled.

Suppose that G is not perfectly labeled. Then there exists edges ik, jk such that
i < j < k and ij /∈ E(G). Let H be the bond of G where i, j, k are in the same connected
component and every other connected component is trivial. Consider the interval [0̂, H].
Since ij /∈ E(G), this interval has two maximal chains both labeled by k− 1, j− 1. Thus,
the interval has no increasing chain.

Next, suppose that G is perfectly labeled. Suppose that [X, Y ] is an interval in NCG

and suppose that B1, B2, . . . , Bk are the connected components of X that will merge
together to get Y . Moreover, assume that minB1 < minB2 < · · · < minBk. It is not
hard to see that if there is an increasing maximal chain in [X, Y ], the first step must be
to merge B1 and B2. Let Z be the bond obtained by merging B1 and B2 in X. We can
apply Lemma 28 to see that Z ∈ NCG. Now we can use induction to prove that [Z, Y ]
has an increasing maximal chain which can be concatenated with the label from X to Z
to give an increasing maximal chain in [X, Y ].

In Proposition 33, we assumed that G is connected. By Lemma 9, if G is not connected
and its connected components do not cross, NCG is the product of smaller noncrossing
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Figure 12: A perfectly labeled graph which is not crossing closed

bond posets, one for each connected component. If G is perfectly labeled, each connected
component of G must be perfectly labeled. Thus, if G perfectly labeled, the noncrossing
bond poset of each of its connected components has an Sn EL-labeling. Using McNa-
mara’s [22] result about Sn EL-labelings and supersolvability implies each is noncrossing
bond poset is supersolvable. Moreover, if G is crossing closed its connected components
cannot cross. Putting this altogether and using the fact that the product of supersolvable
lattices is a supersolvable lattice, we get the following.

Theorem 34. Let G be a perfectly labeled graph. If G is crossing closed, then NCG is a
supersolvable lattice.

We mention here that not every perfectly labeled graph is crossing closed (hence the
necessity of the crossing closed hypothesis in Theorem 34). The graph in Figure 12
is perfectly labeled, but not crossing closed. This is because there are two minimal
induced connected components containing 16 and 57, namely the one containing the
vertices 1, 3, 5, 6, 7 and the one containing 1, 2, 4, 5, 6, 7. Nevertheless, when G is crossing
closed and perfectly labeled, it is upper crossing closed as we see next.

Proposition 35. Let G be a perfectly labeled graph which is crossing closed. Then G is
upper crossing closed with respect to the colexicographic and lexicographic order.

Proof. Suppose that ac and bd cross with a < b < c < d. Then in J(ac, bd), there is a path
from a to b. Let P : av1v2 . . . vkb be a path from a and b which is minimal with respect
to length. If P is not increasing, then there is a an index i with vi−1, vi+1 < vi. But then
since G is perfectly labeled, there is an edge vi−1vi+1 contradicting the minimality of P .
So P must be increasing. Then av1 is an edge in E(G) and is smaller in colexicographic
and lexicographic order than ac and bd. It follows that G is upper crossing closed with
respect to colexicographic and lexicographic order.

The reader may be wondering if NCG being supersolvable implies that G is chordal
since this is the case for the bond lattice of a graph. The graph in Figure 5 shows this is
not true. It is a 4-cycle and thus is not chordal. Nevertheless, its noncrossing bond poset
is a supersolvable lattice.

the electronic journal of combinatorics 27(4) (2020), #P4.37 28



1

2

4

35

6

G

Figure 13: A 2-connected graph that is not crossing closed

5.2 Tightly Closed Graphs

As we saw in Section 2, crossing closed graphs need not have graded noncrossing bond
posets. However, it turns out that if we restrict what J(e, f) can look like, we can
guarantee the noncrossing bond poset is graded. Moreover, if we further assume the
graph is upper crossing closed, we obtain more properties of the poset. We explore these
ideas next.

Definition 36. Let G be a graph. We say G is tightly closed if it is crossing closed and
for all edges e and f that cross, J(e, f) is a subgraph of K4.

The complete bipartite graphs are a family of tightly closed graphs. To see why, note
that if two edges cross in a complete bipartite graph, they must connect the two parts of
the graph and so must lie on a (twisted) 4-cycle. The 5-pointed star depicted in Figure 7
gives a different an example of a tightly closed graph. Note that since the 5-pointed star
is a cycle, it is 2-connected. It turns out that any 2-connected crossing closed graph is
tightly closed.

Proposition 37. If G is 2-connected and crossing closed, then G is tightly closed.

Proof. By Lemma 4, if G was not tightly closed, G would have cut vertices. This is
impossible as G is 2-connected.

Before we move on, we wish to mention that 2-connected does not imply crossing
closed. For example, the 6-cycle in Figure 13 is 2-connected, but not crossing closed.

Theorem 38. If G be a tightly closed graph, then NCG is graded.

Proof. Let H lH ′. For each edge f ∈ E(H ′) \ E(H), we will count crossings of f with
the edges in E(H). We will call such a crossing bad if the edges in the crossing are in
different components of the graph with edge set E(H) ∪ {f} and vertex set V (G).

We claim that there is an edge in E(H ′) \ E(H) with no bad crossings. To see why
suppose that this was not the case and let e = ac be an edge of E(H ′) \ E(H) with a
minimum number of bad crossings. By assumption, e has at least one bad crossing, say
with edge e′ = bd in H where a < b < c < d. Since e and e′ are in H ′ and are crossing and
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H ′ is noncrossing, they must lie in the same connected induced component of H ′. Thus
J(e, e′) is a subgraph of this component. Since G is tightly closed, J(e, e′) is a subgraph of
K4 and so one of the edges ab, bc, cd, ad must be present in H ′. Without loss of generality
we may assume that ab is present. Note that ab is not in H as e and e′ is assumed to be
a bad crossing and e and e′ thus lie in different components of the graph with edge set
E(H) ∪ {e}.

Since there are no edges in E(H ′) \ E(H) with no bad crossings, ab must have a bad
crossing with some edge, say vw. We claim that vw must cross e. If this was not the
case, then a < v < b < w 6 c < d. This implies that vw crosses e′ = bd in H and since
H is noncrossing, vw and e′ = bd must be in the same component. But then vw and ab
do not form a bad crossing. Thus, vw crosses e and so any edge that crosses ab to form
a bad crossing will form a bad crossing with e. This means that e has strictly more bad
crossings than ab which is impossible as e was chosen to be minimal. Thus, there is an
edge of E(H ′) \ E(H) which has no bad crossings.

Let e be an element of E(H ′) \ E(H) which has no bad crossings and let G′ be the
graph on V (G) with edge set E(H) ∪ {e}. Since e has no bad crossings, the partition
associated to G′ is noncrossing. Now let H ′′ be the bond induced on E(H) ∪ {e}. Then
G′ and H ′′ have the same connected components and so correspond to the same partition.
It follows that H ′′ is a noncrossing partition. Since H < H ′′ 6 H ′ and H lH ′, H ′ = H ′′.
Moreover, by construction there are exactly two components that merge together from H
to H ′ and so by Proposition 10, NCG is graded.

The notion of tightly closed may seem artificial at first glance. However, there is an
order-theoretic way to define tightly closed that is much like the notion of semimodularity.
Recall that a lattice L is (upper) semimodular, if it is graded and for all x, y ∈ L,
ρ(x ∨ y) + ρ(x ∧ y) 6 ρ(x) + ρ(y). In the case that a1 and a2 are distinct atoms of L,
semimodularity implies that ρ(a1 ∨ a2) = 2. Tightly closed graphs can be defined by
slightly relaxing this idea.

Theorem 39. Let G be a graph which is crossing closed. G is tightly closed if and only
if for all distinct atoms a1, a2 ∈ NCG, ρ(a1 ∨ a2) = 2 or ρ(a1 ∨ a2) = 3.

Proof. First note that the atoms of NCG are the edges of G. Let e, f ∈ E(G). If e and
f do not cross, ρ(e ∨ f) = 2. If e and f do cross, then by Proposition 7 part (c), G
being crossing closed implies that e ∨ f is the bond with a unique nontrivial connected
component J(e, f). Thus, the fact that for any H ∈ NCG ρ(H) = |V (G)|− cc(H) implies
that ρ(a1 ∨ a2) = 3 if and only if J(e, f) is a connected graph on 4 vertices. The result
now follows.

While the noncrossing bond poset of a tightly closed graph is graded, other nice order-
theoretic properties do not always hold. For example, they need not be shellable or have
a noncrossing NBC interpretation. This can be seen by noting that the 5-pointed star is
tightly closed, but it is not shellable and also does not have the NCNBC interpretation
for its Möbius function. However, if we make the further assumption that the graph is
upper crossing closed, we get many nice properties.
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Proposition 40. Let G be an upper crossing closed graph which is tightly closed. Then the
conclusions of Theorem 23 hold. In particular, NCG is graded, shellable, and the Möbius
function and characteristic polynomial have a combinatorial interpretation in terms of
NCNBC sets.

Proof. First note that since G is crossing closed, Proposition 7 part (e) implies that NCG

has a 1̂. Now suppose that H < H ′. Let e = minE(H ′)\E(H). Adopting the terminology
from the proof of Theorem 38, we will show that e has no bad crossings in H∪{e}. Suppose
this was not the case. Then there is an edge f not in the same connected component of
e in E(H)∪ {e} which crosses e. Since H ′ is noncrossing and G is tightly closed, there is
an edge, h, connecting an endpoint of e and an endpoint of f . Moreover, we may assume
that h precedes e in � as G is upper crossing closed. Since e = minE(H ′) \ E(H), this
would imply that h ∈ E(H). So e and f do not form a bad crossing, a contradiction.
Since e has no bad crossings, the bond induced on E(H) ∪ {e} is noncrossing. Applying
Theorem 23 now completes the proof.

Before we finish this subsection, let us give an example of a tightly closed upper
crossing closed graph. Let Kn

even,odd be the complete bipartite graph on [n] whose parts
are the even and odd numbers. As mentioned at the beginning of this subsection, any
complete bipartite graph is tightly closed, so Kn

even,odd is tightly closed. Recall that our
graphs lie on a circle with evenly spaced vertices. Given vertices x < y of Kn

even,odd, we
let dist(x, y) = min(y− x− 1, n− y+ x− 1) be the minimum number of vertices between
x and y. Define a partial order on E(Kn

even,odd) by declaring ij is less than i′j′ if and only
if dist(i, j) < dist(i′, j′) and let � be any linear extension of this order. It is not hard to
show Kn

even,odd is upper crossing closed with respect to this ordering.

5.3 Strongly Upper Crossed Graphs

In this subsection we consider another family of (not necessarily crossing closed) graphs
and show their noncrossing bond posets are graded and shellable. We also show the
noncrossing NBC set interpretation for the Möbius function and characteristic polynomial
still hold in this setting.

Definition 41. Let G be a graph with a total ordering, �, on the edge set of G. We say
that a graph G is strongly upper crossed with respect to � if whenever ac, bd are crossing
edges, there is at least one minimal induced connected component of G containing ac and
bd and every edge in each minimal induced connected component of G containing ac and
bd precedes ac and bd in the ordering �.

One may think of strongly upper crossed graphs as a relaxing of the crossing closed
condition, but at the cost of requiring a stronger condition on the ordering of edges as
compared to that given for upper crossing closed graphs. As an example of a strongly
upper crossed graph, consider the graph G in Figure 1. If we order the edges so that 14 and
35 are the largest, G is strongly upper crossed with respect to this order. More generally,
any connected graph with a single crossing is strongly upper crossed with ordering where
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the crossing edges are ordered so that they are the largest. Since the graph in Figure 1
is not chordal nor crossing closed, the family of strongly upper crossed graphs is distinct
from the families presented in the previous two subsections.

We should note that not all upper crossing closed graphs are strongly upper crossed.
For example, K5 is upper crossing closed with respect to the lexicographic ordering, but
there is no ordering which makes it strongly upper crossed. To see why, note that since
14 and 25 cross and 24 ∈ J(14, 25), 24 must be smaller than 14 and 25. However, 24 and
35 cross and 25 ∈ J(24, 35) so 25 must be smaller than 24 which is impossible.

The following lemma will allow us to apply Theorem 23 to strongly upper crossed
graphs.

Lemma 42. Let G be a strongly upper crossed graph. If H < H ′ and e = minE(H ′) \
E(H), then the bond induced by E(H) ∪ {e} is noncrossing.

Proof. Let H ′′ be the bond induced by E(H) ∪ {e} and suppose that H ′′ is a crossing
bond. Let B1 and B2 be the blocks that are merged when moving from H to H ′′. Since H ′′

is crossing there is some f ∈ E(H) which crosses an edge between B1 and B2 and is not in
B1 and B2. Thus, f separates B1 and B2. Since e connects B1 and B2, it too must cross
f . Since H ′ is noncrossing and G is strongly upper crossed, there is a minimal induced
connected component containing e and f in H ′. Since G is strongly upper crossed, all the
edges in this minimal induced connected component are smaller than e and f . Not all
these edges can be in H since this would imply f did not cause H ′′ to be crossing. But
this is impossible since since e was the smallest edge.

Using the previous lemma and the fact that noncrossing bond posets of strongly upper
crossed graphs have a 1̂, we get the main theorem of this subsection.

Theorem 43. Let G be a strongly upper crossed graph. Then the conclusions of The-
orem 23 hold. In particular, NCG is graded, shellable, and the Möbius function and
characteristic polynomial have a combinatorial interpretation in terms of NCNBC sets.

5.4 A Summary of Results on Families of Graphs

To finish this section, we gather all the information about families of graphs that we have
seen throughout this paper. This data appears in Table 1. The rows of Table 1 refer to the
families of graphs and the columns to the properties of the graphs or their noncrossing
bond poset. The term “NCNBC interpretation” refers to if the Möbius function and
characteristic polynomial (if applicable) have the noncrossing NBC set interpretation of
Theorem 15 or not. Every instance of “sometimes” is genuine in the sense that there are
graphs in that family which do and do not posses the prescribed property.

6 Open Problems

As we have seen, several of the nice properties of the noncrossing partition lattice and the
bond lattice have analogues in the noncrossing bond poset. Given the multitude of nice
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Graded Lattice
NCNBC

interpretation
Shellable

Any Graph Sometimes Sometimes Sometimes Sometimes
Crossing Closed

(Definition 3)
Sometimes Always Sometimes Sometimes

Upper Crossing Closed
(Definition 14)

Sometimes Always Always Sometimes

Perfectly Labeled
(Definition 24)

Always Sometimes Always Always

Tightly Closed
(Definition 36)

Always Always Sometimes Sometimes

Upper Crossing Closed
and Tightly Closed

Always Always Always Always

Strongly Upper Crossed
(Definition 41)

Always Sometimes Always Always

Table 1: Families of graphs and their respective properties.

properties that these lattices enjoy, we encourage the reader to see if their favorite prop-
erties have an analogue in the noncrossing bond poset. We collect a few open problems
that we have found interesting below. The list is in no way to be considered complete.

Recall that the Whitney numbers of the first kind of a graded poset are the numbers
w0, w1, . . . , wn where wi is the sum of the Möbius values of elements of P of rank i. In
other words, they are the coefficients of the characteristic polynomial. Moreover, recall
that a sequence a0, a1, . . . , an of real numbers is called log-concave if for all 1 6 i 6 n− 1
we have that ai−1ai+1 6 a2i .

Gian-Carlo Rota conjectured that the Whitney numbers of the first kind for geomet-
ric lattices (which include bond lattices) are log-concave. In [19] Huh proved that the
Whitney numbers of the first kind for bond lattices are log-concave and further work of
Adiprasito, Huh, and Katz [1] proved the more general conjecture concerning the Whit-
ney numbers of the first kind for geometric lattices. Since the noncrossing bond poset is
a (relatively) well-behaved subposet of a geometric lattice, it seems natural to ask if the
corresponding conjectures hold for the noncrossing bond poset.

Question 44. For which graphs are the Whitney numbers of the first kind of NCG

unimodal or log-concave?

We should note that, unlike the case for the bond lattice, the Whitney numbers of the
first kind of the noncrossing bond poset do not need to alternate in sign and can have
internal zeros (e.g. the characteristic polynomial of the 5-pointed star in Figure 7 has an
internal zero). As a result, it is not the case that the absolute values of the Whitney
numbers of the first kind are log-concave or unimodal in general. We mention this since,
if the sequence did alternate and have no internal zeros, the log-concavity would imply
unimodality.

the electronic journal of combinatorics 27(4) (2020), #P4.37 33



The noncrossing partition lattice is well-known to be rank-symmetric (see, for exam-
ple [20]). That is, for NCn+1, the number of elements of rank k is the same as the number
of elements of rank n − k. It seems that it is rare for the noncrossing bond poset to be
rank-symmetric. This should not be that surprising as the bond lattice is also rarely rank-
symmetric. However, for n > 5, computations suggest that if we let Cn denote the cycle
on n vertices with edges 12, 23, . . . , n−1n, 1n, then the complement Cn has a noncrossing
bond poset which is rank-symmetric. This leads us to a broader question.

Question 45. When is NCG rank-symmetric?

As we saw in the discussion preceding the previous question, the graph Cn seems to
have a rank-symmetric noncrossing bond poset. Despite this nice property, it seems that
the poset is not shellable. Naturally, this leads us to the following.

Question 46. For what graphs is the noncrossing bond poset shellable?

We note here that Cn is tightly closed (but not upper crossing closed). Thus, we know that
tightly-closed (and hence crossing closed) does not imply shellability. There is some hope
that upper crossing closed graphs produce shellable noncrossing bond posets. However,
since they are not always graded, this will require considering non-pure shellings.

Given a graph (or more generally a matroid) one can consider the collection of non-
broken circuits. This set forms a simplicial complex called the broken circuit complex
or NBC complex. It has several nice properties, its f -vector encode the coefficients of
the chromatic polynomial of the graph and the complex is known to be shellable. A
related complex called the independence complex is formed considering all the subsets
of the edges sets which form acyclic subgraphs. Since subsets of noncrossing sets are
noncrossing, we can also consider the simplicial complex of noncrossing NBC sets and
noncrossing independent sets.

Question 47. What is the structure of the noncrossing NBC complex and noncrossing
independence complex of a graph?
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A Appendix: Algorithms

In this appendix, we give two important algorithms on NCG, Algorithms 48 and 53.
We also give a forbidden subgraph characterization of upper crossing closed graphs in
Theorem 51.

Algorithm 48 decides if NCG is a lattice in time on the order of n7 where n the
number of vertices of the graph G. This is proved in Theorem 49. Note that a brute-force
algorithm to test if NCG is a lattice can take time super-exponential in n. For example,
an algorithm that checks if every pair of elements in NCG has a meet and a join, could
take time at least on the order of the number of elements of NCG. For an n vertex graph,
that may be as large as the Bell number Bn of the number of set partitions of [n] and
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Bn > (n/e log(n))n [4]. Note that we call Algorithm 48 the “crossing-closed” algorithm as
it is actually checking if G is crossing closed. Of course, NCG being a lattice is equivalent
to G being crossing closed, see Theorem 6.

Algorithm 53 determines if a graph G is an upper crossing closed graph. Recall that
if G is upper crossing closed then the Möbius function and characteristic polynomial
of NCG have nice interpretations in terms of noncrossing NBC sets, see Theorem 15.
When given a graph G, Algorithm 53 will either produce a specific upper crossing closed
ordering of E(G) or will produce what we term an obstruction (see Definition 50), a
specific subgraph of G that clearly shows there can be no such ordering. This also gives
a forbidden subgraph characterization of upper crossing closed graphs, Theorem 51.

In Theorem 54, we prove that the Algorithm 53 will run in time on the order of n8

where again n is the number of vertices of G. Note that a brute force algorithm could
again take time super-exponential in n, if it is forced to test some positive fraction of the(
n
2

)
! possible orderings on the edges of G.
We first present our algorithm that decides if G is crossing closed, i.e. if NCG is a

lattice.

Algorithm 48. Crossing Closed Algorithm
Input: A graph G on [n].
Output: A yes/no decision as to whether G is crossing closed, or, equivalently, whether
NCG is a lattice.
Method: For each pair of crossing edges e and f find a shortest path P (e, f) = x0x1 . . . xk
with e = x0x1 and f = xk−1xk and k > 3. If for some crossing pair e and f , P (e, f) fails
to exist or has k > 4 and has some vertex xi with 2 6 i 6 k − 2 such that xi does not
separate e and f then return “No, G is not crossing closed.” Otherwise return “Yes, G is
crossing closed.”

Theorem 49. Algorithm 48 is a correct algorithm that runs in time O(n7) where n is the
number of vertices of G.

Proof. First, we will compute the complexity of the algorithm. The Floyd-Warshall al-
gorithm gives a shortest path between all pairs of vertices in O(n3) time [15]. With that

pre-processing done, there are at most

(
n

4

)
pairs of crossing edges to check. For each pair

e and f of crossing edges, there are at most n vertices on the shortest path connecting
them to check. Checking that one of those vertices separates e and f can be done by
breadth-first search in O(n2) time so this algorithm will run in O(n7) time.

Next, we show that the algorithm always gives the correct output. Suppose G is
crossing closed. We will show that the algorithm will return a “yes”. For every pair of
crossing edges e and f , J(e, f) exists. If there is an edge incident to e and f (where
incident means having a common vertex), then P (e, f) will be a path (e, g, f) for some
edge g connecting e and f and the algorithm will not give a “no” answer based on this
pair. If there is no edge incident to both e and f , then by Lemma 4, J(e, f) will be a
dumbbell graph, see Figure 3, a graph induced by e, f and a path Q with one end adjacent
to e and the other end adjacent to f with all vertices in Q separating e and f . Thus the
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vertices {x2, . . . , xk−2} on P (e, f) must be the vertices of Q. The algorithm will not give
a “no” answer based on this pair either. Thus the algorithm will return a “yes”.

Suppose now that the algorithm returns a “yes”. We will show that G is crossing
closed. Let e and f be a pair of crossing edges. Since the algorithm returned a “yes”, a
shortest path P (e, f) must exist. If the path has 3 vertices, i.e. there is an edge connecting
e and f , then J(e, f) = G[e ∪ f ] exists. Suppose now that the path contains at least 4
vertices. Let M be the subgraph of G induced on the vertices of P (e, f). We claim that
M is contained in every connected, induced subgraph of G that contains e and f and
so J(e, f) = M . Let x be any vertex in P (e, f) that is not in e or f and let H be an
connected induced subgraph of G containing e and f . If x is not in H then it cannot
separate e and f . Since the algorithm returned “yes”, x must separate e and f and so x
must be in H. Thus every vertex of M is in H and since they are both induced, M is in
H.

Now we turn our attention to the problem of deciding whether a graph is upper crossing
closed. First, let us note that not all crossing closed graphs are upper crossing closed. As
an example, consider the 5-pointed star in Figure 7. It is not hard to verify that if e and f
cross in the 5-pointed star, J(e, f) is a subgraph of K4 and so is crossing closed. However,
every edge of the graph is crossed and so it is impossible to have an ordering that is upper
crossing closed as the smallest edge must be noncrossing. As it turns out, this kind of
issue is the only obstacle to a crossing closed graph being upper crossing closed.

Definition 50. Let G be a crossing closed graph. We say a subgraph H of G is an
obstruction to G being upper crossing closed if for every edge e in H there is an edge f
in H which crosses e such that J(e, f) ⊆ H.

Theorem 54 proves that Algorithm 53 below will, when given a graph G, either pro-
duce an upper crossing closed ordering on E(G) or an obstruction. It also proves that
an obstruction demonstrates no such ordering is possible. Thus we get the following
structural characterization of upper crossing closed graphs.

Theorem 51. A graph G is upper crossing closed if and only if it contains no obstruction
as a subgraph.

Note also that if every edge e in G crosses some other edge of G, then G itself is an
obstruction of G. Thus we also have the following.

Corollary 52. If G is a graph with every edge crossing some other edge, then G is not
upper crossing closed.

Note that Corollary 52 shows that the graph G of Figure 6 and the 5-pointed star of
Figure 7 are not upper crossing closed.

Algorithm 53. Upper Crossing Closed Algorithm
Input: A graph G on [n].
Output: A yes/no decision on whether G is crossing closed. Then if G is crossing closed,
a yes/no decision on whether G is upper crossing closed. If G is upper crossing closed,
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an upper crossing closed ordering is produced, and if G is crossing closed but not upper
crossing closed, an obstruction is produced.
Method:

1. Run the crossing closed algorithm on G, Algorithm 48. If the answer is no, return
“No. G is not crossing closed and hence not upper crossing closed.” and terminate.
If the answer is yes, return “Yes. G is crossing closed.” and continue.

2. Let L = ∅ and let σ = ∅. (Throughout the algorithm, L will be a subset of E(G)
and σ will be an ordering on L.)

3. Let L′ be the set of edges e in E(G) \L such that for every edge f ∈ E(G) \L that
crosses e, E(J(e, f)) ∩ L 6= ∅.

4. If L′ 6= ∅ update L to be L ∪ L′ and update σ to be the ordering on L ∪ L′ that
orders L according to σ and then puts all the edges of L′ after the edges of L. The
ordering within L′ can be arbitrary. Go back to step 3.

5. If L′ = ∅, decide on the output of the algorithm. If L = E(G), return “Yes, G
is upper crossing closed, and σ is an upper crossing closed ordering on E(G).” If
L 6= E(G), return “No. G is not upper crossing closed, and the spanning subgraph
of G with edge set E(G) \ L is an obstruction.”

We will now show how the algorithm runs on two graphs, one upper crossing closed
and the other not. First, let G be the twisted 4-cycle in Figure 5. As we have already seen,
G is crossing closed and upper crossing closed with respect to the lexicographic order on
its edges. The algorithm will thus correctly conclude that G is crossing closed in step 1
and will set L = ∅ and σ = ∅ in step 2. Next, it will go to step 3. Since L is empty, L′ is
the set of edges which cross no other edges. So L′ = {12, 34}. Then the algorithm passes
to step 4 where L is set to be {12, 34} and σ is set to be some total ordering of {12, 34}.
Now we return to step 3. Now, E(G) \ L = {13, 24}. Since 13 and 24 form the only
crossing in G and J(13, 24) = G intersects L, the algorithm sets L′ = {13, 24}. Next, we
go to step 4, where L is set to be {12, 34, 13, 24} and σ is some total ordering where the
first two elements are 12 and 34 and the last two elements are 13 and 24. Then we return
to step 3, where L′ is set to be empty. Finally, we go to step 5 and since L = E(G), the
algorithm returns that G is upper crossing closed with respect to the ordering σ, which
indeed it is. The reader may have noticed that the ordering the algorithm produces is
not the lexicographic ordering. This is because the algorithm always puts edges with no
crossing before any edge with a crossing. Thus the algorithm is not always capable of
producing all possible upper crossing closed orderings.

Now we give an example of how the algorithm runs on a graph G that is not upper
crossing closed. Let G be the 5-pointed star in Figure 7. Since G is crossing closed, the
algorithm will pass to step 2 and set L = ∅ and σ = ∅. Then it moves to step 3. Since
all the edges in G cross some other edge and L is empty, L′ is empty too. As a result,
the algorithm moves to step 5. Since L 6= E(G), the algorithm returns that G is not
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upper crossing closed and correctly provides G as an obstruction. We should note that
for any graph in which every edge crosses another edge, the algorithm will terminate with
L′ = L = ∅ and thus will correctly conclude that the spanning subgraph with edge set
E(G) \ L = E(G), i.e. G itself, is an obstruction.

We now prove that Algorithm 53 is correct and runs in polynomial time.

Theorem 54. Let G be a graph. Then we have the following.

(a) Algorithm 53 runs in time O(n8) where n is the number of vertices of G.

(b) If Algorithm 53 concludes by giving a purported obstruction H, then H is indeed an
obstruction.

(c) If Algorithm 53 produces an obstruction, then G is not upper crossing closed.

(d) If Algorithm 53 does not produce an obstruction, then G is upper crossing closed
and the order σ it produces is an upper crossing closed ordering.

(e) Algorithm 53 is correct.

Proof. First, we show (a). The crossing closed algorithm runs in O(n7) time as a subrou-
tine in step 1. During the course of that run, shortest paths P (e, f) connecting all pairs
of crossing edges e and f are created. By the proof of Theorem 49, these paths determine
J(e, f) for each such pair of edges. When running step 3, there are at most n2 edges
e ∈ E(G) \ L to check and then for each such e there are at most n2 edges f that cross
e to check. Since the J(e, f) are already calculated it takes n2 comparisons to calculate
J(e, f) ∩ L, so step 3 takes O(n6) time each time it is run. It is run at most n2 times so
the algorithm takes O(n8) time.

Now we verify (b). If the algorithm terminates with L′ = ∅ and L 6= E(G), then
the output of the algorithm is the spanning subgraph H with edge set E(G) \ L. Since
L′ = ∅, every edge e ∈ E(G) \ L must cross another edge f ∈ E(G) \ L such that
E(J(e, f)) ⊆ E(G) \ L. Thus H is indeed an obstruction.

Now we verify (c). Let H be an obstruction. Then for every ordering � of E(G),
the first edge e of H will cross some other edge f of H with J(e, f) ⊆ H. But since
J(e, f) ⊆ H and e is the minimum edge of H, no edge g ∈ J(e, f) will satisfy g � e, f . It
follows that G is not upper crossing closed with respect to any ordering.

Next, we prove (d). Suppose no obstruction is found. We claim that the ordering σ
on E(G) that is produced is an upper crossing closed ordering. Let e and f be a pair of
crossing edges in G. Consider the first point in time during the run of the algorithm in
which e, f 6∈ L and e or f or both are in L′. Say e ∈ L′. Then J(e, f) ∩ L 6= ∅ otherwise
e would not be in L′. So there will be an edge g ∈ J(e, f) ∩ L. In the ordering σ, all the
edges in L are less than all the edges not in L so g will be less than e and f . This shows
that G is upper crossing closed with respect to σ.

Finally, let us show (e). Suppose that G is not upper crossing closed. Then the
algorithm must find an obstruction. If it did not, by part (d), σ would be an upper crossing
closed ordering. By part (b), what the algorithm produces is really an obstruction and
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by part (c) this obstruction demonstrates that G is not upper crossing closed. Thus the
algorithm will return an obstruction and correctly returns that G is not upper crossing
closed.

Now suppose that G is upper crossing closed. Then by the contrapositive of part (c)
and by part (b) the algorithm produces no purported obstruction. So then by part (d),
it returns an upper crossing closed ordering. It will then correctly return that the graph
is upper crossing closed.
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