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Abstract

The main result of this paper is the construction of a bijection of the set of
words in so-called standard order of length n formed by four different letters and
the set N n of all subspaces of a fixed n-dimensional maximal isotropic subspace of
the 2n-dimensional symplectic space V over F2 which are not maximal in a certain
sense. Since the number of different words in standard order is known, this gives
an alternative proof for the formula of the dimension of the universal embedding of
a symplectic dual polar space Gn. Along the way, we give formulas for the number
of all n- and (n− 1)-dimensional totally isotropic subspaces of V .

Mathematics Subject Classifications: 05B25, 68R15

1 Introduction

Configurations of points and lines are of significant importance since they occur for in-
stance as designs in combinatorics, geometry and algebra. These structures have been
extensively documented in [Lev29, Grü09, PS13], and historically, projective geometry has
provided important examples like the Fano plane [Dem68]. The configurations induced by
a projective geometry are completely characterized by a set of axioms for its points and
lines, and analogously we can find the configurations induced by the (dual) polar spaces.
The axiomatic formulation of a polar space was given in [BS74], while the axioms for a
dual polar space were developed in [Cam82]. An important example of a polar space is
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Figure 1: The Cremona-Richmond configuration.

the set of all totally isotropic subspaces of a given symplectic space whereas the set of all
maximal isotropic subspaces form a dual polar space.

In this article we consider a symplectic space V of dimension 2n. We denote by Pn
the set of all maximal totally isotropic subspaces of V and by Ln the set of all totally
isotropic subspaces of dimension n − 1. They form a configuration of points and lines
Gn = (Pn,Ln) called the symplectic dual polar space, where the incidence relation is given
by inclusion of the subspaces. In the case when V is a F2-vector space, this structure is
completely understood and there is a vast literature on this matter [BCN89, Bru06, BC13].
The case n = 2 is of great importance because it gives the self-dual configuration called
Cremona-Richmond configuration [Cre77, Ric00] whose exciting history can be found in
[Bak10a, Bak10b]. In Figure 1 we show the Cremona-Richmond configuration, which has
fifteen points and fifteen lines such that every point is contained in exactly three lines and
every line contains exactly three different points. Starting from the symplectic dual polar
space Gn, we construct its universal embedding U(Gn) := F2(Pn)/η(F2(Ln)), where η :
F2(Ln)→ F2(Pn) sends every line to the sum of its three elements. Brouwer conjectured
that the value of dim(U(Gn)) is given by the sequence (xn)n∈N = (2, 5, 15, 51, 187, . . .) with
xn = (2n + 1)(2n−1 + 1)/3 which is the sequence A007581 in [Slo]. This conjecture was
proved by P. Li in [Li01] and independently by A. Blokhuis and A. E. Brouwer in [BB03].
In this paper we are mainly concerned with the procedure employed by P. Li in [Li01] where
he considers sets N n of subspaces of a fixed n-dimensional maximal isotropic subspace of
a 2n-dimensional symplectic space V over F2. These subsets N n are not maximal in a
sense to be made precise in Section 3. Every set N n is subdivided into a disjoint union of
families which are constructed inductively. In our work we construct a bijection between
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the set N n and a set of words of length n in so-called standard order, formed by four
different letters. Moreover, this bijection respects the inductive construction thus allowing
us to construct every element ofN n in a very simple way. As a consequence, our procedure
gives an alternative proof of the formula for the dimension of the universal embedding
U(Gn) since the number of words can be easily counted. This construction establishes a
relationship between the first and the second of the many different interpretations of the
sequence (xn)n∈N = (2, 5, 15, 51, 187, . . .) (the sequences A007581 and A124303 in [Slo])
in the following list:

1. The dimension of the universal embedding of the symplectic dual polar space [BB03,
Li01].

2. The density of a language with four letters [MR05, SW15].

3. The number of isomorphism classes of regular fourfold coverings of a graph L with
Betti number n = β(L) and with voltage group F2 × F2 [HK93].

4. The number of non-equivalent states of a Hanoi graph associated to the Hanoi tower
with n discs and four pegs [HKMP13].

5. The dimension of a certain centralizer algebra associated to a group of order 96
[KO16].

6. The dimension of the space of symmetric polynomials in 4 noncommuting variables
[BRRZ08, RS06].

7. An invariant of the group Zn2 of cobordism type, see [Seg19, CS18].

Actually, all this is part of a more general setting with an arbitrary prime number p. In
[SW15] we considered a language with p2 letters as a quotient of (Zp×Zp)n by the special
linear group SL(2,Z). In the case of a dual polar space, we consider the totally isotropic
subspaces of an Fp-vector space V , where we get configurations with points Pn and lines
Ln satisfying

|Pn(p)| =
n∏
k=1

(pk + 1) and |Ln(p)| = (pn − 1)

p2 − 1

n∏
k=1

(pk + 1) ,

where every line has p+ 1 points and every point is contained in pn−1
p−1

lines. For instance,

for n = 2 this produces a sequence of self-dual configurations
(
(p + 1)(p2 + 1)

)
p+1

for

prime numbers p, i.e., 152+1, 403+1, 1565+1, 4007+1, . . . which we will call the p-Cremona-
Richmond configurations. The sequence 15, 40, 156, 400, 1464, . . . appears as the sequence
A131991 in [Slo].

It is not a coincidence that there are many different but equivalent approaches to
the sequence (xn)n∈N = (2, 5, 15, 51, 187, . . .) and the mathematics involved is of great
interest. In terms of a language with four letters, we have a correspondence with ordered
set partitions producing some type of quasi-Young diagrams which gives the dimension of
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the space of symmetric polynomials in four noncommuting variables [RS06]. The results
of the present work produce a bijection between a language and a base for the symplectic
Grassmannian of a dual polar space. In fact, this resembles the case for partitions when
we count the number of irreducible representations of the symmetric groups and in a
certain way, we have the number of n-cells for the Grassmannian [MS74].

The paper is organized as follows. In Section 2 we discuss the set W n of words of
length n in so-called standard order formed by four letters and we give a procedure for
the construction of all the words W n+1 from the ones in W n. We obtain two proofs for the
formula for |W n| (proof of formula (1) on page 7 and Remark 6). In Sections 3 we outline
several facts on isotropic subspaces of symplectic F2-vector spaces and the symplectic dual
polar space. Additionally, we review Li’s proof for the formula of the dimension of the
universal embedding of the symplectic polar space Sp2n(2) which allows us to construct
the bijection between the words W n and Li’s vector spaces N n+1 in Section 4. This gives a
new proof for the formula for the dimension of the universal embedding of the symplectic
dual polar space in Theorem 18. In Appendix A we present the decomposition of the
collinearity graph Γ for n = 2 and n = 3 in its subgraphs Γk. In Appendix B we show
the construction of W n+1 from W n for n = 1, 2, 3, 4. Finally, in Appendix C, we present
a classification of words in W n according to the eight cases specified in Section 2.

2 Languages

Let us consider a language with the four letters 0, 1, 2, 3. For n ∈ N we define W̃ n :=
{a1 . . . an : aj = 0, 1, 2, 3} to be the set of all possible words of length n formed by
the letters 0, 1, 2, 3. In this article we will be mainly concerned with the subset W n of
words in the so-called standard order [AS16, MR05]. The set W n consists of the words

a1a2 . . . an ∈ W̃ n such that there exist 1 6 j < k with:

(R1) ai = 0 for i < j,

(R2) aj = 1,

(R3) ai ∈ {0, 1} for j < i < k,

(R4) ak = 2 if k 6 n,

(R5) ai ∈ {0, 1, 2, 3} for i > k.

Note that (R5) applies only if k < n. For a word a = a1a2 . . . an the rules above can be
written compactly as

0 6 ai 6 maxj<i{aj}+ 1, 1 6 i 6 n.

Note that our set W n is the special case W n
2 of the more general sets W n

p defined in
[SW15] for arbitrary prime numbers p.

Definition 1. The cardinality of W n is called the density of the language W n. We use
the notation gW (n) := |W n|.
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Example 2. We have W 1 = {0}, consisting of 1 word, W 2 = {00, 01}, consisting of 2
words, W 3 = {000, 001, 010, 011, 012}, consisting of 5 words. For n = 4 there are 15 words
and the elements of W 4 are

0000 0001 0010 0011 0012
0100 0101 0102 0110 0111
0112 0120 0121 0122 0123 .

The following theorem was already shown in [MR05] and [SW15].

Theorem 3. For n ∈ N0 the density of the language W n is

|W n| = gW (n) =
(2n−1 + 1)(2n−2 + 1)

3
. (1)

In the present work, we want to provide a different point of view, motivated by the
work of Li [Li01], and we will give an alternative proof of Theorem 3 after Proposition 4.
In what follows we study some facts which are fundamental for the proof of this theorem.

Let n > 2. We will show how all words in W n+1 can be constructed from the words
in W n.

• Case 1. Take an arbitrary word in W n and attach 0 at the end. This gives a valid
word in W n+1. The number of all such words is gW (n).

• Case 2. Take an arbitrary word in W n and attach 1 at the end. This gives a valid
word in W n+1 and it is not contained in the words obtained in case 1. The number
of all such words is gW (n).

For Cases 3, 4, 5 we take an arbitrary word a = a1a2 . . . an in W n which ends in 2 or
3. Note that this implies 1 ∈ {a1, . . . , an−1} and that therefore a = a1a2 . . . an−1`an is a
valid word in W n+1 for ` = 0, 1, 2.

• Case 3. Insert the letter 0 before an. Then we obtain the valid word ã =
a1a2 . . . an−10an ∈ W n+1. Clearly this word is not contained in the words con-
structed so far.

• Case 4. Insert the letter 1 before an. Then we obtain the valid word ã =
a1a2 . . . an−11an ∈ W n+1. Clearly this word is not contained in the words con-
structed so far.

• Case 5. Insert the letter 2 before an. Then we obtain the valid word ã =
a1a2 . . . an−12an ∈ W n+1. Clearly this word is not contained in the words con-
structed so far.

The number of words in each of the Cases 3, 4, 5 is

#(words of length n ending in 2 or 3) = gW (n)−#(words of length n ending in 0 or 1)

= gW (n)− 2gW (n− 1),

since #(words of length n ending in 0) = #(words of length n ending in 1) = gW (n − 1)
as in Case 1 and Case 2.
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• Case 6. Let a = a1a2 . . . an in W n which ends in 2 or 3 and such that 2 ∈
{a1, . . . , an−1}.
Insert the letter 3 before an. We obtain the valid word ã = a1a2 . . . an−13an ∈ W n+1.
Clearly this word is not contained in the words constructed so far.

• Case 7. Let a = a1a2 . . . an in W n which ends in 2 or 3 and such that 2 6∈
{a1, . . . , an−1}.
This implies that an = 2 and aj ∈ {0, 1} for 1 6 j 6 n− 1. Attach 3 to obtain the
new word ã = a1a2 . . . an−123 ∈ W n+1. Clearly this word is not contained in the
words constructed so far. The number of all such words is equal to the number of
strings of length n− 1 consisting only of 0 and 1, with exception of the zero string.
So the number of the words in this case is 2n−2 − 1.

The total number of words in the Cases 6 and 7 together is

#(words of length n ending in 2 or 3) = gW (n)−#(words of length n ending in 0 or 1)

= gW (n)− 2gW (n− 1).

• Case 8. Let ã = 0 . . . 012 ∈ W n+1. Clearly this word is not contained in the words
constructed so far.

We say that a word ã ∈ W n+1 is in Case k for k = 1, . . . , 8, if it is constructed from
a word a ∈ W n as described in Case k.

Proposition 4. Let n > 2. Then each word in W n+1 is constructed as in exactly one of
the Cases 1 – 8 above.

Proof. Let ã = a1a2 . . . anan+1 ∈ W n+1.

• Suppose that an+1 ∈ {0, 1}. Then clearly ã is constructed either as in Case 1 or in
Case 2.

• Suppose that an+1 ∈ {2, 3}. Note that this implies 1 ∈ {a1, . . . , an}.

– If an = 0, we can erase it and obtain the valid word a = a1 . . . an−1an+1 ∈ W n.
If we now apply the procedure of Case 3, we recover ã.

– If an = 1 and a = a1 . . . an−1an+1 is a valid word in W n, then we can apply the
procedure of Case 4 and we obtain again ã. If a = a1 . . . an−1an+1 is not a valid
word in W n, then necessarily ã = 0 . . . 012 and we have the word of Case 8.

– If an = 2 and a = a1 . . . an−1an+1 is a valid word in W n, then we can apply the
procedure of Case 5 and we obtain again ã. If a = a1 . . . an−1an+1 is not a valid
word in W n, then necessarily an+1 = 3 and 2 6∈ {a1, . . . , an−1}. Then we can
apply the procedure of Case 7 to the word a′ = a1 . . . an−1an and we recover ã.
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– If an = 3 then necessarily a = a1 . . . an−1an+1 is a valid word in W n and we
can apply the procedure of Case 6 to recover ã.

In Appendix C we give a classification of the words of W n according to the cases
described above and in Appendix B we show explicitly how W n+1 is constructed from W n

for n = 2, 3, 4. Proposition 4 allows us to prove the formula (1) as follows.

Proof of Formula (1). By Proposition 4 we know that, for n > 2,

|W n+1| = gW (n+ 1) = 2gW (n) + 4[gW (n)− 2gW (n− 1)] + 1

= 6gW (n)− 8gW (n− 1) + 1.

From Example 2 we obtain that |W 1| = 1, |W 2| = 2, hence formula (1) is satisfied for
n = 1, 2. Now suppose that the formula holds for all j 6 n. Then

gW (n+ 1) = 6gW (n)− 8gW (n− 1) + 1

= 6
(2n−1 + 1)(2n−2 + 1)

3
− 8

(2n−2 + 1)(2n−3 + 1)

3
+ 1

=
(2n−2 + 1)

3

[
6(2n−1 + 1)− 8(2n−3 + 1)

]
+ 1

=
2(2n−2 + 1)(2n − 1) + 3

3

=
22n−1 + 2n+1 − 2n−1 + 1

3
=

22n−1 + 2n + 2n−1 + 1

3

=
(2n + 1)(2n−1 + 1)

3
.

Remark 5. An alternative proof of Proposition 4 makes use of the formula (1) for |gW (n)|
which was already proved in [MR05] and [SW15]. Then it is sufficient to prove that the
number of words obtained by the Cases 1 to 8 is equal to |W n+1| because we already
know that all cases are disjoint and that every word constructed in these cases belongs to
W n+1. That is, we have to show that

gW (n+ 1) = 2gW (n) + 6[gW (n)− gW (n− 1)] + 1.

This is a straightforward calculation.

Proposition 4 gives yet another way to calculate |W n| as the next remark shows.

Remark 6. We showed that with the rules in Cases 1 to 8, each word in W n which ends
in 0 or 1 gives rise to exactly two words in W n+1 (Cases 1 and 2). They again end in 0
or 1. Each word in W n which ends in 2 or 3 gives rise to exactly six words in W n+1, two
of which end in 0 or 1, and four of them end again in 2 or 3 (Cases 3, 4, 5 and either 6 or
7). In addition we have the word from Case 8.
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Let gW (n) = |W n| and

s(n) = number of words in W n which end in 0 or 1,

t(n) = number of words in W n which end in 2 or 3.

Then we obtain t(1) = t(2) = 0, t(3) = 1, s(1) = 1, s(2) = 2, s(3) = 4 and for n > 2

gW (n+ 1) = 2s(n) + 6t(n) + 1, s(n+ 1) = 2s(n) + 2t(n), t(n+ 1) = 4t(n) + 1.

Iterating the formula for t(n), we find t(n) = 4n−2−1
3

. For s(n) we find

s(n) = 2n−3s(3) +
n−3∑
j=1

2jt(n− j) = 2n−1 +
1

3

n−3∑
j=1

2j(22n−4−2j − 1)

= 2n−1 +
2

3

(
n−4∑
j=0

22n−6−j −
n−4∑
j=0

2j

)

= 2n−1 +
2

3

(
2n−2 − 1

) n−4∑
j=0

2j = 2n−1 +
2

3
(2n−2 − 1)(2n−3 − 1)

=
1

3
(3 · 2n−1 + 22n−4 − 2n−1 − 2n−2 + 2) =

1

3
(22n−4 + 2n−1 + 2n−2 + 2).

So we find again formula (1) for gW (n):

gW (n) = s(n) + t(n) =
1

3

[
22n−4 + 2n−1 + 2n−2 + 2 + 4n−2 − 1

]
=

1

3

[
22n−3 + 2n−1 + 2n−2 + 1

]
=

(2n−1 + 1)(2n−2 + 1)

3
.

Definition 7. Let us introduce some more notation. We define the following subsets
of W n:

Wn
0 := {a1 . . . an−10 : aj = 0, 1, 2, 3} = all words ending in 0,

Wn
1 := {a1 . . . an−11 : aj = 0, 1, 2, 3} = all words ending in 1,

Sn0 := {a1 . . . an−20bn : aj = 0, 1, 2, 3, bn = 2, 3} = all words ending in 2 or 3 with an−1 = 0,

Sn1 := {a1 . . . an−21bn : aj = 0, 1, 2, 3, bn = 2, 3} = all words ending in 2 or 3 with an−1 = 1,

Sn2 := {a1 . . . an−22bn : aj = 0, 1, 2, 3, bn = 2, 3} = all words ending in 2 or 3 with an−1 = 2,

Sn3 := {a1 . . . an−23bn : aj = 0, 1, 2, 3, bn = 2, 3} = all words ending in 2 or 3 with an−1 = 3,

Sn := Sn0 ∪ Sn1 ∪ Sn2 ∪ Sn3 ,
Cn1 := {a1 . . . an−223 : aj = 0, 1},
Cn2 := {a1 . . . an−12 : aj = 0, 1} = all words with an = 2 and no other 2,

Cn3 := {0 . . . 012}.
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Observe that Cn
1 ⊂ Sn2 , Cn

3 ⊂ Sn1 and that

W n+1 = W n+1
0 tW n+1

1 t Sn+1
0 t Sn+1

1 t Sn+1
2 t Sn+1

3

where t denotes the disjoint union. Now we define the insert operators for k = 1, . . . , n+1
and ` = 0, 1, 2, 3 as follows:

Ank,` : W n → W̃ n+1, Ank,`(a1 . . . an) = a1 . . . ak−1`ak . . . an.

For n ∈ N and 1 6 j 6 n we define the erase operators

En
j : W n → W̃ n−1, En

j (a1 . . . an) = a1 . . . aj−1aj+1 . . . an.

It should be observed that for a ∈ W n and j ∈ {1, 2, . . . , n}, the word En
j (a) is not

necessarily a word in W n−1.

With this new notation, the results of this section so far can be summarized as follows.
Theorem 8 is essentially Proposition 4 with the constructions of words expressed by maps
which will be useful later in Theorem 9 and Theorem 17.

Theorem 8. Let n ∈ N. Then the following maps are bijections:

Ann+1,0 : W n → W n+1
0 , (Case 1)

Ann+1,1 : W n → W n+1
1 , (Case 2)

Ann,0 : Sn → Sn+1
0 , (Case 3)

Ann,1 : Sn → Sn+1
1 \ Cn+1

3 , (Case 4)

Ann,2 : Sn → Sn+1
2 \ Cn+1

1 , (Case 5)

Ann,3 : Sn \ Cn
2 → Sn+1

3 , (Case 6)

Ann+1,3 : Cn
2 → Cn+1

1 (Case 7)

and W n+1 = W n+1
0 tW n+1

1 tSn+1
0 t

(
Sn+1

1 \Cn+1
3

)
t
(
Sn+1

2 \Cn+1
1

)
tSn+1

3 tCn+1
1 tCn+1

3

is the disjoint union of the images of the maps above and Cn+1
3 .

The inverses of the maps above are

En+1
n+1 : W n+1

0 → W n,

En+1
n+1 : W n+1

1 → W n,

En+1
n : Sn+1

0 → Sn,

En+1
n : Sn+1

1 \ Cn+1
3 → Sn,

En+1
n : Sn+1

2 \ Cn+1
1 → Sn,

En+1
n : Sn+1

3 → Sn \ Cn
2 ,

En+1
n+1 : Cn+1

1 → Cn
2 .

Moreover,

|W n+1
0 | = |W n+1

1 | = gW (n),

|Sn+1
0 | = |Sn+1

1 \ Cn+1
3 | = |Sn+1

2 \ Cn+1
1 | = gW (n)− 2gW (n− 1),

|Sn+1
3 |+ |Cn+1

1 | = gW (n)− 2gW (n− 1).

Theorem 9. For every word a = a1 . . . an ∈ W n exactly one of the following holds.
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(a) There is exactly one sequence of maps A1, A2, . . . , An−1 such that a = An−1 · · ·A1(0)
where the Aj are maps of type Aj`,a as in Theorem 8.

(b) There is exactly one k 6 n and exactly one sequence of maps Ak, Ak+1, . . . , An−1 such
that a = An−1 · · ·Ak(a′) where the Aj are maps of type Aj`,a as in Theorem 8 and

a′ = 0 . . . 012 ∈ W k.

Proof. The claim follows immediately from Theorem 8. Recall that W n is the disjoint
union of the ranges of the seven maps given in Theorem 8 and Cn

3 = {0 . . . 012}. Therefore,
every word a ∈ W n belongs either to Cn

3 or to the range of exactly one of the seven maps.
If a ∈ Cn

3 , then (b) holds with k = n. Otherwise there is exactly one map An−1 and,
by the bijectivity of these maps, exactly one a′ ∈ W n−1 such that a = An−1a′. Now we
repeat his process until we either fall in case (b) for some 1 6 k < n or we reach the word
0.

3 Symplectic dual polar spaces

For a symplectic space (V, ω) of dimension 2n over the field with two elements F2, consider
subspaces U with ω(U) = 0, called totally isotropic. A subspace U of V is called a
maximal totally isotropic subspace if it is totally isotropic and not properly contained in
any other totally isotropic subspace of V . Every maximal totally isotropic subspace X
has dimension n. Every totally isotropic subspace X̃ with dim X̃ = n− 1 is contained in
exactly 3 different maximal totally isotropic subspaces. Moreover, every maximal isotropic
subspace contains exactly 2n−1 totally isotropic subspaces of dimension n−1. We obtain
a configuration of points and lines Gn := (Pn,Ln), called the symplectic dual polar space,
where

• Pn = the set of all maximal totally isotropic subspaces of V ;

• Ln = the set of all totally isotropic subspaces of dimension n− 1 of V .

In [BCN89, Lemma 9.4.1], Brouwer, Cohen and Neumaier give the following formula for
the number of all maximal totally isotropic subspaces of a 2n-dimensional symplectic
space:

|Pn| =
n∏
k=1

(2k + 1) and |Ln| =
(2n − 1)

3

n∏
k=1

(2k + 1).

Every totally isotropic subspace X̃ with dim X̃ = n− 1 is contained in exactly p + 1
different maximal totally isotropic subspaces. We obtain a configuration of points and
lines Gn(p) := (Pn(p),Ln(p)), where

|Pn(p)| =
n∑
k=0

[(
n

k

)
p

p
1
2
k(k+1)

]
=

n∏
k=1

(pk + 1) and |Ln| =
(pn − 1)

p2 − 1

n∏
k=1

(pk + 1) .

For p = 2 we denote Gn := Gn(2).
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Definition 10. For the symplectic dual polar space Gn we define its collinearity graph
Γ as the graph whose vertices are the points of Pn and two vertices are adjacent if and
only if the corresponding points are collinear in Gn. This is also called the Menger graph,
see [Cox50].

For example, G1 consists of one line and three points, so its collinearity graph is a
triangle.

Definition 11. An embedding of Gn is an F2-vector space E together with a map θ :
Pn → E such that

1. θ(P ) 6= 0 for every P ∈ Pn,

2. E = span{Rg(θ)} where Rg(θ) = θ(Pn) is the range of θ.

3. θ(P ) + θ(Q) + θ(R) = 0 for every line L = {P,Q,R} ∈ Ln.

Such an embedding can be constructed as follows. Let F2(Ln) and F2(Pn) be the
F2-vector spaces freely generated by the lines Ln and the points Pn, respectively. Since
every line L ∈ Ln can be written as L = {P,Q,R} where P,Q,R ∈ Pn are the three
points contained in L, we have the following map

η : F2(Ln) −→ F2(Pn) , L = {P,Q,R} 7→ P +Q+R.

The quotient U(Gn) := F2(Pn)/η(F2(Ln)) is called the universal embedding module and
we define the canonical map

θ : Pn −→ U(Gn) .

Clearly this is an embedding of Gn; it is called its universal embedding. Note that any
other embedding is a quotient of the universal embedding. The dimension of the universal
embedding of the polar dual space is dim(U(Gn)).

Brouwer proved in 1990 that

dim(U(Gn)) >
(2n + 1)(2n−1 + 1)

3
(2)

and conjectured that (2) is in reality an equality. The conjecture was proved by Li [Li01]
and independently by Blokhuis and Brouwer [BB03].

Theorem 12 ([Li01, BB03]). The dimension of the universal embedding of the polar dual
space, dimU(Gn), is

dimU(Gn) =
(2n + 1)(2n−1 + 1)

3
.

Definition 13. Let P and Q be vertices in a connected graph Γ. A path from P to Q
of length n is an ordered set of vertices V0 = P, V1, . . . , Vn = Q such that Vi−1 and Vi are
connected by an edge. The minimal length of all paths connecting P and Q is called the
distance between P and Q.
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Definition 14. Consider the collinearity graph Γ associated to the symplectic dual polar
space Gn and fix a vertex X0 in the graph Γ. We denote by Γk the induced subgraph
formed by the vertices of Γ which have distance k from X0.

It can be shown that all maximal isotropic subspaces P , Q and R of V satisfy the
following:

1. dim(X0 ∩ P ) = n− k if and only if P ∈ Γk.

2. P and Q belong to the same connected component of Γk if and only if X0 ∩ P =
X0 ∩Q.

3. The induced subgraph Γn consists of exactly one connected component and Γ1 con-
sists of exactly 2n − 1 disjoint connected components.

4. Suppose P,Q,R are pairwise different and collinear. Then two of the spaces belong
to the same Γk and the third one belongs to Γk−1.

Example 15. Following [Li01], we write vectors w ∈ V as row vectors w = (w1, . . . , w2n)

and for vectors v1, . . . , vk ∈ V , we set

( v1
...
vk

)
:= span{v1, . . . , vk}.

• Let n = 1. Then V = F2
2 and its maximal isotropic subspaces are exactly the spans

of the non-zero vectors of V . So we have P1 = {(10), (01), (11)} and L1 = {(00)},
in particular dimU(G1) = 2.

• Let n = 2. Then V = F4
2 and the elements of P2 are exactly the 15 following

two-dimensional maximal isotropic subspaces:

(
1000
0100

)
,

(
1000
0101

)
,

(
1001
0110

)
,

(
1001
0111

)
,

(
1010
0100

)
,(

1010
0101

)
,

(
1011
0110

)
,

(
1011
0111

)
,

(
1100
0011

)
,

(
1101
0011

)
,(

1000
0001

)
,

(
1010
0001

)
,

(
0100
0010

)
,

(
0101
0010

)
,

(
0010
0001

)
.

The lines L2 are exactly the 15 following one-dimensional isotropic subspaces:

(0001), (0100), (0111), (1010), (1101),

(0010), (0101), (1000), (1011), (1110),

(0011), (0110), (1001), (1100), (1111).

• Let n = 3. Then V = F6
2 and the sets P3 and L3 consist of 135 point and 315 lines,

respectively (see Appendix A).
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In the rest of this section we describe briefly how Li in [Li01] used certain vector spaces
to count dimU(Gn) and thereby proved Theorem 12. Since (2) was already known, only
the reverse inequality 6 had to be proved.

To this end, Li considers the collinearity graph Γ defined by Gn. As before, we fix a
point X0 in Γ and we set Γk to be the set of all points in Γ which have distance k from
X0. Since every triangle in Γ contains two elements from Γk and one from Γk−1 for some
k = 1, . . . , n, it follows that θ(Y ) ∈ span{θ(Γk)} for every Y ∈ Γk−1. Thus we have the
following filtration of U(Gn)

{0} ⊂ span{θ(Γ0)} = span{θ(X0)} ⊂ span{θ(Γ1)} ⊂ · · · ⊂ span{θ(Γn)} = U(Gn)

and consequently

U(Gn) ∼= span{θ(Γ0)} ⊕
(

span{θ(Γ1)}/ span{θ(Γ0)}
)
⊕ · · · ⊕

(
span{θ(Γn)}/ span{θ(Γn−1)}

)
.

Recall that two points P,Q belong to the same connected component of Γk if and only if
P ∩X0 = Q∩X0. Clearly, this is the case if and only if θ(P ) ≡ θ(Q) mod span{θ(Γk−1)}.

Now let n > 3 and 2 6 k 6 n − 1 and let L,M ⊂ X0 be subspaces with dimL =
n − k − 1 and dimM = n − k + 2. Then there are exactly 7 subspaces L ⊂ Rj ⊂ M

with dimRj = n− k, and
∑7

j=1 θ(R̃j) ≡ 0 mod span{θ(Γk−1)} where R̃j is any maximal

totally isotropic subspace of V with R̃j ∩X0 = Rj.
For 1 6 i 6 n we setWi to be the F2-vector space freely generated by all i-dimensional

subspaces ofX0 and for 1 6 i < j 6 n we setWij to be the F2-vector space freely generated
by all flags X < Y in X0 where dimX = i and dimY = j. Let {eL} be the natural basis
of Wi and {eX<Y } the natural basis of Wij. Let us define the incidence map

φn−k :Wn−k−1,n−k+2 →Wn−k, φn−k(eX<Y ) =
∑

X⊂L⊂Y
dimL=n−k

eL.

Moreover, we have a natural surjection

hn−k :Wn−k → span{θ(Γk)}/ span{θ(Γk−1)}.

It follows from the above that hn−k ◦ φn−k = 0, hence the induced map

h̃n−k :Wn−k/Rg(φn−k)→ span{θ(Γk)}/ span{θ(Γk−1)}

is well-defined and surjective. Therefore

dimU(Gn) = dim
(

span{θ(Γ0)}}
)

+ dim
(

span{θ(Γ1)}/ span{θ(Γ0)}
)

+
n−1∑
k=2

dim
(

span{θ(Γk)}/ span{θ(Γk−1)}
)

+ dim
(

span{θ(Γn)}/ span{θ(Γn−1)}
)
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6 1 + (2n − 1) +
n−2∑
j=1

dim
(
Wj/Rg(φj)

)
+ 1

= 1 + 2n +
n−2∑
j=1

dim(Wj)− dim(Rg(φj))

=
n∑
j=0

dim(Wj)−
n−2∑
j=1

dim(Rg(φj)), (3)

where in the last step we have used that dimW0 = dimWn = 1, dimWn−1 = 2n − 1.
In order to evaluate the right hand side, Li introduces the following order on X0

∼= Fn2 .
Let e1, . . . , en be the standard basis of Fn2 and let v = α1e1 + · · ·+ αnen and w = β1e1 +
· · ·+ βnen in Fn2 . Then we define the support and weight of v as

supp v = {j : αj 6= 0}, wt v = | supp v|

and we set m(v) = min(supp v) and M(v) = max(supp v). We obtain a total order on Fn2
by setting v � w if and only if there is a j = 1, . . . , n such that αk = βk for all 1 6 k < j
and (αj, βj) = (1, 0).

If L ⊆ Fn2 is a subspace, we set suppL =
⋃
v∈L supp v and m(L) = {m(v) : v ∈

L}. It is not hard to see that dimL = |m(L)|. The so-called reduced echelon basis
of L is the unique basis v1, . . . , vk such that m(vj) is strictly increasing and m(vj) 6=
supp{v1, . . . , vj−1, vj+1, . . . , vk}. This basis is obtained easily if we take an arbitrary
basis of L, form the matrix whose rows are these basis vectors and apply the Gauß-
Jordan procedure to obtain a reduced row-echelon matrix. The rows of this new matrix
form the reduced echelon basis of L. Now we define an order on the subspaces of Fn2 as
follows. Let L,L′ be subspaces of Fn2 with dimL = dimL′ = k and reduced echelon basis
v1, . . . , vn and v′1, . . . , v

′
n respectively. Then we say that L � L′ if there is j = 1, . . . , n

such that vk = v′k for k > j and vj � v′j.
Recall that an element ∆ ∈ Rg φk is a formal sum of k-dimensional subspaces of X0.

Let us set Ak = {max ∆ : ∆ ∈ Rg(φk)}. Then it is not hard to see that dim(Rg(φk)) =
|Ak|.

Now we define N n := {L ⊂ X0} \
⋃n−2
k=1 Ak to be the set of subspaces of X0 which

belong to no Ak. Clearly, all the sets Ak are disjoint. Recall that dimWj is the number
of all subspaces of X0 of dimension j. So we obtain from (3)

dimU(Gn) 6
n∑
j=0

dim(Wj)−
n∑
j=0

|Aj| = |N n|. (4)

Li gives a clever description of the elements in N n using the reduced echelon basis as
follows, see also [McC00].

the electronic journal of combinatorics 27(4) (2020), #P4.39 14



Theorem 16. Let L be a k-dimensional subset of X0 with reduced echelon basis v1 �
· · · � vk. Then L ∈ N n if and only if the following four conditions are satisfied:

(N1) wt vj 6 2 for all j = 1, . . . , k.

(N2) If vr � vs and wt vr = wt vs = 2, then M(vr) 6M(vs).

(N3) If vr � vs � vt, wt vr = wt vs = wt vt = 2 and M(vr) = M(vs) < M(vt), then
m(vt) > M(vr).

(N4) If vr � vs � vt � vu and wt vr = wt vs = wt vt = wt vu = 2, then it is impossible
that M(vr) = M(vs) = M(vt) < m(vu).

Note that the last condition in (N4) is equivalent to M(vr) = M(vs) = M(vt) < M(vu)
by condition (N3). Then Li shows how N n+1 can be constructed from N n and thus is
able to show that

|N n| = (2n + 1)(2n−1 + 1)

3
,

proving the formula in Theorem 12. In addition, it follows that the functions h̃n−k are
bijections and that Rg(φk) = ker(hn−k).

If we modify slightly Li’s construction of N n+1 from N n, then it is analogous to how
we constructed W n+1 from W n. In the next section we will show how this allows us to
construct a bijection between W n+1 and N n.

4 Bijection between words and vector spaces

As in [Li01] we set g(n) := |N n|. Before we continue, let us give some examples of N n.
We use the notation of Example 15.

• The set of all L ∈ N 1 is (0) and (1) and g(1) = |N 1| = 2 = gW (2).

• The set of all L ∈ N 2 is, in ascending order, (00), (01), (10), (11), ( 10
01 ) and g(2) =

|N 2| = 5 = gW (3).

• The set of all L ∈ N 3 is, in ascending order,

(000), (001), (010), (100), (011), (101), (110),(
010
001

)
,

(
100
001

)
,

(
110
001

)
,

(
100
010

)
,

(
101
010

)
,

(
100
011

)
,

(
101
011

)
,

100
010
001


and g(3) = |N 3| = 15 = gW (4).
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Now we show how N n can be constructed from N n−1 for n > 2. For this to be
analogous to the process for the passage from W n to W n+1, we have to modify Li’s
procedure slightly.

In what follows, we identify vector spaces L with the matrix A whose rows consist of
the reduced echelon basis of L and we use the following notation: If v ∈ Fn−1

2 , then we
denote by ṽ ∈ Fn2 the vector obtained from v by appending a 0 and by v̂ ∈ Fn2 the vector
obtained from v by inserting a 0 between the last and second to last component of v. The
kth unit vector in Fn2 is denoted by enk .

We will say that a vector space L̃ ∈ N n is in Case k′ for k′ = 1, . . . , 8 if it is
constructed from a vector space L ∈ N n−1 as described in the Cases k′ below. For
examples of these constructions, see the ones in Example 19.

• Case 1′. Take an arbitrary vector space in N n−1 with reduced echelon basis v1 �
· · · � vk. Append 0 to each of these vectors in order to obtain ṽ1 � · · · � ṽk. Then
clearly L̃ ∈ N n and dimL = dim L̃. We denote this construction by

αn−1
n,0 : N n−1 → N n, L 7→ L̃.

Note that each vector space L̃ obtained in this way has the form

 0

L
...
0

 for

some vector space L ∈ N n−1. The total number of such vector spaces L̃ is g(n− 1).

• Case 2′. Take an arbitrary vector space in N n−1 with reduced echelon basis v1 �
· · · � vk. Append 0 to each of these vectors in order to obtain ṽ1 � · · · � ṽk and
augment this basis by enn to a reduced echelon basis of L̃ := span{ṽ1, . . . , ṽk, e

n
n}.

Then clearly L̃ ∈ N n and dim L̃ = dimL+ 1. We denote this construction by

αn−1
n,1 : N n−1 → N n, L 7→ L̃.

Note that each vector space L̃ obtained like this has the form


0

L
...
0

0 . . . 0 1

 for

some vector space L ∈ N n−1. The total number of such vector spaces L̃ is g(n− 1).

By construction, every vector space obtained in Cases 1’ and 2’ has either only zeros in
the last column or its last line is the vector enn.

For the remaining cases 3’, 4’, 5’, 6’ and 7’ we take an arbitrary vector space L ∈ N n−1

with reduced echelon basis v1 � · · · � vk such that n − 1 ∈ suppL and vk 6= en−1
n−1. This

means that the matrix consisting of the row vectors v1, . . . , vk has at least one 1 in its last
column and the last row is not equal to en−1

n−1 and L cannot have been obtained from (0)
or (1) ∈ N 1 by using only the constructions described in Cases 1′ and 2′.
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• Case 3′. Insert a 0 in front of the last coordinate of each of the basis vectors
in order to obtain v̂1 � · · · � v̂k and set L̃ := span{v̂1, . . . , v̂k}. We denote this
construction by

αn−1
n−1,0 : L 7→ L̃.

Clearly L̃ ∈ N n and dim L̃ = dimL.

• Case 4′. As in Case 3′, insert a 0 in front of the last coordinate of each of the basis
vectors in order to obtain v̂1 � · · · � v̂k and set L̃ := span{v̂1, . . . , v̂k, e

n
n−1}. We

denote this construction by
αn−1
n−1,1 : L 7→ L̃.

Clearly L̃ ∈ N n and dim L̃ = dimL+ 1.

• Case 5′. As in Case 3′, insert a 0 in front of the last coordinate of each of the basis
vectors in order to obtain v̂1 � · · · � v̂k and set L̃ := span{v̂1, . . . , v̂k, e

n
n−1 + enn}.

We denote this construction by

αn−1
n−1,2 : L 7→ L̃.

Clearly L̃ ∈ N n and dim L̃ = dimL+ 1.

The number of vector spaces in each of the Cases 3′, 4′, 5′ is

g(n− 1)−#(L ∈ N n−1 with last column zero or vk = en−1
n−1 ) = g(n− 1)− 2g(n− 2)

because #(L ∈ N n−1 with last column zero) = #(L ∈ N n−1 with vk = en−1
n−1) = g(n − 2)

as in Case 1′.

• Case 6′. Let L ∈ N n−1 with reduced echelon basis v1 � · · · � vk such that either
the last column of A has at least two ones (this corresponds to case 6 in [Li01]), or
such that the last column has exactly one 1 and that this 1 is not in the first row
(this is a subset of the cases 7b, c and d of [Li01]).

– Case 6′a. Assume that the last column of A has at least two ones. Then every
row with a 1 in its last column must have weight 2. Set j = min{` : M(v`) =
n− 1} = highest row of A with a 1 in the last column. Let b < n− 1 such that
vj = en−1

b +en−1
n−1. For ` 6= j we let v̂` be the vector in Fn which is obtained from

v` by inserting a 0 between the last and the second to last component of v`.
Then we set L̃ = span{v̂1, . . . , v̂j−1, e

n−1
b + en−1

n−1, v̂j+1, . . . , v̂k}. In words: we
append to A a zero column and then we push the 1s in the (n − 1)th column
below the jth row out to the new nth column. The matrix A′ corresponding
to L̃ has exactly one 1 in the second to last column; this occurs in a row with
weight 2, different from the last row and there is at least one row of the form
ena + enn with a > j. Note that dim L̃ = dimL. This is the case 6 in [Li01].
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– Case 6′b. Assume that the last column of A has at exactly one 1 and let j > 2
such that vj = en−1

a + en−1
n−1. Let b = max{M(v`) : ` 6= j}.

If b < a, then necessarily j = k and we set L̃ = span{v̂1, . . . , v̂k−1, e
n
a , e

n
n−1 +

enn} (this is part of case 7a in [Li01]). Note that dim L̂ = dimL+ 1.

If a < b < n − 1 and there exists ` > j with b ∈ supp v`, then v` = vk =
en−1
b and b 6∈ supp vm for m 6= `. We set L̃ = span{v̂1, . . . , v̂j−1, e

n
a +

enb , v̂j+1, . . . , v̂k−1, e
n
n−1 + enn} (this is part of case 7b in [Li01]). Note that

dim L̃ = dimL.

If a < b < n−1 and there exists ` < j with b ∈ supp v`, then wt v` = 2 and there
is c < a < b such that v` = en−1

c + en−1
b . We set L̃ = span{v̂1, . . . , v̂j−1, e

n
a +

enb , v̂j+1, . . . , v̂k−1, v̂k, e
n
n−1 + enn} (this is case 7c in [Li01]). Note that dim L̃ =

dimL+ 1.

We denote these constructions by

αn−1
n−1,3 : L 7→ L̃.

• Case 7′. Let L ∈ N n−1 with reduced echelon basis v1 � · · · � vk such that L is
not in case 6’. Then wt v1 = 2, n − 1 ∈ supp v1 and n − 1 6∈ supp vj for j > 2.
That implies that wt vj = 1 for j > 2. Moreover, it implies that L originates from

a vector space L̂ ∈ N n̂ in Case 8 using only the constructions described in Cases 3′

and 4′.

Let v1 = en−1
b +en−1

n−1. If dimL = 1, we set L̃ = span{enb , enn−1 +enn} (this corresponds
to 1-dimensional vector spaces of case 7a in [Li01]).

If dimL > 1 and vk = en−1
a , we set L̃ = span{enb + ena , v̂2, . . . , v̂k−1, e

n
n−1 + enn} (this

corresponds to some of the vector spaces of case 7b in [Li01]).

We denote these constructions by

αn−1
n,3 : L 7→ L̃.

The total number of vector spaces in the Cases 6′ and 7′ together is

g(n− 1)−#(L ∈ N n−1 with last column zero or vk = en−1
n−1 ) = g(n− 1)− 2g(n− 2).

• Case 8′. Let L̃ = (0 · · · 011) ∈ N n. Clearly this vector space is not contained in
the spaces constructed so far.

It is not hard to see that the vector spaces constructed above are all pairwise disjoint
and that they all belong to N n. Moreover, it can be seen that we obtain every L̃ ∈ N n

in exactly one way.
It is clear that the cases k for words and k′ for vector spaces correspond to each other.

E.g., appending a 0 to a given word corresponds to appending a zero column to a vector
space (Case 1 and 1′); appending a 1 to a given word corresponds to appending a zero
column to a vector space and adding the base vector xn (Case 2 and 2′); etc.

Therefore we obtain the following theorem in analogy to Theorem 9:
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Theorem 17. Let n > 2. Then for every vector space L ∈ N n exactly one of the following
holds.

(a) There is exactly one sequence of maps B2, . . . , Bn−1 such that L = Bn−1 · · ·B2(0) or
L = Bn−1 · · ·B2(1) where the Bj are maps of type αj`,a as in the cases above.

(b) There is exactly one k 6 n and exactly one sequence of maps Bk, Bk+1, . . . , Bn−1 such

that L = Bn−1 · · ·Bk(L̂) where the Bj are maps of type αj`,a as in the cases above and

L̂ = (0 . . . 011) ∈ N k.

Proof. From what we just saw, N n is the disjoint union of {(0 · · · 011)} and the ranges
of the seven maps αn−1

n,0 , αn−1
n,1 , αn−1

n−1,0, αn−1
n−1,1, αn−1

n−1,2, αn−1
n−1,3, αn−1

n,3 . Now the proof is
essentially the same as the proof of Theorem 9: Given a vector space L ∈ N n, it is either
equal to (0 · · · 011) or it belongs to the range of exactly one of the seven maps above. If
L = (0 · · · 011), then (b) holds with k = n. Otherwise there is exactly one map Bn−1

among the maps above and, by the bijectivity of these maps, exactly one L′ ∈ N n−1 such
that L = Bn−1L′. Now we repeat his process until we either fall in case (b) for some
1 6 k < n or we reach the vector space (0) or (1).

Now Theorem 9 and Theorem 17 together give a bijection between W n+1 and N n.

Theorem 18. Let n ∈ N. We have the following bijection

Ψ : W n+1 → N n

defined as follows.

1. Ψ(00) = (0), Ψ(01) = (1).

2. If a = 0 . . . 012 ∈ W n+1, we set Ψ(a) = (0 . . . 011) ∈ N n.

3. If a = An−1 · · ·A2(00), we set L = Bn−1 · · ·B2(0).

4. If a = An−1 · · ·A2(01), we set L = Bn−1 · · ·B2(1).

5. If a = An−1 · · ·Ak(0 . . . 012), we set L = Bn−1 · · ·Bk(0 . . . 011)

where we use the correspondence Ann+1,j ←→ αn−1
n,j for j = 0, 1, Ann,j ←→ αn−1

n−1,j for

j = 0, 1, 2, 3, and Ann+1,3 ←→ αn−1
n,3 . In particular, |N n| = gW (n+ 1) and

dimU(Gn) =
(2n + 1)(2n−1 + 1)

3
.

Proof. From Theorem 9 and the results in this section it is clear that Ψ is a bijection, in

particular it follows that |N n| = gW (n + 1) = (2n+1)(2n−1+1)
3

. Therefore, the formula for
dimU(Gn) follows from (2) and (4).
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Example 19.

• Ψ(01010010) =

1000000
0010000
0000010

.

• Ψ(0123210) =

101000
010100
000010

 as the following diagram shows:

012 0122 01232 012321 0123210

(11)

(
101
011

) (
1010
0101

) 10100
01010
00001

 101000
010100
000010



Case 5

A3
3,2

Ψ

Case 6

A4
4,3

Case 2

A5
6,1

Case 1

A6
7,0

Ψ

Case 5′

α3
3,2

Case 6′a

α4
4,3

Case 2′

α5
6,1

Case 1′

α6
7,0

• Ψ(00122333) =


0100000
0010100
0001100
0000011

 as the following diagram shows:

0012 00123 001223 0012233 00122333

(011)

(
0100
0011

) 01000
00101
00011

 010000
001010
000101




0100000
0010100
0001100
0000011



Case 7

A4
5,3

Ψ

Case 5

A5
5,2

Case 6

A6
6,2

Case 6

A7
7,3

Ψ

Case 7’

α4
5,3

Case 5’

α5
5,2

Case 6’a

α6
6,2

Case 6’b

α7
7,3

We give some examples of preimages of vector spaces (they are the spaces listed in
[Li01] on page 105).

• Ψ−1

10001
01000
00011

 = 011022 because
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012 0112 01102 011022

(11)

(
101
010

) (
1001
0100

) 10001
01000
00011



Case 4

A3
3,1

Ψ

Case 3

A4
4,0

Case 5

A5
5,2

Ψ

Case 4′

α3
3,1

Case 3′

α4
4,0

Case 5′

α5
5,2

• Ψ−1

10010
01001
00101

 = 012232 because

012 0122 01222 012232

(11)

(
101
011

) 1001
0101
0011

 10010
01001
00101



Case 5

A3
3,2

Ψ

Case 5

A4
4,2

Case 6

A5
5,3

Ψ

Case 5′

α3
3,2

Case 5′

α4
4,2

Case 6′a

α5
5,3

• Ψ−1




1000010
0100001
0010001
0001000
0000101


 = 01221232 because

012 0122 01222 012212 0122122 01221232

(11)

(
101
011

) 1001
0101
0011




10001
01001
00101
00010




100001
010001
001001
000100
000011




1000010
0100001
0010001
0001000
0000101



Case 5

A3
3,2

Ψ

Case 5

A4
4,2

Case 4

A5
5,1

Case 5

A6
6,2

Case 6

A7
7,3

Ψ

Case 5′

α3
3,2

Case 5′

α4
4,2

Case 4′

α5
5,1

Case 5′

α6
6,2

Case 6′a

α7
7,3

A Symplectic Dual Polar Space for n = 1, 2, 3

Recall that Gn is the symplectic dual polar space defined in Section 3. It consists of∏n
k=1(2k + 1) points and 1

3
(2n − 1)

∏n
k=1(2k + 1) lines. Each line contains exactly three

points and through each point pass exactly 2n − 1 lines because any n-dimensional F2-
vector space contains exactly 2n − 1 different (n− 1)-dimensional subspaces.
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A.1 n = 1

G1 consists of one line with exactly three points.

A.2 n = 2

For G2 we label the 15 points by

0↔
(

1000
0100

)
, 1↔

(
1000
0101

)
, 2↔

(
1001
0110

)
, 3↔

(
1001
0111

)
, 4↔

(
1010
0100

)
,

5↔
(

1010
0101

)
, 6↔

(
1011
0110

)
, 7↔

(
1011
0111

)
, 8↔

(
1100
0011

)
, 9↔

(
1101
0011

)
,

10↔
(

1000
0001

)
, 11↔

(
1010
0001

)
, 12↔

(
0100
0010

)
, 13↔

(
0101
0010

)
, 14↔

(
0010
0001

)
.

We used SageMath [S+09] to write down all lines as triples of their points:

(0, 1, 10), (6, 7, 11), (3, 4, 9), (1, 5, 13), (12, 13, 14),
(2, 3, 10), (0, 7, 8), (2, 5, 8), (2, 6, 12), (8, 9, 14),
(4, 5, 11), (1, 6, 9), (0, 4, 12), (3, 7, 13), (10, 11, 14).

We fix the vertex 0 and construct the corresponding subgraphs Γ0,Γ1 and Γ2.

• Γ0 consists only of the vertex 0.

• Γ1 consists of three connected components, each of which contains two vertices and
one edge.

• Γ2 consists of one connected component and eight points which form a cube.

The subgraphs Γ1 and Γ2 are shown in Figure 2.

1

10

4

12

7

8

14 9

313

11 6

25

Subgraph Γ1 of G2 consisting of
three connected components.

Subgraph Γ2 of G2 consisting of one
connected component.

Figure 2: Induced subgraphs Γ1 and Γ2 of G2.
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A.3 n = 3

The dual polar space G3 consists of 135 points and 315 lines. Each line contains exactly
three points and through each point pass exactly seven lines. The subgraphs Γ0,Γ1, Γ2

and Γ3 have the following description:

• Γ0 consists only of the vertex 0.

• Γ1 has seven connected components each of which consists of two vertices and one
edge.

• Γ2 consists of seven components each one with the form of a cube.

• Γ3 is connected and consists of 64 vertices and 224 edges.

B Construction of W n+1 from W n

Let n > 2. In this appendix we show how W n+1 is constructed from W n. Recall that if
a = a1a2 . . . an−1an ∈ W n, then we can do the following (cf. Remark 6):

• If an ∈ {0, 1}: append 0 or 1. We obtain a word in Case 1 or 2.

• If an ∈ {2, 3}: insert 0, 1 or 2 before an. We obtain a word in Case 3, 4 or 5.

• If an ∈ {2, 3} and it is possible to insert 3 before an, we do so. We obtain a word in
Case 6.

• If an ∈ {2, 3} and it is not possible to insert 3 before an, then necessarily an = 2
and aj ∈ {0, 1} for 1 6 j 6 n− 1. We append 3 and obtain a word in Case 7.

Finally, we have to add the word a = 0 . . . 012 from Case 8. In this way we obtain all
possible words of W n+1.
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n
=

4
last

0
or

1
2

or
3

000
0

00
1
0

01
0
0

01
1
0

0
1
20

0001
0011

0101
0111

0121
0102

0112
0122

0123
0012

↓
↓

↓
↓

↓
↓

↓
↓

↓
↓

↓
↓

↓
↓

↓
n

=
5

C
1

000
0
0

00
1
0
0

01
0
0
0

01
1
00

0
1
200

00010
00110

01010
01110

01210
01020

01120
01220

01230
0012

0

C
2

000
0
1

00
1
0
1

01
0
0
1

01
1
01

0
1
201

00011
00111

01011
01111

01211
01021

01121
01221

01231
0012

1
C

3
010

0
2

011
0

2
012

0
2

012
0

3
001

0
2

C
4

010
1

2
011

1
2

012
1

2
012

1
3

001
1

2
C

5
010

2
2

011
2

2
012

2
2

012
2

3
001

2
2

C
6

012
3

2
012

3
3

C
7

01023
01123

0012
3

C
8

00012

n
=

2
last

letter
0

or
1

00
01

↓
↓

n
=

3
C

ase
1

000
010

C
ase

2
001

011
C

ase
8

012

n
=

3
last

letter
0

or
1

2
or

3
000

001
010

011
012

↓
↓

↓
↓

↓
n

=
4

C
ase

1
0000

0010
0100

0110
0120

C
ase

2
0001

0011
0101

0111
0121

C
ase

3
010

2
C

ase
4

011
2

C
ase

5
012

2
C

ase
6

C
ase

7
0123

C
ase

8
0012
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C Classification of words in W n according to the Cases 1 – 8

Let n > 2 and a = a1a2 . . . an−1an ∈ W n. As before, we set En
n−1(a) = a1a2 . . . an−2an

which is obtained from a by erasing its second to last letter. Recall that the word a
belongs to

• Case 1 if an = 0;

• Case 2 if an = 1;

• Case 3 if an ∈ {2, 3} and an−1 = 0 (then automatically En
n−1(a) ∈ W n−1);

• Case 4 if an ∈ {2, 3}, an−1 = 1 and En
n−1(a) ∈ W n−1;

• Case 5 if an ∈ {2, 3}, an−1 = 2 and En
n−1(a) ∈ W n−1;

• Case 6 if an ∈ {2, 3} and an−1 = 3 (then automatically En
n−1(a) ∈ W n−1);

• Case 7 if an ∈ {2, 3}, an−1 = 2 and En
n−1(a) 6∈ W n−1

(equivalently: if an−1an = 23 and aj ∈ {0, 1} for 1 6 j 6 n− 2);

• Case 8 if an ∈ {2, 3}, an−1 = 1 and En
n−1(a) 6∈ W n−1

(equivalently: if a = 0 . . . 012).

So we obtain for n = 1, 2, 3, 4, 5:

n = 1 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
0

n = 2 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
00 01

n = 3 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
000 001 012
010 011

n = 3 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
0000 0001 0102 0112 0122 0123 0012
0010 0011
0100 0101
0110 0111
0120 0121
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n = 3 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
00000 00001 01002 01012 01022 01023 00012
00100 00101 01102 01112 01122 01123
01000 01001 01202 01212 01222 01232
01100 01101 01203 01213 01223 01233
01200 01201 00102 00112 00122 00123
00010 00011
00110 00111
01010 01011
01110 01111
01210 01211
01020 01021
01120 01121
01220 01221
01230 01231
00120 00121

References

[AS16] J. Arndt and N. J. A. Sloane. Counting Words that are in “Standard Order”.
OEIS, 2016. https://oeis.org/A278984/a278984.txt.

[Bak10a] H. F. Baker. Principles of geometry. Volume 2. Plane geometry., volume 103
of Cambridge Library Collection. Cambridge University Press, Cambridge,
2010.

[Bak10b] H. F. Baker. Principles of geometry. Volume 4. Higher geometry., volume 103
of Cambridge Library Collection. Cambridge University Press, Cambridge,
2010.

[BB03] A. Blokhuis and A. E. Brouwer. The universal embedding dimension of the
binary symplectic dual polar space. Discrete Math., 264(1-3):3–11, 2003. The
2000 Com2MaC Conference on Association Schemes, Codes and Designs (Po-
hang).

[BC13] F. Buekenhout and A. M. Cohen. Diagram Geometry. Related to classical
groups and buildings. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3.
Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics],
57. Springer, Heidelberg, 2013.

[BCN89] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-regular graphs,
volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results
in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.

the electronic journal of combinatorics 27(4) (2020), #P4.39 26

https://oeis.org/A278984/a278984.txt


[BRRZ08] N. Bergeron, C. Reutenauer, M. Rosas, and M. Zabrocki. Invariants and
coinvariants of the symmetric groups in noncommuting variables. Canad. J.
Math., 60(2):266–296, 2008.

[Bru06] B. De Bruyn. Near Polygons. Frontiers in Mathematics. Birkhäuser Verlag,
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