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Institute of Mathematics
Freie Universität Berlin

Berlin, Germany

lamaison@zedat.fu-berlin.de alp.muyesser@fu-berlin.de

Submitted: Sep 15, 2018; Accepted: May 11, 2020; Published: Oct 2, 2020

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We provide multicolored and infinite generalizations for a Ramsey-type problem
raised by Bollobás, concerning colorings of Kn where each color is well-represented.
Let χ be a coloring of the edges of a complete graph on n vertices into r colors. We
call χ ε-balanced if all color classes have ε fraction of the edges. Fix some graph
H, together with an r-coloring of its edges. Consider the smallest natural number
Rrε(H) such that for all n > Rrε(H), all ε-balanced colorings χ of Kn contain a
subgraph isomorphic to H in its coloring. Bollobás conjectured a simple charac-
terization of H for which R2

ε(H) is finite, which was later proved by Cutler and
Montágh. Here, we obtain a characterization for arbitrary values of r, as well as
asymptotically tight bounds. We also discuss generalizations to graphs defined on
perfect Polish spaces, where the corresponding notion of balancedness is each color
class being non-meagre.

Mathematics Subject Classifications: 05D10, 05D40

1 Introduction

Graph Ramsey Theory refers to mathematical results that attempt to find large patterns
in colored graphs. The pattern in question is most often a monochromatic clique, a
complete subgraph whose edges are all the same color. The Ramsey number R(k) is the
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smallest integer n for which every 2-edge-coloring of the complete graph Kn contains
a monochromatic clique on k vertices. It is known that 2k/2 6 R(k) 6 22k, where
the constants that appear in the exponents resisted improvements for decades. For an
overview, we refer the reader to the 2015 survey by Conlon et al. [2].

To find patterns that are not monochromatic, we need to assume that all color classes
are sufficiently represented in the colorings we consider.

Definition 1. We call χ : E(Kn) → [r] ε-balanced if each color class has at least ε
(
n
2

)
edges. When it is clear from context, we call Kn ε-balanced if it comes equipped with an
ε-balanced coloring.

A result by Erdős and Szemerédi shows that graphs which are not ε-balanced contain
monochromatic cliques larger than the general bounds would be able to provide [7]. So
in some sense, even if we were not interested in finding bi-colored patterns, ε-balanced
graphs are the natural graphs to study from a Ramsey theoretic standpoint.

The natural function to look at is the ε-balanced Ramsey number, which we introduce
below. Note that by a color-consistent copy, we mean a subgraph which also preserves
the color structure up to relabelling of the colors.

Definition 2. Let r ∈ N, fix some ε with 0 < ε < 1/r, let H be some graph with an
associated r-edge-coloring. We denote by Rr

ε(H) the smallest N ∈ N such that for any
n > N , if χε is some ε-balanced r-edge-coloring of Kn, then Kn contains a color-consistent
copy of H. If no such N ∈ N exists, we say Rr

ε(H) =∞.

When r is not specified, Rε(H) denotes R2
ε(H). Also, ifH is a family of colored graphs,

Rr
ε(H) denotes the smallest positive integer N for which for all n > N , all ε-balanced Kn

contain a color-consistent copy of some element in H.
We call a two-coloring of a K2k k-unavoidable if one color forms a clique of size k, or

two disjoint cliques of size k. Since k-unavoidable graphs are ε-balanced for ε arbitrarily
close to 1/2, the only H for which R2

ε(H) is finite are H which appear in both types
of k-unavoidable graphs (where k > v(H)). We will denote the family of k-unavoidable
graphs as Fk.

In the other direction, Bollobás conjectured that R2
ε(Fk) is finite, and this was proved

by Cutler and Montágh, who showed R2
ε(Fk) 6 4k/ε [3]. Fox and Sudakov later improved

the bound, showing R2
ε(Fk) 6 (16/ε)2k, which is asymptotically tight [9]. In particular,

this result completely characterizes the two-colored H for which R2
ε(H) is finite.

A natural question is to similarly classify the r-edge-colored H for which Rr
ε(H) is

finite. Our first result is in this direction. To achieve this, we first need to define the right
notion of an (r, k)-unavoidable graph.

Definition 3. Let H := Ktk be a complete graph on tk vertices whose edges are r-
colored, for some positive integer t. We call H (r, k)-unavoidable if there is a partition
V (H) =

⊔
i∈[t] Vi of the vertices of H into t parts, with |Vi| = k, such that:

1. For all i, j ∈ [t], H[Vi] and H[Vi × Vj] are monochromatic.
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Figure 1: Elements of F rk , i.e. the (r, k)-unavoidable graphs. Vertices represent complete
graphs with k vertices, and edges represent complete bipartite graphs. Theorem 4 states
that any large enough ε-balanced 3-colored Kn will necessarily contain one of these graphs,
up to permutation of the colors.

2. All r-colors are present in H.

3. Not all r colors are present in H \ Vi, for any i ∈ [t].

We denote the family of (r, k)-unavoidable graphs as F rk .

We remark that this definition properly extends the definition of k-unavoidable graphs,
that is, F2

k = Fk. Also, for every r, F rk is a finite set. Indeed, any element of F rk can
have at most 2r vertices, as for every part Vi in the partition, we need to have a color
which disappears upon the deletion of Vi. And if two parts Vi and Vj share the color
that disappears upon their deletion, that color can only appear in the bipartite graph
Vi × Vj. Thus, there cannot be three parts which share the color that disappears upon
their deletion, which proves the claim. (In fact, any element of F rk can have at most 2r−2
elements, and this is tight.) See Figure 1 for a depiction of all (3, k)-unavoidable graphs
up to permutation of the colors.

We also remark that F rk has size exponentially large in r, as one can embed the family
of all tournaments on r vertices into F rk by associating to each vertex a different color,
and giving the bipartite graphs the color of the vertex they point to in the tournament.
We finally remark that there exists an εr for every r such that every element of F rk is at
least εr-balanced. This follows simply because elements of F rk have their number of parts
bounded by a function of r.

Having established the elementary properties of the family of (r, k)-unavoidable graphs,
we now state our main result, which is the generalization of Bollobás’s conjecture [3] to
arbitrarily many colors.

Theorem 4. For any r ∈ N and ε with 0 < ε < 1/r, there exists a constant c := c(r)
such that for any k ∈ N, we have that Rr

ε(F rk) 6 ε−ck.
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The result is asymptotically tight by a simple probabilistic construction. Further, the
result characterizes r-edge-colored H with a finite value of Rk

ε(H) as those which are
color-consistent subgraphs of all elements of F rk whenever ε is small enough with respect
to r and k is large enough. This is because for every r there exists an εr such that every
element of F rk is at least εr-balanced.

Even though Theorem 4 is best possible asymptotically in general, we manage to get
better upper bounds for R2

ε(H) for certain “asymmetric” H. The pattern defined below
is a weakening of F2

k .

Figure 2: From left to right, an M2,3, an M2,4, an M1,6

Definition 5. By Ml,k, we denote a family of 2-edge-colored graphs with vertex set
V := L tR where |L| = l and |R| = k, and R is a (without loss of generality) red clique,
L×R is a blue complete bipartite graph, and L is an independent set.

See Figure 2 for clarity. Observe that M0,k is simply a monochromatic set, and M1,k is
a particular coloring of a complete graph. The below result shows that when l is treated
as a constant, R2

ε(Ml,k) is at most a constant factor away from R(k).

Theorem 6. For any 0 < ε < 0.5, and l ∈ N, there exists a C := C(ε, l) such that
Rε(Ml,k) 6 C ·R(k).

This gives a new proof of Bollobás’s conjecture [3] as a 2-colored Kn containing a
MR(k),k necessarily contains an element of F2

k . The bound we obtain here is worse in
general, but has better dependence on k. If we use the technique of our Theorem 4 or the
Fox-Sudakov result, the bound would have to have a multiplicative dependence on k of
the form ε−ck for some positive constant c. In contrast, R(k) 6 22k, with no dependence
on ε.

We are also interested in explicit values of ε-balanced Ramsey numbers for small
patterns. Here, it is natural to fix ε at 1/2. The simplest case where the explicit value of
R2

1/2(Ml,k) is non-trivial is when l = 1 and k = 3. The Paley graph on 9 vertices does not
contain an M1,3, and from the other side one can use our methods to obtain:

Proposition 7. 10 6 R0.5(M1,3) 6 25

We believe it should be possible to close this large gap. Recall that R(4) = 18, and
the unique construction on 17 vertices without a 4-clique is a Paley graph.
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We also consider some infinite analogues of these questions. For graphs defined on
the naturals, i.e. [N]2 = {A ⊆ N : |A| = 2}, an easy coloring shows that the analogue of
Bollobás’s conjecture does not hold even if we assume every vertex is back degree balanced
(i.e. half of the edges from vertex i to vertices in [i − 1] are blue and half red) and has
infinite degree in both colors. However for graphs defined on R, we see that a simple
topological notion of largeness, namely non-meagreness, corresponds well with our notion
of ε-balancedness in the finite case.

Theorem 8. Let f : [R]2 → [r] be a coloring such that each color class is non-meagre
and has the Baire property (as a subset of R2). Then f yields some color-consistent copy
of F rc .

We give the necessary definitions in Section 4. The proof techniques for Theorems
4 and 8 are very similar, except topological lemmas such as the Localization lemma in
Theorem 8 take the place of combinatorial lemmas such at the Dependent Random Choice
lemma in Theorem 4.

Throughout the paper, we omit ceiling and floor signs, notably while stating cardinal-
ities of certain sets. As we are concerned only with asymptotics, this does not have an
effect on the results.

2 Proof of Theorem 4

We start with the simple observation that if we can find a complete subgraph H which
is the disjoint union of monochromatic cliques of size k, the edge set between any two
such monochromatic clique is also monochromatic (call H “blockwise monochromatic” if
it is of this form), and further, all r colors appear somewhere in H, then H must contain
(r, k)-unavoidable graph.

We should note that if one is not interested in asymptotically tight bounds, getting a
blockwise monochromatic graph which uses all r colors is not difficult. Indeed, a celebrated
theorem by Kővari, Sós and Turán [12] states that if a color class has an ε-fraction of the
edge set, then we can find a monochromatic subgraph Ks,s where s = cε log n and cε > 0
depends only on ε. Invoking the Kővari-Sós-Turán theorem on each of the r color classes
in an ε-balanced Kn, we obtain already obtain a subgraph that uses all r colors. Now,
we can apply Ramsey’s theorem to all 2r parts to obtain monochromatic cliques, and
afterwards simply use that between any two subset of the vertices, at least one color class
has 1/r-fraction of the edge set, and iteratively invoke the Kővari-Sós-Turán theorem to
get a smaller subgraph where the edge-set between all 2r monochromatic cliques is also
monochromatic. This already proves:

Proposition 9. For any r ∈ N and ε with 0 < ε < 1/r, Rr
ε(F rk) <∞

In fact, since all elements of F rk are εr-balanced for some εr < 1/(4r2) (as any element
of F rk has at most 2r − 2 vertices), we can state:
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Proposition 10. For any r ∈ N, there exists some 0 < εr < 1/(4r2), such that for all
0 < ε < εr, we have that for r-edge-colored graph H on k vertices, Rr

ε(H) < ∞ if any
only if for all F ∈ F rk , F contains a color-consistent copy of H.

When r = 2, the argument we have sketched above seems to give the simplest proof
of Bollobas’s conjecture. However, for arbitrary r, it gives a tower-type bound where the
height of the tower is Θ(r). On the other hand, our Theorem 4, combined with a simple
probabilistic construction, will establish that the correct order of magnitude of Rr

ε(F rk) at
ε−ck, where c is some positive constant that depends only on r.

However, the layout of the better proof will be very similar in spirit to the simpler
argument we provided above. In particular, we will again aim to find a fully-complete
multipartite subgraph that uses all r colors. The trick will be to use the dependent random
choice technique, which recently proved to be a powerful tool in combinatorics. We refer
the reader to the survey by Fox and Sudakov for an overview [8]. We should also note
that Fox and Sudakov also used the dependent random choice technique to obtain the
asymptotically sharp bound on Rr

ε(F rk) when r = 2, in [9]. However, their method also
relied on the fact that in an ε-balanced graph with just two colors, there exists a large
subset of vertices which have high degree in red as well as blue. For ε-balanced graphs
with more colors (already for r = 3, see Figure 1), sets with high degree on every color
do not necessarily exist.

The following lemma is the most basic form of the technique, a proof can be found
in [8]:

Lemma 11. Let G be a graph with average degree εn. Then, there exists a subset W with
|W | = w such that all k0 sized subsets of W have a common neighborhood of size βn,
provided that there exists a positive integer t satisfying:

nεt − nk0βt > w

We will need a bipartite version of this lemma, which we state and prove below. We
remark that the proof of the below lemma is very similar to the proof of the preceding
lemma that can be found in [8].

Lemma 12. Let G be a graph partitioned into vertex sets A and B, with |A| = m and
|B| = m′, and at least εmm′ edges between A and B. Then, there exists W ⊆ A, with
|W | = w, such that every subset K ⊂ W with |K| = k0 has βm′ common neighbors in B,
provided that there exists a positive integer t satisfying:

mεt −mk0βt > w

Proof. NX(v) denotes the neighborhood of v in X, and NX(Y ) denotes the common
neighborhood of Y in X. Sample a subset T ⊆ B of size t uniformly at random with
repetition. Let U = NA(T ). Note that a vertex a ∈ A is in U if and only if T ⊆ NB(a).
Using this fact and linearity of expectation, we calculate:

E[ |U | ] =
∑
a∈A

(
|NB(a)|
m′

)t
>
∑
a∈A

(
εm′

m′

)t
= mεt,
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where the inequality holds by convexity of xt. Now, if we remove from U an element from
every k0-element subset R which fails to have |NB(R)| > βm′, the resulting set will have
the desired properties. Let Z be the random variable denoting how many such k0-element
subsets are there in U .

E [Z] =
∑

R∈(A
k0

)
NB(R)<βm′

(
NB(R)

m′

)t
6

∑
R∈(A

k0
)

NB(R)<βm′

βt 6 mk0βt

Thus, on average, we would have to remove at most mk0βt vertices to modify U to create
a set W with the desired properties (removing one vertex from each “bad” set R). Using
linearity of expectation one last time, we derive E[W ] > E[ |U | −Z] > mεt−mk0βt, so in
particular, a W with at least this size must exist, as claimed.

The below corollary simply follows by iterating the above argument, and will be conve-
nient when we establish connections between multipartite graphs. If the edges of a graph
are colored, define N c

X(Y ) to be the set of common neighbors of Y in X through edges of
color c.

Corollary 13. Let r and y be positive integers, r > 2. There exists N = N(r, y) with
the following: let A,B1, . . . , By be disjoint vertex sets, all of size n > N . Consider an
r-coloring of the edges of the complete bipartite graph between A and each Bi. Then there
exists a set W ⊆ A, |W | = n2−y

, and colors c1, . . . , cy such that for every 1 6 i 6 y and
every subset X ⊆ W of size 1

8
logr n we have |N ci

Bi
(X)| >

√
n.

Proof. We will construct a nested sequence of sets A = A0 ⊇ A1 ⊇ · · · ⊇ Ay = W , with

|Ai| = n2−i
such that every X ⊆ Ai of size at least 1

8
logr n has N ci

Bi
(X) >

√
n. The

definition of A0 is clear. As an induction hypothesis, suppose that Ai−1 has been defined.
Let ci be the most common color in the bipartite graph between Ai−1 and Bi. Apply
Lemma 12 to the graph formed by the edges of color ci, with the values m = n2−(i−1)

,
m′ = n, ε = r−1, w = n2−i

, k0 = 1
8

logr n, β = 1√
n
, t = 2−(i−1)

3
logr n, and denote by Ai the

resulting set W . This is possible for n large enough (say n > Ni):

mεt −mk0βt = n
2·2−(i−1)

3 − n−
2−(i−1)

24
logr n > n2−i

This proves the statement, with N = maxNi.

Corollary 14. Let r and t be positive integers, r > 2. There exists N = N(r, t) with
the following: let n > N and A1, A2, . . . , At be disjoint subsets of the vertex set of an
r-colored complete graph of size |Ai| = n. Then there exist subsets Xi ⊂ Ai, of size
|Xi| = 1

2t+1r
logr n, such that every set Xi is monochromatic and every complete bipartite

graph between Xi and Xj is monochromatic.

Proof. Induction on t. For t = 1, this follows from the multicolor version of Ramsey’s
theorem. Suppose that the result is true for t = i − 1, and we will prove it for t = i.
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Apply Corollary 13 with y = i − 1, A = Ai and Bj = Aj to obtain a set W ⊂ Ai and
colors c1, . . . , ci−1 with the properties of Corollary 13, as long as n > N1, where the value
of N1 is given by Corollary 13. By Ramsey’s theorem, W contains a monochromatic set
Xi ⊂ W of size 1

4r
logr |W | = 1

2i+1 logr n.

By our hypothesis, for every 1 6 j 6 i−1 we have
∣∣∣N cj

Aj
(Xi)

∣∣∣ > √n. Let A′j ⊂ N
cj
Aj

(Xi)

be subsets of size
√
n. By the induction hypothesis, there exists N2 such that, if

√
n > N2,

there exist subsets Xj ⊂ A′j such that each of them is monochromatic and the bipartite
graph between every pair of them is monochromatic. Their size is |Xj| = 1

2ir
logr
√
n =

1
2i+1r

logr n. This proves the statement with N = max{N1, N
2
2}.

Note that for t = r we have |Xi| = Cr log n. We are now ready to start the proof of
the main theorem.

Proof of Theorem 4. As mentioned to previously, our goal is to find a fully-complete mul-
tipartite graph, which uses all r colors, in a large enough ε-balanced Kn. In the first step
of the proof, we will apply Lemma 11 to the r graphs induced by the edges colored in the
r different color classes. The subsets we collect via the Lemma here will thus necessarily
utilize all r colors. Afterwards, we will apply Corollary 14 to fill in for the connections
between the various subsets we collected in the previous step. We now give the details.
We assume n > ε−crk where cr is a sufficiently large constant that only depends on r
which will be specified later.

Given a color i ∈ [r], we apply Lemma 11 with parameters w =
√
n, k0 = − logε n

8
,

β = 1√
n

and t = − logε n
3

. Thus for each color we obtain a set Wi of size |Wi| =
√
n. These

sets are not necessarily disjoint, so we take disjoint subsets W ′
i ⊂ Wi of size |W ′

i | =
√
n
r

.
We can now apply Corollary 14 to find monochromatic subsets Xi ⊂ W ′

i of size |Xi| =
1

2r+1r
logr |W ′

i | = 1
2r+1r

(
1
2

logr n− 1
)
> − 1

2r+3r
logε n, pairwise joined by monochromatic

graphs. Take a subset X ′i ⊂ Xi of size |X ′i| = − 1
2r+3r

logε n.

Since |X ′i| 6
− logε n

8
, we have, by Lemma 11, that |N i(X ′i)| >

√
n, where N i(·) denotes

the common neighborhood of · in color i. Let Ui be a subset of this common neighborhood
of size

√
n. Take subsets U ′i ⊆ Ui of size

√
n− r 1

2r+3r
logε n

r
> 3
√
n (1)

which are pairwise disjoint and disjoint from all X ′i. Note that the inequality follows
because for a large enough choice of cr, n will be sufficiently larger than r.

We claim that we can take subsets U ′′i ⊂ U ′i of size 4
√
n with the following property:

for every v, v′ ∈ U ′′i and every w ∈ ∪rj=1X
′
j, the edges vw and v′w have the same color.

This holds by the pigeonhole principle; one could associate a base-r vector ~vi of length∣∣∣∣∣ r⋃
j=1

X ′j

∣∣∣∣∣ to each ui ∈ Ui where ~vi(j) denotes the color of the edge ui sends to the jth vertex
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in

∣∣∣∣∣ r⋃
j=1

X ′j

∣∣∣∣∣, and therefore there exists a subset |U ′′i | with:

|U ′i |

r

∣∣∣∣∣ r⋃
j=1

X′j

∣∣∣∣∣
>

3
√
n

r
1

2r+3 logr n
= n

1
3
− 1

2r+3 > 4
√
n

elements that all have the same associated vector. Notice that at this point we know that
the edges between each w ∈ Xj and all of U ′′k are monochromatic. We wish that the color
of these edges do not depend on the choice of w.

To achieve this, we associate to each vertex wi ∈ X ′j a base-r vector ~v′i of length
r, where ~v′i(h) is defined to be the unique color of the edges between wi and U ′′h . By

the pigeonhole principle, we can find a subset X ′′j ⊂ X ′j of size
|X′j |
rr

where all vertices
have the same associated vector. The bipartite graph between X ′′j and U ′′h is therefore
monochromatic, for all j, h ∈ [r].

Finally, apply Corollary 14 to the sets U ′′i to produce monochromatic sets Yi ⊆ U ′′i of
size |Yi| > 1

2r+1r
logr |U ′′i | > − 1

2r+3r
logε n pairwise joined by monochromatic graphs. The

graph induces on the vertex sets Yi and X ′′i satisfy the properties that we want:

• The sets Yi and X ′′i are monochromatic.

• The bipartite graphs YiYj and X ′′i X
′′
j are monochromatic (by Corollary 14), as well

as the bipartite graphs YiX
′′
j (by the pigeonhole principle).

• Every color appears in the graph, in particular the bipartite graph YiX
′′
i has color

i.

Since |Yi| > − 1
2r+3r

logε n for every i and |X ′′j | > − 1
2r+3rr+1 logε n for every j, we can

choose any n such that n > ε2
r+3rr+1k and n is large enough to make inequality (1)

true.

3 Asymmetric Patterns

In this section, we specialize on getting upper bounds on the function Rε(Ml,k).

Given subsets A and B of a 2-colored graph G, we say A is complete with B in red
(blue) if all the edges in between A and B are red (blue). If A = {a}, we say a is complete
with B in red (blue). We say red (blue) neighborhood of a vertex to mean the subset of
vertices which to vertex is adjacent to via red (blue) edges. We say the red (blue) degree
of a vertex to mean the size of its red (blue) neighborhood.

The upper bound in Proposition 7 follows from optimizing the below lemma for small
integers.

Lemma 15. Let Kn be an ε-balanced graph, where ε is as large as possible. Then, there
exists a subset of vertices S with |S| > cn such that for some x, y ∈ Kn, S is complete
with x in red and S is complete to y in blue. Further, c >

√
1− ε− (1− ε) + o(1)
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Proof. Let Kn be a ε-balanced graph, where ε is as large as possible. Without loss of
generality, Kn contains at most as many red edges as blue edges. Let ∆R and δR denote
the maximum and minimum red degrees of Kn. Also, let c :=

√
1− ε− (1− ε).

Case 1: ∆R − δR > cn. In this case, we simply consider the vertices x and y of
maximum and minimum red degree, and observe that y must send at least cn blue edges
into the red neighborhood of x.

Case 2: ∆R− δR 6 cn. Since the average degree is εn, we must have ∆R 6 (ε+ c)n
and δR > (ε− c)n. We count the number of paths of length 2 where one edge is colored
red, and the other blue. More precisely, we count the sets of the form {x, y, z} ⊆ V (Kn),
where {x, y} is red and {y, z} is blue. Let dR(v) denote the red degree of v. We call such
sets rainbow cherries. Then, the number of rainbow cherries is:

∑
v∈Kn

dR(v)(n− 1− dR(v)) =
∑
v∈Kn

(
n− 1

2

)2

−
(
n− 1

2
− dR(v)

)2

>
∑
v∈Kn

(
n− 1

2

)2

−
(
n− 1

2
− (ε− c)n

)2

=
∑
v∈Kn

(ε− c)(1− ε+ c)n2 + o(n2)

= (ε− c)(1− ε+ c)n3 + o(n3)

As there are at most n2 pairs of vertices, for a particular pair {x, z}, it must be that
there exists at least (ε − c)(1 − ε + c)n + o(n) other y such that {x, y, z} is a rainbow
cherry. Then, for this pair {x, z}, the intersection of their red and blue neighborhood at
least (ε− c)(1− ε+ c)n+ o(n). Since c = (ε− c)(1− ε+ c) by choice of c, the statement
of the lemma follows.

We remark that the dependence of c on ε given in the previous lemma is not optimal.
The right dependence is c = ε(1− ε) + o(1), which can be proven with a more elaborate
counting argument, but we don’t include this in the present paper. The sharpness of this
constant can be seen by considering a random graph where an edge is colored red with
probability ε and blue otherwise.

We now prove the following lemma, which is a generalization of the previous one that
will allow us to prove Theorem 6.

Lemma 16. For every ε > 0 and k there exists c(ε, k) > 0 with the following property:
every ε-balanced Kn has a subset S ⊆ V (G), |S| > cn − O(1) and A,B ⊆ V (Kn) with
|A|, |B| > k and A is complete with S in red and B is complete with S in blue.

Proof of Lemma. Let t > 0 be a constant such that 0 < 1−t
2k

< ε. Let α := 1−t
2k

. Let
r′1, . . . , r

′
k and b′1, . . . , b

′
k be the k vertices with the largest red degree and blue degree,

respectively. We consider two cases:
Case 1:

∑k
i=1 (dB(r′i) + dR(b′i)) 6 (1− t)n. Then the set S of vertices joined by a red

edge to each r′i and to a blue edge to each b′i has size at least tn − 2k. Indeed, the sum
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bounds from above the number of vertices in V (G) \ ({r′1, · · · , r′k} ∪ {b′1, · · · , b′k}) which
are adjacent to an r′i in blue or to a b′i in red.

Case 2:
∑k

i=1 (dB(r′i) + dR(b′i)) > (1 − t)n. There is some i such that dB(r′i) > αn
or dR(b′i) > αn. Without loss of generality, assume the former. Then, we have that
dB(v) > αn for all but at most k − 1 vertices v ∈ V (G).

Let VR be the set of vertices with dR(v) > αn. We can use that G is ε-balanced to
find a bound on |VR|:

2ε

(
n

2

)
6 2|ER(G)| =

∑
v∈V (G)

dR(v) =
∑
v∈VR

dR(v) +
∑
v/∈VR

dR(v) 6 n|VR|+ αn (n− |VR|)

which rearranges to |VR| > ε−α
1−αn−

ε
1−α .

Now consider the set S ′ of (2k + 1)-tuples of distinct vertices (v, r1, . . . , rk, b1, . . . , bk)
such that, for every i, the edge vri is red and the edge vbi is blue. If we fix v ∈ VR \
{r′1, . . . , r′k}, then the number of choices of r1, . . . , rk, b1, . . . , bk is (dR(v))k(dB(v))k >
((bαnc)k)2, where (x)k denotes the falling factorial x(x − 1) · · · (x − k + 1). We deduce
that |S ′| >

(
ε−α
1−αn−

ε
1−α − k

)
((bαnc)k)2. By the pigeonhole principle, there is a choice of

r1, . . . , rk, b1, . . . , bk for which there are at least
(
ε−α
1−αn−

ε
1−α − k

)
((bαnc)k)2n−2k choices

of v, which we can put in a set S.
Since ε and k do not depend on n, this proves the statement for c = min{t, ε−α

1−αα
2k}.

Corollary 17. For every `, r and ε there exists N with the following property: every ε-
balanced Kn on n > N vertices contains disjoint sets A,B, S with |A| = |B| = `, |S| = k,
A is complete with S in red and B is complete with S in blue. Moreover, if ε is fixed, then
N 6 Cεk(4`)2`.

Proof. If ε` > 1, follow the proof above by choosing t = 1/2 and α = 1
4`

. Then 0 < α < ε.
For a value of n > C1k(4`)2`, where C1 is large enough, we have

k 6 min

{
tn− 2`,

(
ε− α
1− α

n− ε

1− α
− `
)

((bαnc)`)2n−2`
}
.

If ε` 6 1, then applying Lemma 16 we obtain new constant C2 := c(ε, bε−1c) such that
for n > C2r there exist A′, B′ and S with |A′| = |B′| = bε−1c, |S| = r and the desired
properties. Simply take any A ⊆ A′, B ⊆ B′ of size `. This proves the statement for
Cε = max{C1, C2}.

Observe that Theorem 6 follows immediately from the above Corollary replacing r
with R(r).

4 Infinite Balanced Graphs

We now begin considering what natural restrictions we can put on our colorings to gen-
eralize our previous results to the infinite case. The main difficulty here is that it is no

the electronic journal of combinatorics 27(4) (2020), #P4.4 11



longer clear how the notion of being ε-balanced should generalize. For example, we can-
not obtain an Mω,ω (a countably infinite analogue of an Ml,r) by merely assuming every
vertex has infinite degree in both colors. Even under the stronger assumption that the
back-degrees are balanced (i.e. half of the edges from vertex i to vertices in [i − 1] are
blue and half red) this is still not enough. The following construction applies to both
restrictions.

Proposition 18. There exist back-degree balanced 2-colorings of the complete graph K
on ω vertices such that every vertex has infinite red and blue degree yet K contains no
M1,ω.

Proof. Consider the graph with vertex set consisting of two disjoint copies of N. Color
all edges between vertices in the right copy blue and all edges between vertices in the left
copy red. For each vertex i in the left copy and j in the right copy, color edge ij blue
if i < j and red otherwise. Notice that this coloring has an Ml,r for any l, r ∈ N yet no
M1,ω. To see that we may choose this coloring to be back-degree balanced, one may start
with evens and odds as the partitions.

On the other hand, if we deal with the graphs defined on Polish spaces the notion of
being non-meagre seems to correspond rather well with the density results from the finite
version. For convenience, we recall the necessary definitions and results. The reader may
see [11] for a more extensive overview. X and Y will always denote topological spaces in
the below.

Definition 19. We say X is a perfect Polish space if it is separable, completely metrizable,
and has no isolated points.

Definition 20. A set E ⊆ X is nowhere dense if its closure has empty interior. We say
E is meagre if it is the union of countably many nowhere dense sets, and E is comeagre
if X \ E is meagre.

Definition 21. E ⊆ X has the Baire property (BP) if there exists an open set O such
that E4O is meagre, and we call f : X → Y Baire measurable if the preimages of open
sets have the BP.

We now restate Theorem 8 in more generality:

Theorem 22. Suppose X is a perfect Polish Space and f : [X]2 → [r] is Baire measurable
and each color class is non-meagre. Then we find some color consistent member of F rc
where each blown-up clique is a Cantor set.

The following easy consequences of the above definitions will be useful in the proof.
Proofs of the following two lemmas can be found in Chapter 8 of [11]:

Lemma 23 (Localization). Suppose A ⊆ X has the BP . Then either A is meagre or
there exists a non-empty open subset U on which A is comeagre.
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Lemma 24 (Continuous Restriction). Let X, Y be Polish spaces and f : X → Y Baire
measurable. Then f is continuous on some countable intersection of dense open sets.

Recall that using the axiom of choice [13], one can define graphs on real numbers that
fail to have a continuum sized monochromatic clique. Galvin’s theorem [10], stated below,
allows us to find a monochromatic clique which is a Cantor set (which is in particular
continuum sized), if all the color classes have the BP.

Theorem 25 (Galvin). Suppose X is a perfect Polish space, and [X]2 = P0 ∪ . . . ∪ Pi
is a partition where each Pi has the BP (as subsets of X2). Then there is a Cantor set
C ⊆ X such that [C]2 ⊆ Pi for some i.

Now, before beginning the proof of Theorem 22 we outline the main idea, emphasizing
the similarities to the proof of Theorem 4. Just as Theorem 25 generalizes Ramsey’s
theorem, the KST theorem admits a similar generalization: if A ⊆ [X]2 is non-meagre,
then we can find Cantor sets C1, C2 such that C1 × C2 ⊆ A. Using this, one could
hope that we could replicate the proof of Proposition 9 given at the start of Section 2.
However, recall that the bounds given in that proof were rather poor. This issue is more
substantial in the BP setting: after running the analogue of KST even a single time
we are left with meagre sets, where the coloring function can be too poorly behaved to
continue. In the finite setting we were able to get around this issue by utilizing Corollary
13, which allowed us to do many restrictions simultaneously. Here we will employ a similar
idea. In particular, rather than using a variation of KST directly we will instead prove
a generalisation of it along the lines of Corollary 13. Moreover, we will ensure that the
coloring function is continuous on the Cantor sets we obtain, which will allow us to apply
Theorem 25 despite these sets being meagre.

Proof of Theorem 22. Analogously to beginning with monochromatic bipartite graphs in
the finite case, we start by localizing to disjoint open sets U1, . . . , U2r such that U2k−1×U2k

is comeagre in color k for k ∈ [r]. We note that this step preserves structure: for each
i, j ∈ [2r] and k ∈ [r], Ui × Uj is open in X2 and (Ui × Uj) ∩ f−1(k) has the BP (in
Ui×Uj). Therefore, if necessary, we can localize again and rename the sets to also ensure
each Ui × Uj is comeagre in some color.

Now, we begin collecting an assortment of well-behaved subsets within and between
each Ui. As for each i ∈ [2r], Ui is open, f |[Ui]2 is still Baire measurable. So, we can
find countable intersections of dense open subsets G1 :=

⋂
m∈NG

m
1 , · · · , G2r =

⋂
mG

m
2r

where f is continuous. Further, for every i, j ∈ [2r] with i 6= j, Ui × Uj is comeagre
in some color, so there is a sequence of dense open sets Smi,j for every m ∈ N such that⋂
m∈N S

m
i,j ⊆ Ui × Uj is monochromatic. We note that as each Gm

i and Smi,j are dense and
open, for any m ∈ N and open sets V1, · · · , V2r there are restricted open sets V ′1 , · · · , V ′2r
such that each V ′i ⊆ Gm

i , and V ′i × V ′j ⊆ Smi,j.

Using these sequences of open sets, we will define Cantor sets C1, · · · , C2r with Ci ⊆
Ui, being careful to ensure the edges in Ci × Cj are monochromatic and that f |[Ci]2 is

the electronic journal of combinatorics 27(4) (2020), #P4.4 13



continuous for any i, j ∈ [2r]. The construction method we will use is commonly referred
to as a Cantor scheme.

We first fix some compatible metric d on X and set R∅i = Ui. Once we have already
defined Rs

i for s ∈ {0, 1}n, we will define Rs_l
i for l ∈ {0, 1} ensuring that the following

hold:

1. Rs_0
i and Rs_1

i are non empty disjoint open sets.

2. cl(Rs_l
i ) ⊆ Rs

i and diam(Rs_l
i ) 6 2−n−1.

3. Rs_l
i ⊆ Gn+1

i .

4. For any i, j ∈ [2r] and u, v ∈ {0, 1}n+1, Ru
i ×Rv

j ⊆ Sn+1
i,j .

The discussion in the second paragraph guarantees that we can satisfy these requirements
at every step.

We let Ci =
⋂
n∈N

⋃
s∈2n R

s
i (which is well defined by the completeness of X and

(2)) denote the Cantor set associated with the sequence Ri. As f |[Ci]2 must still be
continuous since Ci ⊆ Gi by (2, 3), we may apply Galvin’s theorem within each Ci to
obtain the desired configuration.

5 Discussion

Here, we we collect some open problems and future directions of research. Firstly, even
though the upper bound provided by Theorem 4 is asymptotically tight with respect to
ε and k, the constant that arises that depends only on the number of colors c(r), was
rather large. It would be interesting to obtain an upper bound of the form ε−ck, where c
is sub-exponential in r (the number of colors).

An extension of Bollobás’s conjecture for hypergraphs was given in [9] (Theorem 4.2).
It would not be difficult to extend this result to arbitrary many colors, using an appropriate
family of multicolored unavoidable hypergraphs as we did here for multicolored graphs.
However, as far as we are aware there are no practical bounds, already for two colors
and uniformity three. We state the result for uniformity three below informally. A more
precise statement for arbitrary uniformities can be found in [9].

Theorem 26. For any ε > 0 and positive integer k, for sufficiently large n, any two-
coloring of K

(3)
n (the 3 uniform complete graph on n vertices) with εn3 edges in both colors

contains a subgraph on 3k vertices with three disjoint sets of vertices of size k such that
the color of any 3-edge depends only on the sizes of the intersections between the edge and
each of the three parts and red and blue both appear somewhere in the graph.

A proof for the above Theorem in full generality was given in the appendix of [14], as
it was used to prove another result in that paper. However, no explicit bound on n was
cited, and from the proof it is clear that the dependence of n on r (uniformity) is a tower
of length much larger than r. For r = 3, as stated in the above Theorem, we pose the
following problem that was essentially also raised in [9].
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Question 27. Can we take n > (1/ε)2
ck

in Theorem 5.1, for c some absolute constant?

For the convenience of the reader, we sketch a short proof of Theorem 5.1 that is
somewhat different than the proof that was given in [14], which we believe is more direct.
Like in [14], we will not get any sensible bounds because of a reference to the Product
Ramsey Theorem ([15], Theorem 9.2) that is a greedy iterated application of hypergraph
Ramsey theorem.

Sketch of Theorem 5.1. Consider an ε-balanced 3-uniform complete hypergraph on N ver-
tices where N is sufficiently large. As each color has Ω(n3) edges, by a result of Erdős
([6], Theorem 1) (that is a generalization of the Kővari-Sós-Turán Theorem [12] for hy-
pergraphs) we can find a red monochromatic tripartite graph (vertex set partitioned into
three parts such that the edges intersect each part in exactly one vertex), such that the
sizes of each part is N1, where N1 depends only on N and is sufficiently large. We can
similarly find a large blue tripartite graph that is disjoint from the red tripartite graph.

We can now apply the Product Ramsey Theorem ([15], Theorem 9.2) to the red tri-
partite graph until edges that intersect the same parts in the same amount are monochro-
matic. If blue appears somewhere in the resulting substructure, we are done, assuming
N1 was sufficiently large. Otherwise, we have found a large red clique. Applying the same
argument to the blue tripartite graph, we may assume we found a large blue clique.

Now we may apply the Product Ramsey Theorem between the large red clique and
the large blue clique, which will yield a structure of the desired type.

We also note that in the infinite case we considered only one of many potential ways
of generalizing the notion of balanced colorings. Another natural question is as follows:

Question 28. If c : [R]2 → [r] is a Lebesgue measurable coloring such that each color
class is non-null, can we find some color consistent member of F rc where each blown-up
clique is a Cantor set?

As in the BP setting there are analogues of the Ramsey and KST theorems that
suggest such a result should hold. We can even prove an analogue of Corollary 13 in
this setting, which was the key step in the proof of Theorem 22. In particular, we can
adapt the proof of the Brodski-Eggleston Theorem [1, 5] to find a graph with the same
multipartite structure as a member of an F rc . However, unlike in the BP setting, we are
not currently able to ensure that the coloring function is continuous on the Cantor sets
we end up with after this step, so we are unable to apply a variant of Ramsey’s theorem
and complete the proof.
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