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Abstract

In 2012, Tian and Zhou conjectured that a flag-transitive and point-primitive
automorphism group of a symmetric (v, k, A) design must be an affine or almost
simple group. In this paper, we study this conjecture and prove that if & < 103 and
G < Aut(D) is flag-transitive and point-primitive, then G is affine or almost simple.
This supports the conjecture.

Mathematics Subject Classifications: 05B05, 05B25, 20B25

1 Introduction

A symmetric (v, k,\) design D = (P, B) consists of a finite set P of v points, and a
family of k-subsets B of P, called blocks B, such that every two points of P is contained
in exactly A blocks of B, where |B| = |P| and 2 < k < v — 2. The order of symmetric
(v,k, A) design is n =k — \.
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A flag of D is an incident point-block pair. The design D is called flag-transitive
if G < Aut(D) acts transitively on the set of flags of D. In 1987, Kantor [11] studied
symmetric (v, k, 1) designs D of order n admitting a flag-transitive automorphism group G
and proved that either D is Desarguesian and L3(n) <G, or G is a sharply Frobenius group
of odd order (n?+n+1)(n+1), where n?+n+1 is a prime. Regueiro ([13, 14]), Zhou et al.
([5]) proved that if a non-trivial symmetric (v, k, A) design with A < 4 admitting a flag-
transitive and point-primitive automorphism group G, then it is of affine or almost simple
type. In [16], Tian and Zhou extend this result to the case of A < 100 and conjectured
that a flag-transitive and point-primitive automorphism group of a symmetric (v, k, A)
design must be an affine or almost simple group. In this paper, we study this conjecture
in terms of block size k. The proof of this paper uses some essential ideas of Camina,
Gagen [2] and Zieschang [18].

Our main result is as follows:

Theorem 1. Let D be a non-trivial symmetric (v, k,\) design with k < 10°. If G <
Aut(D) acts flag-transitively and point-primitively on D, then G must be of affine or
almost simple type.

The examples of symmetric (v, k, A) designs admitting a flag-transitive and point-
primitive automorphism group can be seen in [13, 17]. Indeed, there exist many symmetric
(v, k, A) designs admitting a flag-transitive and point-imprimitive automorphism group.
In the following, we give two examples of these designs. For more examples of symmetric
(v, k, \) designs, see [13], [9, Section 3.6].

Example 2 (Regueiro [13, Section 1.2.2]). There are exactly three non-isomorphic sym-
metric (16, 6,2) designs, of which exactly two admit flag-transitive and point-imprimitive
groups, and these are 2* : S; and (Zy x Zg)(S4.2).

Example 3 (Praeger and Zhou [15, Proposition 1.5]). The design of points and hyper-
plane complements of the projective geometry PG(3,2) is the unique symmetric (15,8, 4)
design admitting a flag-transitive and point-imprimitive automorphism group Ss.

This paper is organized as follows. After this Introduction, in Section 2, we present
a rough description of O’Nan-Scott Theorem for finite primitive groups and some well-
known results which will be needed in the sequel. In Section 3, we reduce the proof of
Theorem 1 to the product action type. In Section 4, we prove that product action type
cannot occur by using some technical and complicated methods, such as a very detailed
discussion of the structure of blocks of symmetric (v, k,\) designs. Finally, we give a
proof of Theorem 1.

2 Preliminaries

Throughout this paper, a non-abelian simple group will be denoted by 7" and the socle of
G by Soc(G).
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Let G < Sym(P) be a finite primitive group. Then O’Nan-Scott Theorem [12] shows
that each finite primitive group G is permutational equivalent to one of the following

types:
(i) Affine type, Soc(G) = Z' < G < AGL(m,p) and Z]* acts regularly on P;

p

(ii) Almost simple type, Soc(G) = T' < G < Aut(T) and T is the unique minimal
normal subgroup of Gj

(iii) Simple diagonal type, Soc(G) = T* < G < T*.(Out(T)x Sy), £ = 2 and |P| = |T|*;

(iv) Twisted wreath product type, Soc(G) = T* < G < T*: Sy and T* acts regularly on
P;

(v) Product action type, Soc(G) = T* < G < H 1Sy, where H with a primitive action
of almost simple or simple diagonal type.

Thus, in order to prove Theorem 1, it suffices to show that types (iii)-(v) do not occur.
The following lemmas will be used frequently in the following sections.

Lemma 4. (Ionin and van Trung [10, Remark, 6.10]) If D is a symmetric (v, k, \) design,
then k(k —1) = A(v —1).

Since 1 < k < v — 1, it follows that £ > A 4 1, and so the order of symmetric design
n=k—\>=2.

Lemma 5 (Bruck-Ryser-Chowla Theorem [9, Section 2.4]). Let v, k, and X be integers
with A(v — 1) = k(k — 1) for which there ezists a symmetric (v, k, \) design.

(i) If v is even, then n=k—X\ is a square.

(ii) If v is odd, then the diophantine equation (k— \)x® + (=1)"2 A\y2=22 has a solution
in integers x,y, z not all zero.

Lemma 6 (Feit-Thompson Theorem [6, Theorem|). FEvery finite group of odd order is
solvable.

Lemma 7 (Huppert and Blackburn [8, Chapter X, Theorem 3.6]). The Suzuki groups
Sz(q) are the only non-abelian simple groups of order prime to 3.

Lemma 8 (Conway, Curtis, Norton and Wilson [3]). Let T' be a non-abelian simple group
with |T| < 10°. Then one of the following cases holds.

Case| T | Out(T)| |T| || Case| T | Out(T)| |T| | Case| T | Out(T)| |T|

1 As Zs 60 || 12 | Us(3) | Zo | 6048 || 23 | Lo(32)| 25 | 32736
2 | Ly(7) 7y 168 || 13 | Ly(23)] Zo | 6072 || 24 | Us(4) | Z4 | 62400
3 AG ZQ X Z2 360 14 L2 (25) ZQ X Z2 7800 25 M12 ZQ 95040
4 | Ly(8) | Zs 504 || 15 | My 1 7920 || 26 | Us(5) | S; | 126000
5 | Lo(11) | Zs 660 || 16 | Lo(27)| Zs | 9828 || 27 | & 1 175560
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6 | Lo(13) | Zy | 1092 || 17 | Ly(29)| Z, | 12180 28 | Ay Z, | 181440
7 | Ly(17) | Zy | 2448 || 18 | Ly(31)] Z, | 14880 29 | Ls(5) | Z, | 372000
8 Ay Zy, 2520 || 19 | Ly(2) | Z, | 20160|| 30 | My Z, | 443520
9 | Ly(19) | Z, | 3420 || 20 | Ls(4) | Zyx S5 | 20160| 31 | J Zy | 604800
10 | Ly(16) | 2z, | 4080 || 21 | U4(2) | Zo | 25920 32 | Su(4) | Zy | 979200
11 | Ls(3) Zy, | 5616 || 22 | S2(8) | Zs | 29120

3 Simple diagonal and Twisted wreath product action

Suppose that G < Yj.(Out(T) x Sy) has a simple diagonal action on P. Let N = Soc(G) =
T* (¢ >2) and let T = {(t,t,...,t)|t € T} be the diagonal subgroup of N. Then T =T
and P can be identified with the coset space N\T. So, |P| = |T'|*"* and G < Aut(T)x S,.

Proposition 9. If D is a symmetric (v,k,\) design with k < 10% which admits a flag-
transitive and point-primitive automorphism group G, then G is not of simple diagonal
type.

Proof. Since k(k —1) = \Nv — 1), k | |G| yields k | A\(|T|*"! — 1, 21|T||Out(T)|). Thus,
k| MNOut(T)| (1)
which, by (A\v)2 < k, implies that (\|T|"1)2 < A|Out(T)]|, namely,
1T < A2 |Out(T)|?. (2)

By k < 103, (A\v)2 < k and 60 < |T|, we have 60z < 103, and so ¢ < 3.

First assume that ¢ = 3. Then ()\v)% < k implies that |T'| < 10%. Further, we have
T = As, Lo(7), Ag, Lo(8) or Lo(11) by Lemma 8. Now |Out(T)| divides 4 and (2) yield
|T| < 24\2. Thus, A2|T| < 10® implies that 2] < %, and so T = As.

Let T = As. However, there are no integer solutions to equation k(k — 1) = (|T|? —
1)A = 3599\, and so there are no solutions in this case, contrary to Lemma 4.

Thus, we have ¢ = 2 and v = |T|. We now assume that G = T x T. Then k | |G7|
and k(k — 1) = A(|T'| — 1) which lead to the contradiction k& | A.

Let T x T < G < T?.(Out(T) x Sy). Therefore, by (1), we have k | 2\|Out(T)|. Now
k < 10% and (\v)2 < k imply that |T'| < 10° and, by Lemma 8, |Out(T)| = 1,2,3,4,5,6
or 12.

Since k | 2A|Out(T)|, there exists some positive integer z such that k = 2)‘|O+tm‘,
where 1 < z < 2|0ut(T)|.
Now k(k — 1) = A(|T| — 1) yields
2|0ut(T)|(2A|Out(T)| — z) = 2*(|T| — 1). (3)

By Lemma 6, we have 2 | z. Then z < 2|Out(T)| and |Out(T)| < 4 imply that
(|Out(T)],2) = (2,2), (3,2), (3,4), (4,2), (4,4) or (4,6). From Lemma 6 and 2 divides
|T|, we conclude that (|Out(T)|, z) # (2,2), (4,2), (4,4), (4,6).
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We will first assume that (|Out(T)|,z) = (3,2) or (3,4). Then 3 divides |T'| — 1 and
Lemma 7 imply that T = Sz(8). However, there are no integer solutions to equation
k(k—1) = A(]Sz(8)] — 1), and so there are no solutions in this case, contrary to Lemma
4.

Now assume that |Out(T)| = 5. Then T = Ly(32), and so (3) implies that z = 4,
A = 5238 and k£ = 13095. However, n = k — A\ = 7858 is not a square, contradicting with
Lemma 5 (i).

If |Out(T)| = 6, then T" = Us3(5) or Lo(27). This together with (3), we have z = 6,
k = 2X and so 2 divides |T'| — 1, contradicting with Lemma 6.

Finally, assume that |Out(T)| = 12. Then T = Ls3(4). Moreover, from (3) and
1 < z < 2|0ut(T)| = 24, we get that z = 12. As above, 2(2\ — 1) = |L3(4)| — 1 which
implies that (2,|L3(4)|) = 1, contrary to Lemma 6. This completes the proof. O

Proposition 10. If D is a symmetric (v, k,\) design with k < 10® which admits a flag-
transitive and point-primitive automorphism group G, then G is not of twisted wreath
product type.

Proof. Suppose that G < T* : S, has a twisted wreath product action on P. Here
Soc(G) = T* is regular on P and £ > 6. Since (Av)2 < k, this leads to the contradiction
that k > |T|*> > 60% > 103. Thus, G is not of twisted wreath product type. O

4 Product action

Suppose that G < H1 S, = Hy x Hy x --- x H; : Sy has a product action on P = Af =
Ay X Ag x -+ x Ay, where H; with a primitive action (of almost simple or simple diagonal
type) on a set A; of size w > 5, ¢ > 2, H; =2 H and A; = A for i = 1,2,...,¢. Then,
|P| =v =wt. Let Soc(H) =T¢ and Soc(G) = T%, where d > 1.

Lemma 11 ([13, Lemma 4]). k| M(w — 1).
Lemma 12.  The following statements hold.
(i) If ¢ =2, then w < 999.
(ii) If ¢ =3, then w < 99.
(iii) If ¢ =4, then w < 31.
(iv) If € = 5, then w < 14.

Proof. Using k(k — 1) = AMv — 1) and v = w’, we get w’ — 1 < A(w’ — 1) < 999000, and
so (i)-(iii) hold. For part (iv), we have w® < w’ < 999001 which implies that w < 14. O

First of all, we have

Lemma 13. H cannot be of simple diagonal type.

ot
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Case | £ | v | Soc(H) | Out(T) || Case | € | v | Soc(H) | Out(T)

1 | 3]60% | A5 x 45 2 | 360% | Ag x Ag 22
2 | 2607 | A5 x A5 2 | 5042 | Lo(8) x Lo(8) 3
3 | 2| 168% | Lo(7) x Lo(7 2 | 660% | Lo(11) x Lo(11) 2

Proof. Suppose that H is of simple diagonal type. Here Soc(H) =T, d > 2 and T is a
non-abelian simple group. Then we obtain all possible quadruples (¢, v, Soc(H), Out(T))
by Lemmas 8 and 12, and they are listed in the following table.

Thus, we have G, < (Aut(T) x S3) 1S, and therefore, by k | A(v — 1),

kAT |Out(T)I, |ITI" - 1),

that is to say, k divides A|Out(T)|*. Then there exists some positive integer z such that
fp = OO where 1< 2 < [Out(T)[%. And k(k — 1) = A(|T|* = 1), s0

[Out(T)|*(A|Out(T)|" — 2) = 2*(|T|* - 1). (4)

Recall that Soc(H) =T? =T x T and Out(T) = 2, 3 or 22. Now we need to check each
tuple (¢, Out(T)) of above cases whether it satisfies (4). Thus, we get that (¢, Out(T)) =
(3,2), (2,2), (2,3) or (2,2%).

By Lemma 6, we have (¢,0ut(T)) = (2,3). It follows (4) that 3 divides |T|> — 1,
this implies that 7' = Sz(q), contrary to Lemma 12. This completes the proof of Lemma
13. O

Therefore, the following result holds.

Lemma 14. If G is of product action, then H is an almost simple group with socle T
acting transitively on A. Moreover, if « = (4,6,...,0) € P with § € A, then k divides

O = 1 JOu(T) [ - [Ty

w

Proof. Tt follows immediately from Lemma 13 and [16, Lemma 3.10]. O]

By Lemma 11, we know that k = M(“’ Y for some positive integer z. And A(v—1) < k2,
SO
Wt w1 Wi -1 _ A2
w—1 S (w—1)2 T 22

Now we examine the possible parameters in Lemma 12 case by case and by k(k — 1) =
A(v—1), we obtain all the possible parameters (w, £, k, A, z) by using the software package
GAPI7] and the possible socles for H by [1, 4]. There are 96 cases which listed in Tables
2-5. In particular, cases for £ = 2 and z odd (resp. z even) are listed in Table 2 (resp.
Table 3).
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Table 2: Cases for /=2 and z odd

Case‘ w ‘ (v,k, A ‘ z ‘ Soc(H) ‘ Stabilizer in Soc(H)

1 |5 (52,16,10) 5 As Ay

2 19 (92,16, 3) 3 Ag, Lo(8) Ag, 23:7

3 |13 (132,64,24) | 9 A1z, L3(3) Aip, 32:25,

4 |13 | (13%,120,85) | 17 | Ays, L3(3) Aqg, 32 : 28,

5 [ 17 | (17%,64,14) | 7 Ay7, La(16) Agg, 24115

6 |21 | (212,56,7) 5 Aoy, L3(4), A7, Lo(7).2 | Ag, 2% : A5, S5, Dig
7 |21 | (21%,320,232)| 29 | Aoy, L3(4), A7, Lo(7).2 | Agg, 2% : A5, S5, Dig
8 |25 (252,144,33) | 11 Aos Agy

9 |25 | (252,352,198)| 27 | Aos Ay

10 | 29 (292 616,451)| 41 Aoy Asg

11 |29 | (29%,736,644)| 49 | Agg Asg

12 |33 (332 256,60) | 15 | Asz, L2(32) Asp, 25 :31

13 |37 | (37%,856,535)| 45 | As; Asp

14 | 41 (412 400,95) [ 19 | An Ay

15 |41 | (41%2,736,322)| 35 | Ay Ay

16 45 (4 760 285) 33 A45, A6.2, Alo, U4(2) A44, D16, Sg, 2.(A4 X A4).2
17 |49 (492 576,138)| 23 | Ay Ay

18 |53 | (532,352,44) | 13 | As3 Asy

19 57 (572 784 189) 27 A57, L3(7), L2(19) A56, 72 . 2L2(7) . 2, A5
20 | 61 | (612,280,21) | 9 Ag1 Ago

21 | 85 | (852,904,113)| 21 | Ass, S4(4), La(4) Agy, 2% 1 (3x A5),20 : GL3(4)
22 | 89 | (892,496,31) | 11 | Agg Ags

Table 3: Cases for /=2 and z even

Case‘ w ‘ (v, k, \) ‘ z ‘ Soc(H) ‘ Stabilizer in Soc(H)
23 |6 | (6%15,6) 4 | Ag, As As,5:2

24 |7 | (7%33,22) 8 | Az, La(7) Ag, Sy

25 |8 | (8%,28,12) 6 | Ag, La(7) A7, 7:3

26 | 10 | (102,45,20) 8 | Ay, As, Ag Ag, S3,3%:4

27 | 11 | (112,25,5) 4 | Ap, La(11), My Ao, As, Myg

28 | 12 | (122,66,30) 10 | Ao, My1, Mo, Lo(11) A11, Lo(11), My1,11 : 5
29 | 13 | (132%,57,19) 8 | Az, L3(3) Aqg, 3%2: 28,

30 | 14 | (142,91,42) 12 | Ay, Lo(13) A13,13:6

31 | 15 | (15%,161,115) | 20 | Ay, Ag, A7, Ag Avg, Sy, Lo(T), 23 : L3(2)
32 |16 | (162,120,56) 14 | A A

33 | 16 | (16%,171,114) | 20 | Ay Ais

34 |16 | (162,205,164) | 24 | Asg Atz

35 | 18 | (182%,153,72) | 16 | A Ayq

36 | 19 | (192,81,18) 8 | A Aig

37 | 20 | (20%,190,90) | 18 | Asg, L2(19) A19,19: 9

38 |21 (212 265,159) | 24 | Aoy, L3(4), A7, Lo(7).2 | Agg, 2% : A5, S5, Dig
39 | 22 | (222,70, 10) 6 | Ao, Moo Aoy, L3(4)
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40
41
42
43
44
45
46
47

48
49
50
51
52
53
o4
55
56
57
58

59

60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80

22
22
23
24
25
26
27
28

29
30
31
31
31
32
34
34
34
35
36

36

36

37
38
40
40
40
42
43
44
45
49
o1
56
o8
59
61
69
71
76
79
106

222,162, 54)
222,231, 110)
232,385, 280)
242,276, 132)
252, 417,278)
262,325, 156)
272,169, 39)
282,378, 182)

N N AN N N N N

(292 721,618)
(302,435,210)
(312 321,107)
(312,385, 154)
(312,705,517)
(322,496, 240)
(34%,561,272)
(342,771,514)
(342,946, 774)
(352,289, 68)
(362,260, 52)

(362,371,106)
(362,630, 306)

(372,153, 17)

(382 703, 342)
(402,247, 38)

(402,534, 178)
(402,780, 380)
(422,861, 420)
(43%,441,105)
(442,946, 462)
(45%,737,268)
(492,801, 267)
(512 625, 150)
(562,286, 26)

(582,532, 84)

(592,841, 203)
(612,745,149)
(692,561, 66)

(712,721,103)
(762,925, 148)
(792,481, 37)

(1062, 750, 50)

14
20
32
22
32
24
12
26

48
28
20
24
44
30
32
44
54
16
14

20

34

36
12
26
38
40
20
42
32
32
24
10
18
28
24
16
20
24
12
14

Agg, Moo

Agg, Moo

Agz, Ma3

AQ4, M24, L2(23)

Aas

A27, U4(2)

Agg, Ag, L2(8), L2(27),
L2<7)27 U3<3)7 56(2)
Agg

Ass, A7, Ag

Asg, Lo(8), Mg, PGL2(9

A97 U3(3)’ 54(3)7 56(2)

Asg, Lo(8), Mg, PGL2(9

A97 U3(3)’ 54(3)7 86(2)

Asg, La(8), Mg, PGL2(9

Ay, Us(3),54(3), S6(2)

A44, L2(43)

A45, A6.2, Alo, U4(2)
Ayg

Asy

Ase, L3(4), As

Asg

Agl, L3(4)

Agy, Lz(4)

Agg, Moo

A23, Mgg, 23 . 11

Agy

Ags, 5% 112
Asg, 24 1 Lo(4)

A27, 567 Dlg, 33 . 13,
Do, 347218, Us(2) : 2
Agg

AQQ, 29:14

A3, 5% GLy(5),2% : Ly(2)
Asp, 5% 1 GLa(5),2% : Ly(2
Asp, 5% GLa(5),2% : Ly(2
A31,31 : 15

Asz

As3

Asz

A34, (A4><3) : 2; 24 : (SgXSg)
A3zs, D14, Dag, Dag,

S7, La(7), Sg, S

Ass, D14, Dao, D2,

S7, La(7), Sg, S

Ass, D14, Dao, Dao,

57, L2(7), Sﬁ, Sg

Asg

A37, 37:18

Agg, 3% : L3(3),3172 : 24,
Agg,3% 1 L3(3), 3577 1 244
Agg, 3% 1 L3(3),351% : 24,
A41,41 : 20

Ago

A43,43 121

A44, Dlﬁ, Sg, 2.(A4 X A4).2
Ayg

Aso

A557A67 (A5 X 3) 12
As7
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Table 4: Cases for /=3

Case‘ w ‘ (v, k, ) ‘ Soc(H) ‘ Stabilizer in Soc(H)
81 |5 (5%,32,8) As Ay
82 |6 | (6°130,78) | Ag, As As,5:2
83 | 7 (7%,153,68) Az, Ly(7) Ag, Sy
84 |7 (73,172, 86) Az, Ly(7) Ag, Sy
85 |7 | (7%,324,306) | As, Lo(7) As, Sa
86 |8 | (8%,147,42) | A, Lo(7) A7, 713
87 |9 | (9%456,285) | A, La(8) Ag, 27
88 10 (103 297 88) Alo,A5,A6 Ag, 53, 32 4
89 | 11 | (113,400,120) | Ay, La(11), My Avo, As, My
00 | 11 | (11%,666,333) | Aw, La(11), My Avo, As, Mo
91 | 14 (143,845,260) | Ay, Lo(13) Ay3,13:6
02 |15 | (15%,483,69) | A5, Ag, A, As Avg, Su, La(7), 22 -
93 | 16 (163,820, 164) | A Aqs
Table 5: Cases for (=4
Case | w | (v,k | Soc(H) | Stabilizer in Soc(H)
94 |5 (54 352,198) | As Ay
95 |6 (61,260, 52) Ag, As As,5:2
96 |7 | (7% 801, 267 Ay, Lo(7) Ag, Sy

In the following, we begin to deal with the possible cases of Tables 2-5 one by one.
First of all, we deal with the possible cases of Tables 2 and 3. It should be noted that

(=2

Let 0 € A and let T be the stabilizer of § in 7. We first use Lemma 14 to rule out
some possibilities of T in column 5 of Tables 2, 3 with k { 2|T5|*|Out(T)|?, and listed in
Table 6. So we have the following result.

Lemma 15. The cases of Tables 6 cannot occur. Thus, for the remaining T in Tables 2,

3, we get that T acts 2-transitively on A and so does H.

Table 6: Cases of Lemma 15

Case | (v, k, \) T | T | |T5] | Out(T)
6 | (212,56,7) | A Ss 120 2

6 | (212,56,7) | Lo(7).2 Dis 16 2

7| (212,320,232) | A, Ss 120 2

16 | (452,760,285) | Mg D 16 2
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16
16
19
21
26
31
46
47
47
47
a7
o7
o8
o8
o8
o8
o8
o8
29
59
59
29
29
29
60
60
60
60
60
60
63
64
65
69
69
69
72
72

(452 760, 285)
(452, 760, 285)
(572, 784, 189)
(852,904, 113)
(102, 45, 20)

(152,161, 115)
(272 169, 39)
(282, 378, 182)
(282, 378, 182)
(282,378, 182)
(352, 289, 68)
(352, 289, 68)
(362, 260, 52)
(362, 260, 52)
(362, 260, 52)
(362, 260, 52)
(362, 260, 52)
(362, 260, 52)
(362, 371, 106)
(362,371, 106)
(362,371, 106)
(362,371, 106)
(362,371, 106)
(362, 371, 106)
(362,630, 306)
(362,630, 306)
(362,630, 306)
(362,630, 306)
(362,630, 306)
(362 630, 306)
(402,247, 38)
(402 534, 178)
(402, 780, 380)
(452,737, 268)
(452,737, 268)
(452,737, 268)
(562, 286, 26)
(562, 286, 26)

40320
576
60
11520

24
960
720
12
216
72
576
14
20
5040
20
168
720
14
20
5040
20
168
720
14
20
5040
20
168
720
648
648
648
16
276
576
360
360

I\&M%MI\DI\')

W NN DN DNDNDN

22

2><Sg
2

Proof. We only need to check each possible case of Tables 2, 3 one by one.
statement follows from 7' <1 H.
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Let Soc(Hy) = Ty and Soc(Hs) = Ts. Clearly, Ty =2 T5 =2 T and Soc(G) = Ty xT,. Now
we begin to deal with the remaining cases of Tables 2, 3. Let v = (9,9) € P = Ay x As.
Recall that T; acts 2-transitively on A; for ¢+ = 1,2. Thus, we get that

Lemma 16. (71 X T3)s = (T1)s X (To)s and G, < (Hy)s x (H2)s @ Sy acting on P has
three orbits ©1 = {(6,0)}, Oy = (6,6%)% = {(§*",9)| t € (T1)s} U {(5,5)| t € (Tr)s}
and Oz = (6*,6*)% = {(6*,5*)|t, € (T1)s and to € (Ty)s}, where 6* € A\ {d}.
Furthermore, 01| =1, |©3] = 2(w — 1) and |03] = (w — 1)%.

Set I'; = a¥i for i = 1,2, where T} = T) x 1 and To = 1 x T». In particular,
[y =af>t = {(§" 6)] t; € T1}, Ty = a™*T2 = {(4,6%)| t, € To}. Then the transitivity of
T; on A; implies that

Lemma 17. |I')| = Iy =w, [I'1' NT| =1 and [©2NT| = [03N Ty =w — 1.
Lemma 18. Let ¢ = |©, N B|, where a € B. Then the following hold:

(i) ¢ is independent of the choice of the block through o;

(ii) ke = A|O2| =2\ (w — 1) and ¢ = z is independent of the choice of a.

Proof. (i) Let B* be a block such that a € B*. The flag-transitivity of G implies that
there exists g € G, such that BY = B*. Then (0, N B)Y = ©, N B* by ©3 = 0. Thus,
|©2 N B| = |©3 N B*| = ¢ and c¢ is independent of the choice of the block through «.

(ii) Counting in two ways the flags (5, B) of D such that 5 € ©, and o € B, we have

kc = A|O2| = 2A\(w — 1). The last statement follows from z = % O

The following result will play an important role in this section.

Lemma 19. Let M = Ng(T1) N Ng(Ty) and o« € B. Then |G : M| = 2, and one of the
following holds:

(i) if Gap cannot interchange Ty and Ty, then Myp = Gop and (o2, BM) = (k, %) or
(5.0);

(ii) if Gap can interchange Ty and Ty, then |Gop @ Mag| = 2 and (a8, BM) = (k,b),
that is to say, M acts flag-transitively on D.

Proof. By the primitivity of G on P, we have Soc(G) = T; x T is a minimal normal
subgroup of G which implies that G acts transitively on {7, 7>} by conjugation. Note
that M is the stabilizer of 7} in G. Then |G : M| = 2.

(i) If G,p cannot interchange T; and T5, then Gop < M,p. Thus, M < G implies
that GaB = MQB.

By the flag-transitivity of GG, we have

’GZGQB’:|G2MQB|:|G1M|'|MIMB|'|MBIMQB|
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which, by the primitivity of G and M < G, implies that
bk = |G : M| -|BM]| - |aMz|.
At this point, |G : M| = 2 yields |a™?]| = k or £.
(ii)) The second statement follows from

1 1
|G : Gup| = 5|G - Myp| = 5|G cM|-|M : Mug| = |M : Mg|-|Mg : Myg| = |BM|-|a™*]|

and |o™5| divides k. O
Lemma 20. Fizp((T1)) =2 and Fizp((13).) = T'.

Proof. We only need to prove the first assertion. Clearly, (71), = (T1)s x 1 and I'y C
Fizp((T1)a), where a = (6,0) € P. On the other hand, choose an element (¢q,¢2) in
Fizp((T1)a). By the 2-transitivity of 7', we have €; = ¢ which implies that Fizp((11)a) C
FQ. ThUS, Fi[L‘p((Tl)a) = FQ. O

Let $ € I'y and denote by J the set of blocks of D through o and 5. Clearly, |J| = A
and J e = 7.

Lemma 21. If (11)s < (T1)p for some B € J, then Mg < Ny ((Th)a). Furthermore,
OZMB Q BN FQ.

Proof. Recall that (T1), = (T1)s x 1. By the 2-transitivity of 77 on A;, we have (T1), is
a maximal subgroup of 77 = T7 x 1. If (T})p = T3, then

(a, B)TE = (™2, B) = (o™, B) = (I, B),

in other words, I'y C B. By the transitivity of Gg on B, we have w divides k. However,
there is no case of Tables 2 and 3 which can satisfy the condition of w | k, a contradiction.
Thus, (TI)B = (Tl)a and, by (TI)B S] MB, MB < NM((TI)a)

Let v € o2, Then there exists an element t € Mp such that v = af. Thus,
(Th),, = (T1)a and v = 4Ma = otT)a = ot = 4 by Mp < Ny((Th)a), namely, v €
Fizg((T})s). By Lemma 20, we have Fizp((T})s) = I'> which implies that o™ C BNTy.

O

Lemma 22. [I'NB|+ Iy N B| =c+ 2.

Proof. From {I'y U2} \ {a} = 69 and {(I'y N B)U(I'2NB)}\ {a} = ©3N B, we conclude
that
{I''1NnB\{a}}Uu{lsNB\{a}} =62NB.

On the other hand, {I'y N B\ {a}} N{I's N B\ {a}} = @ and Lemma 18 imply that

Thus, TN B|+ |IyN Bl =c+ 2. O
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Table 7: Cases of Lemma 23

Case | (v,k,\) T Ts (T5)min || Case | (v,k,A) T Ts (T5)min
2 | (92,16,3) Ag Ag 8 39 | (222,70,10) Agy [ Ay |21

2 (92,16, 3) Ly8) | 287 |7 39 | (222,70, 10) My | L3(4) | 21

5 (172,64,14) | Ay A 16 61 | (37%,153,17) | Azr | Ase 36

6 (212,56, 7) Ay Agg 20 63 | (402,247,38) | Ay | Asg 39

6 (212,56,7) L3(4) | 2*: A5 | 5 72 | (562,286,26) | Asg | Ass 55

18 | (532,352,44) | As3 Asy 52 76 | (692,561,66) | Ago | Ags 68

20 | (612,280,21) | Ag: Ago 60 79 | (792,481,37) | Az | Arg 78

22 | (892,496,31) | Agg Ags 88 80 | (1062,750,50) | A1os | A10s | 105

27 | (112,25, 5) A A 10

Lemma 23. If (T}), < (T1)p for some B € J, then k < 2(c + 1). Therefore, the cases
of Table 7 cannot occur.

Proof. Lemmas 19, 21 and 22 imply that £ < [a™#] < |BNy| < e+1, and so k < 2(c+1).
Let (Ts)min denote the minimal degree of Ts. Recall that (77), = (71)s x 1. In each case of
Table 7, (T5)min > A implies that there exists B € J such that (7). < (711)p. However,
there is no case of Table 7 which can satisfy the condition of k < 2(¢+1). Thus, the cases
of Table 7 cannot occur. For the values of (T%)in, we only need to consider the indexes
of maximal subgroups of Tj. O]

From now on we begin to deal with the remaining cases of Table 2. It should be noted
that ¢ is odd. First, we have

Lemma 24. G, g cannot interchange T, T5.

Proof. Set x = |[BN Ty NGOy If G,p interchange 77 and T3, then there exists an
element g € G, p such that T = T,. So, (BNT1 N ©y)Y = BNTyN O, implies that
|IBNT1NOy| =|BNTyNOy =x and |BNOy| =c = 2x, this leads to the contradiction
that 2 | c. O

By Lemmas 19 and 24, one of the following holds:
(I) |aM8| = k and |BM| = g;
(II) |oMe| =% and |BM| =b.

Now we begin to deal with the above two cases one by one.
Case (I): |a™?| =k and |BM| =1
Without loss of generality, we may assume that |[BNI'y| < |[BNTy.

Lemma 25. Let |[BNTy| < <2 and [BNTs| > 2. Then the following hold:
(i) k> e,

(i) [BNIy| =<t and | BNTs| = <3, Furthermore, w divides k.
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Proof. The statement (i) follows immediately from the remaining cases of Table 2. For

(ii), since Mp acts transitively on B, we have k < |[BNI'1|w and, by |[BNT;| < <! and
(i), |BNT:| = <L and |[BNT,| = C+3 The last assertion follows from the transitivity of

Mg on B. ]
Theorem 26. If Mg is transitive on B, then the remaining cases of Table 2 cannot occur.

Proof. We only need to check each possible case of Table 3 whether it satisfies the condi-
tion of M divides k. O

Case (II): [a™?| = £ and |BM| = b.
First of all, we have

Lemma 27. |Gp : Mg| = 2 and there exists t € Gg \ Mp such that Gg = (Mp,t).
Further, B = o5 U (aM8)t = oM U (at)Ms,

Proof. Since |G : Mp| = |Gp : Gg N M| = |GgM : M|, |B™| = b implies that |Gp :
Mpg| = 2. From |a“?| = k and [o?] = £, we conclude that o™= N (aM=)! = oMs N
(a)Ms = &, O

Let Cl = OéMB, CQ = (Oét)MB and let CH = {51|(51,(52) < Cl}, 012 = {52|((51,52) S Cl},
Coy = {€1|(€17€2) S 02}7 Co = {€2|(€1;€2) € 02}.

Lemma 28. The following hold:
(i) |Cu| = |Cx| and [C12| = [Cxl;
(i) BNI'y CCy and BNTy C Cy.
Proof. (i) Let 8 =a'. Then 8 € Cy. Thus, by Tf = T3 and T% = T7,
(BNT,)! = Bna' =Bna™=pBnp"

and
(BNTy)' = Bna® =Bna™ =Bnph.

Now Mp acts transitively on C; and |Cy| = |Cs| imply that |Ch1]| = |Ca| and |C1a] = |Ca],
where 1 = 1, 2.

(i) We first assume that I'y NCy # @ and I'sNCy # @. Thus, by the fact that Mp acts
transitively on C; for i = 1,2, Cy = Cf and |C}| = |Cy|, we have [Ty N Cy| = [T NCy| =
Lo N Cy| = [TaNCy|. At this point, |BmF | =[(CUC) NIy =|CiNTy| 4+ |Can Ty
implies that |BNT'1| + |BNT's| = ¢+ 2 is even, contrary to the fact that ¢ is odd.

Without loss of generality, we may assume that I'y N Cy # @ and I'y; N Cy = @. Then,
by the fact that Mp acts transitively on C; and Cy = ()", |C11| = |C12| = [Ca1| = |Caal.

Further more, CH = Oy, 2|C1| < w and |BN Ty | = |Bgrl| = % Thus, we have
|B N Tyl |Ci| = % which implies that <2 divides & and - +2 < w. However, there is
no such a case of Table 2 satisfying the above two conditions. Thus, BN Iy C C; and
BN FQ - CQ. [
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Lemma 29. There exist two positive integers x,y such that |B N Tz = |BNTyly = %
and z +y < w.

Proof. The conclusion follows from Lemmas 22, 27 and the fact that Mp acts transitively
on C; for i = 1,2. The last statement follows from |C};| + |Ch2| < w. O

Theorem 30. The cases of Table 2 cannot occur with the possible exception of (Case, T) =
(20, Ag1). For the exceptional case, | BNT1| =4, |[BNTy| =7, x =35 and y = 20.

Proof. We only need to check each case of Table 2 whether it satisfies the following system
of equations:

|IBNT|+ |BNTy| =c+2;

|IBNT|lz=|BNTsly = g;

|IBNTy| < |BNTyf;

T+y < w.

It should be noted that |[BNT'y| and |[BNTy| in the first equation are both unknowns. O

Set Bl = {(51|(51,52) S B} and B2 = {(52|((51,52) S B} Clearly, Bl = CH U 021 and
B2 = 012 U 022 and |B1| = |B2| by Lemma 28.

Theorem 31. The possible exception of Lemma 30 cannot occur.
Proof. Now |By| = |By| = |C11] + |Ci2| = 2 +y = 55. By Soc(G) = Ty x Ty, < M and
(Tl X TQ)B < (Tl)B1 X (TQ)B2, we have

61\
BY] > 1B = T3 x T (1 x To)al > 15011871 > ()

Since M is transitive on B, this leads to the contradiction that |B| > |P|. O
Lemma 32. If Mp is intransitive on B, then the remaining cases of Table 2 cannot occur.
Proof. 1t follows immediately from Lemmas 30 and 31. m

In the following, we begin to deal with the possible remaining cases of Table 3. It
should be noted that ¢ is even. By Lemma 19 and c is even, one of the following cases
holds.

(I) Gap = M,p and one of the following holds.

(i) |aMe8| =k and |BM| = g;

(ii) |aM5| = % and |BM| = b.
(II) |Gap : Map| = 2 and the following holds.
(i) |aMe| =k and |BM| = b.
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Now we begin to deal with the above three cases one by one.
Case (I) (i): Gap = Mg, |aM?| =k and |BM| = L.

Without loss generality, we may assume that |[B N T'y| < |BNTy|. In particular,
|IBNTy|+ |BNTs| =c+ 2 is even.

Lemma 33. Suppose that Mg acts transitively on B. Then the following statements hold:
(i) 5 <k
(ii) |BNTy| = |BNTy| = #

Proof. For (i), we only need to check each possible case of Table 3 one by one. The second
statement (ii) follows from (i), k¥ < |[BNTjw and [BNTy| < <2 O

Lemma 34. The cases of Table 3 cannot occur with the possible exceptions of (Case,w) =
(23,6), (25,8), (26,10), (28,12), (30,14), (32,16), (35,18), (37,20), (41,22), (43,24),
(45,26), (47,28), (49,30), (53,32), (54,34), (60,36), (62,38), (65,40), (66,42), (68,44).

B _

In particular, with the above possible exceptions, we always have |By| = |By| = BTy =

w—1.

Proof. We only need to check each possible case of Table 3 whether it satisfies the condi-
tion of <2 | k. O

Lemma 35. The possible exceptions of Lemma 34 cannot occur.

Proof. Since Soc(G) = Ty x Ty A M, |BM| > |B">™| > |B,"| - |By"|. Therefore,

|B1| = |Bs| = % = w — 1 and the transitivity of Mp on B imply that

b=2(B| > 2|B"T| > 2B]Y| - |Bf| > 2? = 2,
the desired contradiction. O

Theorem 36. Suppose that G, g cannot interchange Ty, T5 and Mg is transitive on B.
Then the remaining cases of Table 3 cannot occur.

Proof. 1t follows immediately from Lemmas 34 and 35. O

Case (I) (ii): Go,p = Map, [&M5] = £ and |BM| =b.
Here BM = B and there exists t € G \ Mp such that B = o™5 U (a!)Mz = C, U ).

Lemma 37. If Mg is intransitive on B, then one of following holds:
(1) FlﬂCg %@ andf‘gﬂCQ#@;

(11) FlﬂOQZQ andFQQCQZQ.
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Proof. Without loss of generality, we may assume that I'1' N Cy # @ and 'y N Cy, = @.
Then C15 N Csy # &, and so the transitivity of Mg on C; implies that C5 = Cy, where
i =1,2. Note that C1; N Cy = &. Let 8 =a' € Cy. By Tf = Ty and T% = T}, we have
|C1| = |Ch2| = |Ca1| = |Coo| and |[BNTy| = 2| BNT,|. Thus, by Lemma 22, [BNT,| = <2
which implies that % divides g However, there is no case of Table 3 which can satisfy
the condition of <2 | &. O

Lemma 38. Suppose that 'y NCy # @ and T'oNCy # &. Then |BNT| = |BNTy| = %
and %2 divides %

PT’OOf. Since Fl N Cz 7£ @ and FQ N CQ 7é @, 011 N 021 7& @ and 012 N 022 7£ @. The
transitivity of Mg on C; yields C1; = Cy and C15 = Uy, where ¢ = 1,2. Together with
Ct = Oy, Ct = O, we get that |Cy1| = |Cap| = |Cia| = |Cai|. By Lemma 22, we have
|IBNTy| = |BNTy| =<2 and |C;NT| = |C;NTy| = <2 for i = 1,2. The last statement
follows immediately from the transitivity of Mg on C;, where ¢ = 1, 2. [

Lemma 39. Suppose that 'y N Cy # @ and I's N Cy # &. Then the cases of Ta-
ble 8 cannot occur with the possible exceptions of (Case,w) = (25,8), (28,12), (32,16),
(37,20), (43,24), (47,28), (53,32), (60,36), (65,40) or (68,44). Furthermore, with the
above possible exceptions, we always have |Ci1| = |Cia| = |Ca| = |Co| = w — 1 and
|B1| = |Bz| =w—1.

Proof. We only need to check each case of Table 3 for the condition <2 | &. O

Lemma 40. The possible exceptions of Lemma 39 cannot occur.

Proof. Clearly, we have (Ty x Tb)p < (T1)5, % (Ts)p, and |B/*| = |B3*| = w — 1. Since
Soc(G) =Ty x Ty, | BM| =[BT and |B{*| - |By*| = [T« (Th)p,| - | T2 : (T)

| B" | = Ty x Ty - (Tyx Ta) g = [Ty x T ((Th) g, X (T2)5,)| = |Th : (Th) |- |To : (T2) B, ]
and Lemma 39 imply that |[BM| = |BT*"2| = |B]"| - |B}?| = w?. Thus, we have

(Tl X T2>B = (Tl)Bl X (TQ)B2 = (TI)CH X (T2)012 = (TI)C21 X (T2)022‘

Recall that T; is 2-transitive on A; for i = 1,2. Thus, (71)¢,, (resp. (12)¢,,) is transitive
on Ch; (resp. 012). Let ((51, 52) € C; and (51, 5/2) € C11 x Cia. Then (T1 X TQ)B = (Tl)CH X
(T) ¢, implies that there exist (t1,t5) € (T1)¢,, % (T) ey, such that (8),8,) = (61, 55)Ft2).
In other words, C; = C71 x (1 and so g = (w — 1)%. However, there is no exception of
Lemma 39 which can satisfy the above condition. O]

In the following, by Lemma 37, we only need to consider the case where I'y N Cy, = &

and FQﬂCQ = .

Lemma 41. Suppose that 'y N Cy = @ and 'y N Cy = &. Then there exist two positive
integers x,y such that |[BN Tz =|BNThly = g and xr +y < w.

Proof. This can be proved as Lemma 29. O
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Lemma 42. The possible remaining cases of Table 3 do mot occur with the possible ex-
ceptions of (Case,w) = (32,16) or (60, 36).

(i) If (Case,w) = (32,16) holds, then |[BNT1| =6, |[BNTy| =10, x =10 and y = 6.
(ii) If (Case,w) = (60,36) holds, then |BNT | =15, |BNTy| =21, = 21 and y = 15.

Further, with the above two possible exceptions, we have aMe = Oy x Chg = {(61,82)|01 €
C11 and 05 € C12} where a € B and x +y = w.

Proof. This can be proved as Lemma 30. O

Lemma 43. The two possible exceptions of Lemma 42 cannot occur.

Proof. Assume that (Case,w) = (32,16). Then Soc(G) = Ay x A1g. Since A6 x A1gIM,
it follows that |B| = [BM| > [B41w6>*4| > (%) > 162 = |P|, a contradiction. Assume that
(Case,w) = (60,36). Then Soc(G) = Asg X Agg or Sg(2) x Sg(2). If Soc(G) = Asg x Asg,
then |B| = [BM| > |BAwxAn| > (%) > 362 = |P|, a contradiction. If Soc(G) =
S6(2) x S(2), then G = 54(2)1.55. Note that G only has one conjugacy class of subgroups
with index 1296, say Gg. However, G has no orbit of length 630, contradicting with the

fact that the flag-transitivity of G. This completes the proof of Lemma 43. O

Theorem 44. Suppose that Mp is intransitive on B and G, g cannot interchange Ty, T5.
Then the remaining cases of Table 3 cannot occur.

Proof. 1t follows immediately from Lemmas 42 and 43. m

Case (II) (i): |Gap : Mo g| =2, |aMB| = k and |BM| = b.

By the transitivity of Mp on B, we have |[BNT| = [BNTy| = <2 and <2 divides k
(this can be proved as Lemma 33). Furthermore, we can get the result which is the same
as Lemma 34. At this point, |By| = |Bs| = w — 1.

Lemma 45. If |By| = |By| =w — 1, then k > (w — 1),

Proof. Let a = (01,02) € B. By the 2-transitivity of 7; on A;, (71 X T3)o = (T1)s, X (T2)s,
and |By| = |By| =w — 1,

T1)s, ‘ ) T2)52|

|BMe| = | My : Myp| > |BT ¥ ™| = | BT x (M| > | BV || B
implies that k& > (w — 1)2 O

By checking each remaining case of Table 3, we prove that the cases of Table 3 cannot
satisfy the conditions of <52 | k and k > (w — 1)%. Therefore, the following holds.

Lemma 46. Suppose that G, p can interchange Ty, Ty. Then the remaining cases of
Table 3 cannot occur.

To sum up, we have
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Lemma 47. the possible cases of Tables 2,3 cannot occur.
Proof. 1t follows from Lemmas 15, 23, 26, 32, 36, 44 and 46. O
In the following, we begin to deal with the cases of Tables 4, 5. Recall that ¢ = 3 or 4.

Lemma 48. The possible cases of Table 4 do not occur with the possible exceptions of
(Case,w) = (85,7) or (89,11).

Proof. 1t follows from Lemmas 5 (i), 14. O

Lemma 49. (Case,w) = (85,7) cannot occur.

Proof. Assume that Soc(G) = Lo(7) x Lo(7) x Lo(7). Then G = Lo(7) 1 Z5 or Lo(7) 0 .Ss.
Note that G has two conjugacy classes of subgroups with index 343, say G, and Gp,.
However, Gp, or Gp, has no orbit of length 324, contradicting with the fact that the
flag-transitivity of G. Assume that Soc(G) = A; x A7 x A;. Then G = A7 Z3, (A7)3.6,
A71S3, (A7)3. Ay, A7dDya, (A7)3.S4, S70Z3 or S71S3. Note that G only has one conjugacy
class of subgroups with index 343, denoted by Gp. However, the lengthes of orbits of G
are 1, 18, 108 and 216, contradicting with the fact that |B| = 324. ]

Lemma 50. (Case,w) = (89, 11) cannot occur.

Proof. Suppose there exists a symmetric design with parameters (v, k, ) = (113,400, 120).
Then the diophantine equation 28022 — 120y* = 22 has a solution in integers z, %, z not
all zero by Lemma 5 (ii). From 20 | z and z = 20z, for some integer zp, we conclude
that 722 = 3y? + 10z2. Without loss of generality, we may assume that Ged(x,y, 29) = 1.
However, 3y? = 0,3,5,6 (mod 7), —10z2 = 0,1,2,4 (mod 7) and 3y* = —10z2 (mod 7)
lead to the contradiction that 7 | Ged(x,y, 2o). O

Theorem 51. The cases of Table 4 cannot occur.
Proof. Tt follows from Lemmas 48, 49, 50. m
Lemma 52. Cases 94-96 of Table 5 cannot occur.
Proof. 1t follows from Lemmas 5 (i), 14. O

Proposition 53. If D is a symmetric (v, k,\) design with k < 103 which admits a flag-
transitive, point-primitive automorphism group G, then G is not of product action type.

Proof. Tt follows from Lemmas 47, 51 and 52. m
Proof of Theorem 1. It follows from Propositions 9, 10 and 53. This completes the proof
of the Theorem 1. |
Acknowledgements

The authors would like to thank referees for providing them helpful and constructive
comments and suggestions, which led to the improvement of the article.

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(4) (2020), #P4.40 19



References

1]

F. Buekenhout and D. Leemans. On the list of finite primitive permutation groups
of degree < 50..J. Symbolic Computation, 22:215-225, 1996.

A. R. Camina and T. M. Gagen. Block transitive automorphism groups of designs.
J. Algebra, 86:549-554, 1984.

J. H. Conway, R. T. Curtis, S. P. Norton, and R. A. Wilson. ATLAS of finite groups.
Oxford University Press, Oxford, 1985.

J. D. Dixon and B. Mortimer. The Primitive permutation groups of degree less than
1000. Math. Proc. Cambridge Philos. Soc., 103:213-238, 1988.

W. Fang, H. Dong, and S. Zhou. Flag-transitive 2-(v, k,4) symmetric designs. Ars
Combin., 95: 333-342, 2010.

W. Feit and J. G. Thompson. Solvability of groups of odd order. Pacific J. Math.,
13:755-1029, 1963.

The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4 ; 2005,
http://www.gap-system.org.

B. Huppert and N. Blackburn. Finite groups III. Grundlehern Math. Wiss. 242,
Springer, Berlin, 1982.

D. R. Hughes and F. C. Piper. Design theory. Cambrideg University Press, Cam-
bridge, 1988.

Y. J. Ionin and T. van Trung. Symmetric designs In Handbook of Combinatorial
Designs, C. J. Colbourn, J. H. Dinitz (Editors), Chapman Hall/CRC, Boca Raton,
pages 110-124, 2007.

W. M. Kantor. Primitive permutation groups of odd degree, and an application to
finite project planes. J. Algebra, 106(1):15-45, 1987.

M. W. Liebeck, C. E. Praeger, and J. Saxl. On the O’Nan-Scott theorem for finite
primitive permutation groups. J. Aust. Math. Ser. A, 44(3):389-396, 1988.

E. O’Reilly Regueiro. On primitivity and reduction for flag-transitive symmetric
designs. J. Combin. Theory Ser. A, 109(1):135-148, 2005.

E. O’Reilly Regueiro. Reduction for primitive flag-transitive (v, k,4)-symmetric de-
signs. Des. Codes Cryptogr., 56:61-63, 2010.

C. E. Praeger and S. Zhou. Imprimitive flag-transitive symmetric designs. J. Combin.
Theory Ser. A, 113:1381-1395, 2006.

D. Tian and S. Zhou. Flag-transitive point-primitive symmetric (v, k, \) designs with
A at most 100. J. Combin. Des., 21(4):127-141, 2013.

D. Tian and S. Zhou. Flag-transitive 2-(v, k, \) symmetric designs with sporadic
socle. J. Combin. Des., 23:140-150, 2015.

P.-H. Zieschang. Flag transitive automorphism groups of 2-designs with (r,\) = 1.
J. Algebra, 118:369-375, 1988.

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(4) (2020), #P4.40 20


http://www.gap-system.org

	Introduction
	Preliminaries
	Simple diagonal and Twisted wreath product action
	Product action

