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Abstract

An overlap-free (or β-free) word w over a fixed alphabet Σ is extremal if every
word obtained from w by inserting a single letter from Σ at any position contains an
overlap (or a factor of exponent at least β, respectively). We find all lengths which
admit an extremal overlap-free binary word. For every “extended” real number β
such that 2+ 6 β 6 8/3, we show that there are arbitrarily long extremal β-free
binary words.

Mathematics Subject Classifications: 68R15

1 Introduction

Throughout, we use standard definitions and notation from combinatorics on words
(see [12]). For every integer n > 2, we let Σn denote the alphabet {0, 1, . . . , n-1}. The
word u is a factor of the word w if we can write w = xuy for some (possibly empty)
words x, y. A square is a word of the form xx, where x is nonempty. An overlap is a
word of the form axaxa, where a is a letter and x is a (possibly empty) word. A word is
square-free if it contains no square as a factor, and overlap-free if it contains no overlap
as a factor. Early in the twentieth century, Norwegian mathematician Axel Thue [22, 23]
demonstrated that one can construct arbitrarily long square-free words over a ternary
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alphabet, and arbitrarily long overlap-free words over a binary alphabet. For an English
translation of Thue’s work, see [2]. Thue’s work is recognized as the beginning of the field
of combinatorics on words [3].

Let w be a word over a fixed alphabet Σ. An extension of w is a word of the form
w′aw′′, where a ∈ Σ, and w′w′′ = w for some possibly empty words w′, w′′ ∈ Σ∗. For
example, over the English alphabet, the English word pans has extensions including the
English words spans, plans, pawns, pants, and pansy. The word w is extremal square-
free if w is square-free, and every extension of w contains a square. For example, the
word

abcabacbcabcbabcabacbcabc

of length 25 is an extremal square-free word of minimum length over the alphabet {a, b, c}.
The concept of extremal square-free word was recently introduced by Grytczuk et al. [11],
who demonstrated that there are arbitrarily long extremal square-free words over a ternary
alphabet. Two of the present authors [14] adapted their ideas to find all lengths admitting
extremal square-free ternary words.

In this paper, we consider some variations of extremal square-free words, with a focus
on the binary alphabet Σ2 = {0, 1}. We begin by considering extremal overlap-free
words, as suggested by Grytczuk et al. [11]. For a word w over a fixed alphabet Σ, we
say that w is extremal overlap-free if w is overlap-free, and every extension of w contains
an overlap. For example, the word 0010011011 of length 10 is an extremal overlap-free
word of minimum length over Σ2.

While there is an extremal square-free ternary word of every sufficiently large length,
the same cannot be said for extremal overlap-free binary words. Our first main result is
the following characterization of the lengths of extremal overlap-free binary words.

Theorem 1. Let n be a nonnegative number. Then there is an extremal overlap-free word
of length n over the alphabet Σ2 if and only if n is in the set

N := {10, 12} ∪ {2k : k > 10} ∪
{

2k + 1: k > 5
}
∪
{

3 · 2k + 1: k > 3
}
.

After proving Theorem 1, we consider a more general problem, which we now provide
background for. Let w = w1w2 · · ·wn be a word, where the wi’s are letters. For an integer
p > 1, we say that w has period p if wi+p = wi for all i such that 1 6 i 6 n − p. Note
that w may have many periods; the minimal period of w is called the period of w. The
exponent of w is the length of w divided by the period of w. For a real number b, the
word w is b-free if it contains no factor of exponent greater than or equal to b, and the
word w is b+-free if it contains no factor of exponent greater than b. So 2-free words are
exactly the square-free words, and 2+-free words are exactly the overlap-free words.

For ease of writing, we unify the notions of b-free word and b+-free word by considering
β-free words, where β belongs to the set of “extended real numbers”. Let Rext denote the
set of extended real numbers, consisting of all real numbers, together with all real numbers
with a +, where x+ covers x, and the inequalities y 6 x and y < x+ are equivalent. For
β ∈ Rext, we say that w is β-free if no factor of w has exponent greater than or equal to
β.
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Definition 2. Let w be a word over a fixed alphabet Σ, and let β ∈ Rext. We say that
w is extremal β-free if w is β-free, and every extension of w contains a factor of exponent
greater than or equal to β.

We consider the following problem.

Problem 3. For which β ∈ Rext do there exist arbitrarily long extremal β-free words
over Σ2?

On the affirmative side, by Theorem 1, we know that there are arbitrarily long extremal
2+-free words over Σ2. On the negative side, every binary word of length at least 4 contains
a square, so it follows that for all β 6 2, there do not exist arbitrarily long extremal β-free
words over Σ2. We make some further progress on Problem 3 on the affirmative side by
establishing the following theorem.

Theorem 4. Let β ∈ Rext satisfy 2+ 6 β 6 8/3. Then there are arbitrarily long extremal
β-free words over Σ2.

We also make the following conjecture.

Conjecture 5. There is some number α ∈ Rext such that for all β ∈ Rext satisfying
β > α, there are no extremal β-free words over Σ2.

It is possible that Conjecture 5 is true with α = 8/3+, but we have only very weak
computational evidence supporting this. If one could show that Conjecture 5 is true with
α = 8/3+, then it would completely answer Problem 1.3.

The layout of the remainder of the paper is as follows. We prove Theorem 1 in Section 2
and Section 3. We consider the even lengths in Section 2, and the odd lengths in Section 3.
We prove Theorem 4 in Section 4. We conclude with a discussion of some open problems
and conjectures over larger alphabets.

2 Extremal overlap-free words of even length

In this section, we characterize the even lengths for which there are extremal overlap-free
binary words. Throughout the remainder of the paper, we let µ : Σ∗2 → Σ∗2 denote the
Thue-Morse morphism, defined by µ(0) = 01 and µ(1) = 10. The infinite Thue-Morse
word t is the limit of the words obtained by starting with the letter 0 and iterating
the morphism µ, that is, we have t = µω(0). The Thue-Morse word is the prototypical
example of a 2-automatic sequence, and this means that the automatic theorem-proving
software Walnut [16] can be used to prove results about factors of the Thue-Morse word.
We begin with a lemma that is used frequently in the rest of the paper.

Lemma 6. Let w ∈ Σ∗2 be an overlap-free word of length at least 10, and write w = w′w′′

with |w′|, |w′′| > 5. Then for every letter a ∈ Σ2, the extension w′aw′′ contains an overlap
of period at most 3 (and hence a factor of exponent at least 7/3).
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Proof. It suffices to check the lemma statement for all overlap-free words in Σ∗2 of length
exactly 10, which is completed easily by computer.

Definition 7. A word w ∈ Σ∗2 is called earmarked if all of the following conditions are
satisfied:

(i) w is overlap-free;

(ii) the length 4 prefix of w is in {0010, 1101}; and

(iii) the length 4 suffix of w is 0100.

The next lemma explains our interest in earmarked words, as it describes a map that
takes every earmarked word of length n > 8 to an extremal overlap-free word of length 2n.
We note that this map was used previously by Cassaigne [4] in counting the overlap-free
binary words. In fact, Cassaigne used the family of nine distinct maps defined by applying
the Thue-Morse morphism and then leaving alone, complementing (i.e., changing from 0

to 1 or vice versa), or removing the first and last letters. While parts of the proof of the
next lemma can be gleaned from the work of Cassaigne, we include the entire proof for
completeness.

Lemma 8. Let u be an earmarked word of length at least 8. Let w be the word obtained
from v = µ(u) by complementing the first and last letters. Then w is both earmarked and
extremal overlap-free.

Proof. Assume that u has prefix 0010; the case that u has prefix 1101 is handled similarly.
So we may write u = 0010u′0100 for some word u′ ∈ Σ∗2. It follows that

w = 11011001µ(u′)01100100

So w has length 4 prefix 1101 and length 4 suffix 0100.
We now show that w is overlap-free. First of all, since u and µ are overlap-free, we see

that v is overlap-free. Now suppose that w contains the overlap x. Since v is overlap-free,
we see that x must be either a prefix or a suffix of w. Assume that x is a prefix of w; the
case that x is a suffix of w is handled similarly. Since the word 11011 may only appear
as a prefix or a suffix of an overlap-free word, we conclude that the period of x is at most
4. But by inspection, there is no such overlap in w.

Finally, we show that w is extremal overlap-free. By Lemma 6, it suffices to check
that every extension of w of the form w′aw′′, where w = w′w′′, a ∈ Σ2, and either |w′| 6 4
or |w′′| 6 4, contains an overlap. We complete this check by inspection.

Lemma 9. Let n > 10 be an integer satisfying n 6≡ 0 (mod 4). Then there is an ear-
marked word of length n.

Proof. We use the automatic theorem-proving software Walnut [16] to show that the Thue-
Morse word t contains a factor u of length n− 4 such that the word u0100 is earmarked.
The interested reader can verify our results in Walnut; the complete code that we used
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Figure 1: The automaton accepting those (n)2 for which the Thue-Morse word contains
a factor v of length n− 4 such that v0100 is earmarked.

can be found in Appendix A. We essentially adapt the predicates used by Clokie, Gabric,
and Shallit [5, Theorem 1].

First, we create a predicate overlap(i, n, p, s) which evaluates to true if the word
u0100 contains an overlap of period p with p > 1 beginning at index i − s, where
u = t[s..s + n − 5]. We use a straightforward modification of the method described by
Clokie, Gabric, and Shallit [5, Proof of Theorem 1] to do so. Next, we create a predicate
earmarked(n, s) which evaluates to true if the word u0100 defined above is earmarked:

(n > 8) ∧ (t[s..s+ 3] ∈ {0010, 1101})
∧ (∀i, p ((p > 1) ∧ (i > s) ∧ (i− s+ 2p < n))⇒ ¬(overlap(i, n, p, s)))

Finally, the predicate

testEarmarked(n) := ∃s earmarked(n, s)

evaluates to true if there is some length n− 4 factor v of the Thue-Morse word such that
v0100 is earmarked. The automaton for testEarmarked(n) is shown in Figure 1. By
inspection, this automaton accepts all integers n > 10 such that n 6≡ 0 (mod 4).

Lemma 10. Let n > 10 be an integer that is not a power of two. Then there is an
earmarked word of length n.

Proof. By Lemma 9, we may assume that n ≡ 0 (mod 4). Since n is not a power of two,
we may write 2k < n < 2k+1 for some k > 3. We proceed by induction on k. If k 6 4,
then n ∈ {12, 20, 24, 28}. It is easily verified by computer that the following words (found
by computer search) are earmarked:

Length 12: 001001100100

Length 20: 00100110100101100100

Length 24: 110110010110100101100100

Length 28: 1101100110100101101001100100
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So we may assume that k > 5. Let m = n/2. Note that m is not a power of two, and
that 10 < 2k−1 < m < 2k. If m 6≡ 0 (mod 4), then there is an earmarked word of length
m by Lemma 9. If m ≡ 0 (mod 4), then there is an earmarked word of length m by
the induction hypothesis. So either way, there is an earmarked word of length m. By
Lemma 8, there is an earmarked word of length 2m = n.

Corollary 11. Let n > 20 be an even integer that is not a power of two. Then there is
an extremal overlap-free word of length n.

Proof. By Lemma 10, there is an earmarked word u of length m = n/2. By Lemma 8,
the word w of length n obtained from µ(u) by complementing the first and last letters is
extremal overlap-free.

Lemma 12. For every integer k > 5, there is an extremal overlap-free word of length 2k.

Proof. Let s = 0µ(0011001)1 = (00101101)2. We claim that the word µ`(s) is extremal
overlap-free for every integer ` > 1. Since s has length 16, the word µ`(s) has length 2`+4,
and hence the theorem statement follows.

Fix ` > 1, and let w = µ`(s). If ` 6 2, then we verify that w is extremal overlap-free by
computer, so we may assume that ` > 3. First note that s is overlap-free, and hence w is
overlap-free. It remains to show that every extension of w contains an overlap. Consider
an extension w′aw′′ of w, where w = w′w′′ and a ∈ Σ2. By Lemma 6, we may assume
that |w′| 6 4 or |w′′| 6 4. We consider several cases.

Case I: |w′| = 0. Note that w begins with the squares µ`(00) and µ`(s). If ` is even,
then µ`(00) ends with a 0, and µ`(s) ends with a 1. If ` is odd, then µ`(00) ends with
a 1, and µ`(s) ends with a 0. So either way, the extensions 0w and 1w both contain an
overlap.

Case II: 1 6 |w′| 6 4. Since ` > 3, we see that w has prefix µ3(0) = 01101001. If
|w′| = 1, then the extension w′0w′′ = 0w contains an overlap by Case I, and the extension
w′1w′′ contains the overlap 111. So we may assume that 2 6 |w′| 6 4. By inspection, the
extension w′aw′′ contains an overlap of period at most 3.

Case III: |w′′| = 0. Note that µ`(s) and µ`(101101) are square suffixes of µ`(s) which
begin in 0 and 1, respectively. So both of the extensions w0 and w1 contain an overlap.

Case IV: 1 6 |w′′| 6 4. Since ` > 3, we see that w has suffix µ3(0) = 01101001 if `
is even, and suffix µ3(1) = 10010110 if ` is odd. Either way, the remainder of the proof
is similar to that of Case II.

Proposition 13. Let n be a nonnegative even number. Then there is an extremal overlap-
free word of length n over the alphabet Σ2 if and only if n ∈ N .

Proof. If n ∈ {0, 2, 4, 6, 8, 14, 16, 18}, then an exhaustive backtracking search shows that
no extremal overlap-free word of length n exists over Σ2. The words 0010011011 and
001001100100, of lengths 10 and 12, respectively, are extremal overlap-free. So suppose
that n > 20. If n is a power of two, then there is an extremal overlap-free word of length
n by Corollary 12. If n is not a power of two, then there is an extremal overlap-free word
of length n by Lemma 11.
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3 Extremal overlap-free words of odd length

In this section, we characterize the odd lengths for which there are extremal overlap-free
binary words. We need two classical results from the theory of overlap-free binary words.
The first is the so-called factorization theorem of Restivo and Salemi [20] (see also [1,
Proposition 1.7.5(a)]).

Theorem 14. Let x ∈ {0, 1}∗ be overlap-free. Then there exist u, v ∈ {ε, 0, 1, 00, 11} and
an overlap-free word y such that x = uµ(y)v. Furthermore, this factorization is unique if
|x| > 7.

Words u and v are conjugates if there exist words x and y such that u = xy and
v = yx, i.e., if they are cyclic shifts of one another. Let w ∈ Σ∗. The circular word
formed from w is the set of all conjugates of w. Thue [2, Proposition 2.13 (Satz 13)]
characterized the circular overlap-free binary words, which also yields a characterization
of the overlap-free binary squares (see also the work of Shelton and Soni [21]).

Define
A = {00, 11, 010010, 101101}

and
A =

⋃
k>0

µk(A).

Theorem 15. The overlap-free binary squares are the conjugates of the words in A.

Remark 16. From Theorems 14 and 15, we deduce that if vv is an overlap-free binary
square of length greater than 6, then vv can be written in exactly one of the following
two forms: vv = µ(zz) or vv = aµ(z)a for some a ∈ {0, 1} and some z ∈ {0, 1}∗.

Proposition 17. Let u be an extremal overlap-free binary word of odd length. Then either
|u| = 2k + 1 or |u| = 3 · 2k + 1 for some k.

Proof. By Theorem 14, we can, without loss of generality, consider two possible forms for
u: either u = µ(y)a or u = bbµ(y)a for some a, b ∈ {0, 1}. If u is extremal overlap-free,
then both ua and ua end in overlaps. Consequently, the word u ends in at least two
distinct squares. Let vv be the longest square suffix of u.

Suppose first that |vv| > 6. By Remark 16, we see that vv = aµ(z)a for some word
z. If vv is a proper factor of µ(y)a, then vv is preceded by a in u; however, since v
ends with a, the word avv is an overlap in u, which is a contradiction. We conclude that
u = aaµ(z)a = avv, and hence that either |u| = 2k + 1 or |u| = 3 · 2k + 1 for some k, as
required.

Now consider the case |vv| 6 6. Since u ends in two distinct squares, these squares
are both conjugates of words in A∪ {0101}, and, since one must be a suffix of the other,
we observe that the only possibilities for these two squares are aa and aaaaaa. However,
aaaaaa is not a suffix of a word of either the form µ(y)a or the form bbµ(y)a. This
contradiction completes the proof.

the electronic journal of combinatorics 27(4) (2020), #P4.42 7



The proof of Lemma 17 tells us that any extremal overlap-free word of odd length can
be obtained from an overlap-free square by adding a single letter at either the beginning
or the end. This led us to the constructions of overlap-free words of odd length given in
the next two lemmas.

Lemma 18. For every integer k > 5, there is an extremal overlap-free word of length
2k + 1.

Proof. Fix k > 5. Let u = (011)−1µk−1(00)011. Note that u is a conjugate of µk−1(00).
In particular, we have that u is a square of length 2k, and by Theorem 15, we see that u
is overlap-free. We claim that the word v = 0u is extremal overlap-free. We first show
that v is overlap-free. Since u is overlap-free, it suffices to show that no prefix of v is an
overlap. Since v has prefix 00100, which never appears again in v, it suffices to check that
u does not begin with an overlap of period at most 4, which is easily done by inspection.

It remains to show that every extension of v contains an overlap. Consider an extension
v′av′′ of v, where v = v′v′′ and a ∈ Σ2. By Lemma 6, we may assume that |v′| 6 4 or |v′′| 6
4. First suppose that |v′| 6 4. Note that v has prefix 0(011)−1µ4(0) = 00100110010110.
By inspection, the extension v′av′′ contains an overlap of period at most 4. Now suppose
that |v′′| 6 4. Since u is a square with first letter 0, and u ends in the square 11, the
extension va contains an overlap. Thus we may assume that 1 6 |v′′| 6 4. If k is even,
then v has suffix µ4(0)011, and by inspection, the extension v′av′′ contains an overlap of
period at most 6. If k is odd, then v has suffix µ4(1)011, and by inspection, the extension
v′av′′ contains an overlap of period at most 6.

Lemma 19. For every integer k > 3, there is an extremal overlap-free word of length
3 · 2k + 1.

Proof. Fix k > 3. Let u = (011)−1µk−1(010010)011. Note that u is a conjugate of
µk−1(010010). In particular, we have that u is a square of length 3·2k, and by Theorem 15,
we see that u is overlap-free. We claim that the word v = 0u is extremal overlap-free. The
remainder of the proof is strictly analogous to the proof of Lemma 18, and is omitted.

We now prove the analogue of Proposition 13 for odd n.

Proposition 20. Let n be a nonnegative odd number. Then there is an extremal overlap-
free word of length n over the alphabet Σ2 if and only if n ∈ N .

Proof. (⇐) Let n ∈ N . Since n is odd, we must have either n = 2k + 1 for some k > 5, or
n = 3 · 2k + 1 for some k > 3. In the former case, there is an extremal overlap-free word
of length n by Lemma 18, and in the latter case, there is an extremal overlap-free word
of length n by Lemma 19.

(⇒) Suppose that there is an extremal overlap-free word of length n over the alphabet
{0, 1}. By Proposition 17, we must have n = 2k + 1 or n = 3 · 2k + 1 for some k. By
exhaustive computer search, there is no extremal overlap-free word of length 2k + 1 for
k 6 4, and no extremal overlap-free word of length 3 ·2k + 1 for k 6 2. Thus, we conclude
that n ∈ N .

Together, Proposition 13 and Proposition 20 give Theorem 1.
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4 Extremal β-free binary words

This section is devoted to the proof of Theorem 4. Another definition facilitates our proof
method.

Definition 21. Let w be a word over a fixed alphabet Σ, and let α, β ∈ Rext satisfy
1 < α 6 β. We say that w is (α, β)-extremal if w is α-free, and every extension of w
contains a factor of exponent greater than or equal to β.

If w is (α, β)-extremal, then for any γ ∈ Rext such that α 6 γ 6 β, the word w is
extremal γ-free. Thus, the following result immediately implies Theorem 4.

Proposition 22. All of the following hold.

(a) There are arbitrarily long (2+, 7/3)-extremal binary words.

(b) There are arbitrarily long (7/3+, 17/7)-extremal binary words.

(c) There are arbitrarily long (17/7+, 5/2)-extremal binary words.

(d) There are arbitrarily long (5/2+, 18/7)-extremal binary words.

(e) There are arbitrarily long (18/7+, 8/3)-extremal binary words.

We prove the first part of Proposition 22 now.

Proof of Proposition 22(a). Let u be a factor of the Thue-Morse word of the form 011v110,
where v is a nonempty word. Note that there are arbitrarily long words of this form. We
claim that the word x = 00µ2(11v11)00 is (2+, 7/3)-extremal.

First we show that x is 2+-free (or in other words, overlap-free). Since u is a factor
of the Thue-Morse word, we have that u, and hence µ2(u), are overlap-free. Since the
word µ2(u) contains the word 0µ2(11v11)0 as a factor, any overlap contained in x must
be either a prefix or a suffix of x. Suppose without loss of generality that x contains an
overlap z as a prefix. Since the factor 00100 does not appear in the Thue-Morse word,
this factor appears only as a prefix and a suffix of x. So z must have period at most 4.
But this is impossible by inspection.

It remains to show that every extension of x contains a factor of exponent at least
7/3. Consider an extension x′ax′′ of x, where x = x′x′′ and a ∈ Σ2. By Lemma 6, we
may assume that |x′| 6 4 or |x′′| 6 4. First suppose that |x′| 6 4. Note that x has prefix
00µ2(11) = 0010011001. By inspection, the extension x′ax′′ contains a factor of exponent
at least 7/3. The case that |x′′| 6 4 is handled by a symmetric argument.

One of the main tools that we use to prove Proposition 22 parts (b)-(e) is the following
extension of a lemma due to Ochem [17, Lemma 2.1]. A morphism f : Σ∗ → ∆∗ is called
q-uniform if |f(a)| = q for all a ∈ Σ, and is called synchronizing if for any a, b, c ∈ Σ and
u, v ∈ ∆∗, if f(ab) = uf(c)v, then either u = ε and a = c, or v = ε and b = c.
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Lemma 23. Let a, b ∈ R satisfy 1 < a < b. Let α ∈ {a, a+} and β ∈ {b, b+}. Let
h : Σ∗ → ∆∗ be a synchronizing q-uniform morphism. If h(w) is β-free for every α-free
word w such that

|w| 6 max

{
2b

b− a
,
2(q − 1)(2b− 1)

q(b− 1)

}
,

then h(z) is β-free for every α-free word z ∈ Σ∗.

Proof. Suppose that there is an α-free word w such that the word W = h(w) con-
tains a factor of exponent greater than or equal to β, and assume without loss of gen-
erality that w is a shortest word satisfying this property. We will show that |w| 6
max

{
2b
b−a ,

2(q−1)(2b−1)
q(b−1)

}
, which gives the theorem statement.

Let X be a factor of W of exponent greater than or equal to β. Let P be the period
of X, and write X = UV , where |U | = P . Since X has period P , we can also write
X = V U ′ for some word U ′ ∈ ∆∗. Let R = |V |. Then we have P+R

P
> b, or equivalently

P 6 R
b−1 .

First suppose that R 6 2q − 2 = 2(q − 1). Then we have

|X| = P +R 6 R
b−1 +R =

Rb

b− 1
6

2(q − 1)b

b− 1
.

By the minimality of w, we must have |w| 6 |X|−2
q

+ 2. Putting this together with the

above bound on |X|, we find |w| 6 2(q−1)(2b−1)
q(b−1) .

Now suppose that R > 2q − 1. Write V = V1h(v)V2 for some word v ∈ Σ∗, where the
word V1 is a proper suffix of a block of h, and the word V2 is a proper prefix of a block of
h. Let r = |v|. Since R > 2q − 1, we must have r > 1. Further, since |V1|, |V2| < q, we
have R < qr+ 2q. Similarly, write X = X1h(x)X2 for some word x ∈ Σ∗, where the word
X1 is a proper suffix of a block of h, and the word X2 is a proper prefix of a block of h.
Since X = UV = V U ′, and since h is synchronizing, it must be the case that X1 = V1
and X2 = V2. It follows that we may write x = uv = vu′ for some words u, u′ ∈ Σ∗, i.e.,
the word x has period |u|. Let p = |u|. Note that h(u) = V −11 UV1, so |h(u)| = |U | = P ,
and hence qp = P .

Since w is α-free, we must have p+r
p

6 a, or equivalently r 6 (a− 1)p. Now

qp = P 6
R

b− 1
<
qr + 2q

b− 1
6 q · r + 2

b− 1
6 q · (a− 1)p+ 2

b− 1
,

from which we conclude that p < (a−1)p+2
b−1 , or equivalently, that p < 2

b−a . Finally, by the
minimality of w, we must have

|w| 6 2 + p+ r 6 2 + ap < 2 +
2a

b− a
=

2b

b− a
.

We conclude in either case that |w| 6 max
{

2b
b−a ,

2(q−1)(2b−1)
q(b−1)

}
, as desired.
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We are now ready to prove the remaining parts of Proposition 22. We use the following
terminology in the proof. Let w be a word over a fixed alphabet Σ. A left extension of w
is a word of the form aw, where a ∈ Σ. A right extension of w is a word of the form wa,
where a ∈ Σ. An internal extension of w is a word of the form w′aw′′, where |w′|, |w′′| > 1,
we have a ∈ Σ, and w′w′′ = w.

Proof of Proposition 22(b). Let u ∈ Σ∗3 be a square-free word of length at least 3, and
write u = avb, where a, b ∈ Σ3. Define f : Σ∗3 → Σ∗2 by

f(0) = 001011001101100100110100110110010011

f(1) = 001011001101100100110110010110010011

f(2) = 001011001101100101100100110110010011.

Let r = 1100110010011 and s = 001001. We claim that the word w = rf(v)s is
(7/3+, 17/7)-extremal.

First of all, we verify the following statements by computer for every letter c ∈ Σ3:

• Every internal extension of the word f(c) contains a factor of exponent at least
17/7.

• Every left extension and every internal extension of the word rf(c) contains a factor
of exponent at least 17/7.

• Every right extension and every internal extension of the word f(c)s contains a
factor of exponent at least 17/7.

It now follows easily that every extension of the word w = rf(v)s contains a factor of
exponent at least 17/7. The only extensions of w not checked above are those obtained
by inserting a letter between two blocks of f . Since every block of f begins in 00 and
ends in 11, every such extension contains a cube.

It remains to show that w is 7/3+-free. We first show that f(u) is 7/3+-free. Note that
f is 36-uniform, and we verify by computer that f is synchronizing. Thus, by Lemma 23,
it suffices to check that f(x) is 7/3+-free for every square-free word x ∈ Σ∗3 such that
|x| 6 14, which we verify by computer. Note that every block of f(u) has prefix s′ = 0010

and suffix r′ = 0110010011. So f(u) contains the word w′ = r′f(v)s′, and hence w′ is
7/3+-free. Note that s = s′01 and r = 110r′, so

w = rf(v)s = 110r′f(v)s′01.

Suppose that w contains a factor z of exponent greater than 7/3. Then z begins at one
of the first three letters of w, or ends at one of the last two letters of w. Suppose first that
z begins at one of the first three letters of w. We claim that the factor tr = 00110010011,
which occurs starting at the third letter of w, occurs only once in w. To establish this
claim, we verify the following by computer:

• For every c ∈ Σ3, the word tr occurs exactly once in the word rf(c), and does not
occur in the word f(c)s.
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• For every square-free word y ∈ Σ∗3 of length 2, the word tr does not occur in f(y).

So we see that the period of z is at most 13. However, this possibility is ruled out by
computer check. So we may assume that z ends at one of the last two letters of w. By a
computer check similar to the one used for tr, we verify that the factor ts = 001001100100,
which occurs ending at the second last letter of w, occurs only once in w. So again, we
see that the period of z is at most 13. This possibility is ruled out by computer check.

The proofs of Proposition 22(c)–(e) are similar to the proof of Proposition 22(b), so
we describe the construction used in each of these proofs below, but omit the remaining
details.

Proof of Proposition 22(c). Let u ∈ Σ∗3 be a square-free word of length at least 3, and
write u = avb, where a, b ∈ Σ3. Define f : Σ∗3 → Σ∗2 by

f(0) = 001001100101100100110010110100110010110011011

f(1) = 001001100101100110100101100110110010110011011

f(2) = 001001100101100110100110110011010010110011011.

Let r = 00110110011011 and s = 00100110010011. By a method similar to the one used
in the proof of Proposition 22(b), one can show that the word w = rf(v)s is (17/7+, 5/2)-
extremal.

Proof of Proposition 22(d). Let u ∈ Σ∗3 be a square-free word of length at least 3, and
write u = avb, where a, b ∈ Σ3. Define f : Σ∗3 → Σ∗2 by

f(0) = 0011011001001100101100110110010011

f(1) = 0011011001001101001101100110010011

f(2) = 0011011001001101100110100110010011.

Let r = 00110110011011001010011 and s = 00110101100100110010011. By a method
similar to the one used in the proof of Proposition 22(b), one can show that the word
w = rf(v)s is (5/2+, 18/7)-extremal.

Proof of Proposition 22(e). Let u ∈ Σ∗3 be a square-free word of length at least 3, and
write u = avb, where a, b ∈ Σ3. Define f : Σ∗3 → Σ∗2 by

f(0) = 0011011001001100101100110110010011

f(1) = 0011011001001101100110100110010011

f(2) = 0011011001101001100100110110010011.

Let r = 01101100110110011001010011 and s = 00110101100110010011001001. By a
method similar to the one used in the proof of Proposition 22(b), one can show that the
word w = rf(v)s is (18/7+, 8/3)-extremal.
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5 Conclusion

We close with a discussion of some related problems over larger alphabets. First of all,
we have the following general problem which subsumes Problem 3.

Problem 24. Let n > 2 be an integer. For which β ∈ Rext do there exist arbitrarily long
extremal β-free words over Σn?

For every integer n > 2, let Bn denote the set of all β ∈ Rext such that there exist
arbitrarily long extremal β-free words over Σn. While it seems plausible that Bn is an
interval for every n, it is not immediately obvious to us that this is the case.

We note that Dejean’s theorem gives us a partial answer to Problem 24. The repetition
threshold for n letters, denoted RT(n), is defined by

RT(n) = inf{b ∈ R : there are arbitrarily long b-free words over Σn}.

Dejean’s theorem, originally conjectured by Dejean [10], and confirmed through the work
of many authors [10, 8, 7, 9, 19, 6, 15, 18], states that

RT(n) =


2, if n = 2;

7/4, if n = 3;

7/5, if n = 4;

n/(n− 1), if n > 5.

In fact, for every n > 2, it is known that there are only finitely many RT(n)-free words
over n letters, but infinitely many RT(n)+-free words over n letters. Thus, if there are
arbitrarily long extremal β-free words over Σn, then β > RT(n).

Conjecture 25. For every n > 2, there are arbitrarily long extremal RT(n)+-free words
over Σn.

We define the extremal repetition threshold over n letters, denoted ERT(n), by

ERT(n) = sup
{
b ∈ R : there are arbitrarily long extremal b+-free words over Σn

}
.

By Theorem 4, we know that ERT(2) > 8/3. From the work of Grytczuk et al. [11], we
know that ERT(3) > 2. It may be the case that ERT(2) = 8/3 and ERT(3) = 2, but we
have only weak computational evidence supporting this conjecture.

If Conjecture 25 is true, then ERT(n) > RT(n) for every n > 2. We conjecture further
that ERT(n) is finite for every n > 2. In fact, we make the following stronger conjecture,
which subsumes Conjecture 5.

Conjecture 26. Let n > 2 be an integer. Then there is some number αn ∈ Rext such
that for all β ∈ Rext satisfying β > αn, there are no extremal β-free words over Σn.

Finally, we submit the following problem, which appears to be quite difficult.

Problem 27. For every n > 2, find ERT(n) and the smallest number αn for which
Conjecture 26 holds (if the conjecture is true). It is possible that we have αn = ERT(n)+

for every n.
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Appendix A

The free software Walnut used in the proof of Lemma 9 is available at https://github.
com/hamousavi/Walnut, and a manual for its use is [16]. The complete Walnut code used
in the proof of Lemma 9 is given below.

def overlap "(n >=8) & (1 <= p) & (s <= i) & (i+2*p < s+n) &

(Aj ((j>=i)&(j<i+p+1) & (j+p < s+n-4) ) => T[j] = T[j+p]) &

(Aj ((j>=i)&(j<i+p+1) & (j+p = s+n-4) ) => T[j] = @0) &

(Aj ((j>=i)&(j<i+p+1) & (j < s+n-4) & (j+p = s+n-3) ) => T[j] = @1) &

(Aj ((j>=i)&(j<i+p+1) & (j < s+n-4) & (j+p = s+n-2) ) => T[j] = @0) &

(Aj ((j>=i)&(j<i+p+1) & (j < s+n-4) & (j+p = s+n-1) ) => T[j] = @0) &

(Aj ~((j>=i)&(j<i+p+1) & (j = s+n-4) & (j+p = s+n-3))) &

(Aj ~((j>=i)&(j<i+p+1) & (j = s+n-3) & (j+p = s+n-2))) &

(Aj ~((j>=i)&(j<i+p+1) & (j = s+n-3) & (j+p = s+n-1)))":

def earmarked "(n>=8) &

(((T[s]= @0) & (T[s+1]= @0) & (T[s+2]= @1) & (T[s+3]= @0)) |

((T[s]= @1) & (T[s+1]= @1) & (T[s+2]= @0) & (T[s+3]= @1))) &

(Ai,p ((1 <= p) & (s <= i) & (i+2*p < s+n)) => ~($overlap(i,n,p,s)))":

def testEarmarked "Es $earmarked(n,s)":
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