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Abstract

We investigate permutations and involutions that avoid a pattern of length three
and have a unique longest increasing subsequence (ULIS). We prove an explicit for-
mula for 231-avoiders, we show that the growth rate for 321-avoiding permutations
with a ULIS is 4, and prove that their generating function is not rational. We relate
the case of 132-avoiders to the existing literature, raising some interesting questions.
For involutions, we construct a bijection between 132-avoiding involutions with a
ULIS and bidirectional ballot sequences.

Mathematics Subject Classifications: 05A05, 05A15, 05A16, 05A19

1 Introduction

Let p = p1p2 · · · pn be a permutation. An increasing subsequence in p is just a subset
of entries pj1 < pj2 < · · · < pjk so that j1 < j2 < · · · < jk. Note that the positions
j1, j2, · · · , jk are not required to be consecutive.

We say that p has a unique longest increasing subsequence, or ULIS, if p has an
increasing subsequence that is longer than all other increasing subsequences. For instance,
2314 has a ULIS, namely the sequence 234, but p = 246135 does not, since 246, 245, 235,
and 135 are all increasing subsequences of maximal length in p.

Finding the number of all permutations of length n that have a unique longest in-
creasing subsequence appears to be a difficult problem. These numbers are known only
for n 6 15, given by sequence A167995 in the Online Encyclopedia of Integer Sequences
[9].
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In this paper, we instead consider permutations that avoid a given pattern q of length
three that have a ULIS. We say that a permutation p contains the pattern q = q1q2 · · · qk if
there is a k-element set of indices i1 < i2 < · · · < ik so that pir < pis if and only if qr < qs.
If p does not contain q, then we say that p avoids q. For example, p = 3752416 contains
q = 2413, as the first, second, fourth, and seventh entries of p form the subsequence 3726,
which is order-isomorphic to q = 2413. A recent survey on permutation patterns can be
found in [12] and a book on the subject is [2]. The basic facts that we will simply call
well-known are explained in detail in these sources.

If q is any given pattern of length three, then it is well known that the number of
all permutations of length n that avoid q is the Catalan number Cn =

(
2n
n

)
/(n + 1).

As structures counted by the Catalan numbers have been extensively studied, we find
it surprising that the questions discussed in this paper prove to be both difficult and
unexplored. The diverse nature of the results we prove will also be interesting as we will
see that depending on the pattern q, the portion of q-avoiding permutations that have a
ULIS may converge to a positive constant, converge to 0 at a subexponential speed, or
converge to zero at an exponential speed. On the other hand, if q ∈ {123, 132, 213, 321},
then the number of q-avoiding involutions is

(
n
bn/2c

)
, while if q ∈ {231, 312}, then the

number of q-avoiding involutions is 2n−1. We will address q-avoiding involutions with a
ULIS in Section 5.

It is straightforward to see that if p = p1p2 · · · pn has a ULIS, then so does its group-
theoretical inverse p−1, and so does the reverse complement prevc = ((n + 1 − pn) (n +
1 − pn−1) · · · (n + 1 − p1)) of p. Therefore, the six possible choices of q can be reduced
to four, namely 123, 132, 231, and 321, and one of them, 123, leads to a trivial situation
as we will discuss in the last paragraph of this section. The pattern 213 is the reverse
complement of 132, and the pattern 312 is the inverse of 231.

We denote by un(q) the number of permutations of length n that avoid the pattern
q and have a ULIS, with u0(q) = 1, since the empty permutation does have a ULIS.
Similarly, we denote by in(q) the number of q-avoiding involutions of length n which have
a ULIS.

If p avoids 123 and has a ULIS, then that ULIS has to be of length two, if the length
of p is more than 1. Permutations with that property are exactly the permutations with
one non-inversion. Therefore, un(123) = n − 1 for n > 1, and u1(123) = 1. Such a
permutation is an involution if and only if that non-inversion creates two fixed points,
yielding that in(123) = 0 if n > 1 and n is odd, i1(123) = 1, and in(123) = 1 if n is even.

2 The pattern 231

Let p = p1p2 · · · pn be a permutation that avoids 231. Let pi = n. Let L = p1p2 · · · pi−1,
and let R = pi+1 · · · pn. Note that all entries in L must be smaller than all entries of R.
If p has a ULIS, then it is necessary for both L and R to have a ULIS (since increasing
sequences in L or R can be extended to increasing sequences in p).

On the other hand, if L and R both have a ULIS, then the only case in which p fails
to have a ULIS is when R consists of exactly one entry, (which is necessarily the entry
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n− 1). Introducing the ordinary generating function F (z) =
∑

n>0 un(231)zn, this leads
to the generating function identity

F (z) = F (z)z(F (z)− z) + 1.

This yields

F (z) =
1 + z2 −

√
1− 4z + 2z2 + z4

2z
, (1)

showing that the first few numbers un(231), starting with n = 0 are, 1, 1, 1, 2, 5, 13, 35,
97, 275, 794. This is sequence A082582 in the Online Encyclopedia of Integer Sequences
[9]. The dominant singularity of F (z) is close to 0.2956, implying that the exponential
growth rate of the sequence un(231) is the reciprocal of that number, that is, close to
3.383.

The following simple observation will be useful for us one more time in this paper, so
we formally announce it. We say that a pattern is sum indecomposable if it cannot be
cut into two parts so that every entry before the cut is smaller than every entry after the
cut. For instance, q = 3142 is sum indecomposable, but q = 21453 is not as it can be cut
between the entries 1 and 4.

Proposition 1. Let q be a sum indecomposable pattern. Then the limit limn→∞ (un(q))1/n

exists.

Proof. For any positive m and n, the inequality um(q)un(q) 6 um+n(q) holds. Indeed, if
p and r are q-avoiding permutations with a ULIS, then the sum indecomposability of q
implies that so is p⊕ r, that is, the permutation of length m+n that starts with p on the
entries {1, 2, · · · ,m}, then continues with a r-pattern taken on the entries {m + 1,m +
2, · · · ,m + n}. Therefore, by Fekete’s Lemma on superadditive sequences, the limit of

the sequence limn→∞ (un(q))1/n exists.

We know that the limit in Proposition 1 is finite, since it is at most as large as the
analogously defined limit for all q-avoiding permutations, and that is well-known to be
finite.

Proposition 1 and (1) together imply that limn→∞ (un(231))1/n ≈ 3.383. We could
have determined this without Proposition 1, because (1) provided an explicit formula for
F (z). In Section 4, we will not have such a form for the relevant generating function, but
Proposition 1 will still enable us to compute corresponding limit.

3 The pattern 132

From our perspective, the pattern 132 behaves in surprising ways. This leads to some
intriguing questions, and even in the case when the answer to those questions is known,
there is room for simpler proofs.

We say that a permutation p is skew indecomposable if it is not possible to cut p into
two parts so that each entry before the cut is larger than each entry after the cut. For
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instance, p = 3142 is skew indecomposable, but r = 346512 is not as we can cut it into
two parts by cutting between entries 5 and 1, to obtain 3465|12.

If p is not skew indecomposable, then there is a unique way to cut p into nonempty
skew indecomposable strings s1, s2, · · · , s` of consecutive entries so that each entry of si
is larger than each entry of sj if i < j. We call these strings si the skew blocks of p. For
instance, p = 67|435|2|1 has four skew blocks, while skew indecomposable permutations
have one skew block.

There is a well-known bijection ψ from the set of all 132-avoiding permutations of
length n to the set of all plane rooted unlabeled trees on n + 1 vertices. If p is a 132-
avoiding, skew indecomposable permutation of length n, then it necessarily ends in n, so
it is of the form Ln. We then define ψ(p) to be the plane tree whose root has only one
child, and the subtree rooted at that child is precisely ψ(L). If p is a skew decomposable
132-avoiding permutation of length n, then p = B1B2 · · ·Bj, where the Bi are the skew
blocks of p, each of which is necessarily skew indecomposable, and so ends with its largest
entry. Therefore, for all i, the tree ψ(Bi) is a tree in which the root has only one child.
Then ψ(p) is obtained by taking the sequence ψ(B1), ψ(B2), · · ·ψ(Bj) in this order, and
contracting the roots of these j trees into one vertex, which will be the root of ψ(p).

It is then easy to see that the number of longest increasing subsequences of p is equal
to the number of leaves in ψ(p) that are at maximum distance from the root. Then the
following is known.

Theorem 2. Let us select a rooted plane unlabeled tree on n vertices uniformly at random,
and let an,k be the probability that the selected tree has k leaves at maximum distance from
the root. Then

lim
n→∞

an,k = 2−k.

A very general theorem, that contains this result, is Theorem 2 in [8]. An earlier, and
more specific, reference is [7].

Setting k = 1, we get the result that is equivalent to the question we were interested
in.

Corollary 3. The equality

lim
n→∞

un(132)

Cn
=

1

2

holds.

As the proofs of Theorem 2 are probabilistic, it is natural to ask the following question.

Question 4. Is there a direct combinatorial proof of Corollary 3?

The sequence of the numbers un(132) is in the Online Encyclopedia of Integer se-
quences [9], as sequence A152880. Its first few entries, starting with n = 1, are 1, 1, 3, 8,
23, 71, 229, 759, 2566. This numerical evidence raises two interesting questions.

Question 5. Is it true that un(132)/Cn > 0.5 for all n? In other words, is it true that
for all n, there are at least as many 132-avoiding permutations of length n that have a
ULIS as 132-avoiding permutations of length n that do not have a ULIS?
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Needless to say, an injective proof of a positive answer to this question would be
particularly interesting.

Question 6. Is it true that the sequence un(132)/Cn is monotone decreasing for n > 3?

Note that an affirmative answer to Question 6 would imply an affirmative answer to
Question 5, because of the convergence result of Corollary 3.

4 The pattern 321

The case of q = 321 is surprisingly difficult to handle. While we are not able to exhibit an
explicit formula for the numbers un(321), we are able to show that limn→∞ (un(321))1/n =
4, and that the generating function G(z) =

∑
n>0 un(321)zn is not rational.

In what follows, we assume that the reader is familiar with the basic properties of
the Robinson-Schensted (RS) correspondence from the set of all permutations of length
n to the set of pairs of standard Young tableaux of the same shape on n boxes. These
basic properties, which we will call well-known, are discussed in detail in Sagan’s book
[10]. It is well-known that the RS bijection maps 321-avoiding permutations into pairs
of SYT of the same shape that have at most two rows. Note that with slight abuse of
language, we will call the shape of the standard Young tableaux associated to p by the
RS correspondance the shape of p.

A left-to-right maximum in a permutation is an entry that is larger than all entries
on its left, while a right-to-left minimum is an entry that is smaller than all entries on
its right. For instance, in 21354, the left-to-right maxima are 2, 3, and 5, while the
right-to-left minima are 1, 3, and 4.

We are going to prove a lower bound for the number u2m+1(321). Our main tool is a
bijection of Claesson and Kitaev [5]. This bijection, which we will call f , maps the set of all
321-avoiding permutations into the set of sum indecomposable 321-avoiding permutations
as follows.

Let p be a 321-avoiding permutation of length n. Locate all left-to-right maxima on
the right of the entry 1 that are not right-to-left minima, and underline them. Insert a
new maximum entry n+1 immediately to the left of the entry 1, and underline it. Finally,
cyclically translate the set of underlined entries one notch to the left so that n+ 1 becomes
the rightmost underlined entry to get f(p).

Example 7. If p = 35124786, then we underline 7 and 8, and insert 9, to get 359124786.
After a cyclical translation of the underlined entries to the left, we get f(p) = 357124896.

Lemma 8. The map f described above is a bijection from the set of all 321-avoiding
permutations of length n to the set of all sum indecomposable 321-avoiding permutations
of length n+ 1.

Proof. First, consider f(p), where p is 321-avoiding. The only way a 321-pattern is created
by f is if the entry directly before 1 in f(p) introduces a 321-subsequence. However, if
x is the entry of f(p) that lies directly before 1, then it is a left-to-right maximum. So
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there are no entries before it that are greater than it. If two elements less than x appear
after it in descending order, then consider the first of these entries, y. Notice y could not
have been an underlined entry, since it is less than x. So, y would have either been a
right-to-left minimum in p, which contradicts that there is an entry appearing after y that
is smaller, or was not a left-to-right maximum in p, in which case p would have contained
the pattern 321. So f preserves 321-avoidance.

Now, let us assume that f(p) is decomposable. That means that there exists an i so
that the rightmost i entries of f(p) are the largest i entries of f(p), that is, the entries
{n− i + 2, n− i + 3, · · · , n + 1}. This is clearly not possible if the entry n + 1 does not
get moved into one of these last i positions, so we can assume that it does. However, in
that case, one of the last i entries of p gets moved out of one of the last i positions, and
that entry x is a left-to-right maximum that is not a right-to-left minimum. So, there is
a right-to-left minimum y on the right of x that stays in one of the last i positions. This
contradicts the assumption that the rightmost i positions of f(p) contain the i largest
entries of f(p).

In order to prove that f is a bijection, it suffices to show that it has an inverse. And
that is easy, since the set of underlined entries is easy to recover from f(p), by simply
taking the entry immediately on the left of the entry 1, then moving to the right and
selecting all left-to-right maxima that are not right-to-left minima.

The rank of an entry is the length of the longest increasing subsequence ending in that
entry. It follows that entries of the same rank form a decreasing subsequence. Therefore,
in a 321-avoiding permutation, there are at most two entries of each rank.

We will be particularly interested in permutations of shape (m,m). It is well-known
that the number of standard Young tableaux of shape (m,m) is the Catalan number
Cm =

(
2m
m

)
/(m+ 1), and therefore, the number of permutations of shape (m,m) is C2

m.
If the permutation p has shape (m,m), then each entry has rank at most m, and there

are no decreasing subsequences of length three or more, so p has exactly two entries of
each rank i. Let us denote the leftmost entry of rank i by Ai and the rightmost entry of
rank i by Bi. Then Ai is a left-to-right maximum, and Bi is a right-to-left minimum. For
shortness, we will refer to the Ai as the large entries and the Bi as the small entries.

Example 9. If p = 351624, then A1 = 3, B1 = 1, A2 = 5, B2 = 2, A3 = 6, and B3 = 4.

The following property of the map f is crucial for us.

Proposition 10. Let p be a permutation of shape (m,m). Then f does not increase the
rank of any entry. That is, the rank of the entry j in f(p) is at most as large as the rank
of the entry j in p.

Proof. First, let us prove the statement for large entries. If Ai is a large entry in p, then
f(p) either keeps Ai fixed, or moves Ai to the left. So in either case, no entry leapfrogs Ai.
So, the set of entries that are on the left of Ai that are smaller than Ai does not acquire
any new elements, therefore all increasing subsequences in f(p) that end in Ai are also
increasing subsequences in p that end in Ai.
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Now let us prove the statement for small entries. Let us assume that Bi is a coun-
terexample to our claim with i minimal. That means that in f(p), there is an increasing
subsequence longer than i that ends in Bi. As the small entries are not displaced by f ,
that subsequence must contain a large entry; let Aj be the largest such entry in that sub-
sequence. That means that Aj is the last element of that subsequence before Bi. Then Aj
must have rank at least i, since Bi supposedly has rank larger than i. As the rank of Aj is
not increased by f , that means that Aj has rank i or more in p. That is a contradiction,
since Ai > Bi, so Aj > Bi, and so Aj cannot be part of an increasing subsequence ending
in Bi.

Lemma 11. Let p be a permutation of shape (m,m). Then f(p) has a ULIS.

Proof. Note that the map f does not change the set of right-to-left minima of p, so f(p)
has m right-to-left minima. However, f(p) has m + 1 left-to-right maxima, namely the
m left-to-right maxima of p, and the new maximum entry 2m + 1. So, the left-to-right
maxima form an increasing subsequence of length m+ 1 in f(p). We will prove that this
sequence is the ULIS of p.

Let us assume the contrary, that is, that there is an increasing subsequence of length
m+1 in f(p) that contains at least one small entry. Let Bi be the rightmost small entry in
such a subsequence. Note that this Bi is necessarily (weakly) on the right of 1 as B1 = 1
is the leftmost small entry. By Proposition 10, the rank of Bi in f(p) is at most i. On
the other hand, any increasing subsequence of large entries that are on the right of Bi in
f(p) corresponds to such a subsequence in p, and therefore, is of length at most m − i,
since the largest rank of any entry in p is m. (Note that both in p and f(p), large entries
on the right of Bi are automatically larger than Bi.) This gives the chosen sequence in
f(p) is of length at most m.

As f is injective, Lemma 11 shows that the number of permutations of shape (m+1,m)
that have a ULIS is at least the number of permutations of shape (m,m), that is,

C2
m =

(
2m
m

)2
(m+ 1)2

∼ 42m

m3π
∼ 2

π

4n

n3
, (2)

where n = 2m + 1. Here we used Stirling’s approximation that states that m! ∼(
m
e

)m√
2mπ.

Theorem 12. The equality
lim
n→∞

(un(321))1/n = 4

holds.

Proof. Proposition 1 shows that the limit L in the statement of the theorem exists. On
the other hand, (2) proves that 4 6 L, while the fact that un(321) 6 Cn proves that
L 6 4.

the electronic journal of combinatorics 27(4) (2020), #P4.44 7



Even though we do not know the explicit form of the ordinary generating function
G(z) =

∑
n>0 un(321)zn, we can use the result of Theorem 12 and a method recently used

in [3] to prove that G(z) is not rational.

Theorem 13. The generating function G(z) =
∑

n>0 un(321)zn is not rational.

Proof. A 321-avoiding permutation has a ULIS if and only if all its sum indecomposable
blocks have a ULIS. Let un,1(321) be the number of sum indecomposable 321-avoiding
permutations with a ULIS, and let G1(z) =

∑
n>1 un,1(321)zn. Then the equality

G(z) =
1

1−G1(z)

holds. Let us assume that G(z) is rational, then so is G1(z). Both generating functions
have their dominant singularity at z = 1/4, and, as they are both rational functions, those
singularities are poles, implying that at the pole z = 1/4, the value of both generating
functions goes to infinity. However, as all the coefficients of G1(z) are nonnegative, that
implies that there is a z0 ∈ (0, 1/4) so that G1(z0) = 1. That means that u321(z) has a
singular point at z0 < 1/4, which is a contradiction.

Alternatively, we could argue as follows. Recalling that un(321) 6 Cn for all n, we

can compare the values of G(z) and C(z) =
∑

n>0Cnz
n = 1−

√
1−4z
2z

at their dominant
singularity z0 = 1/4, to see that

G(1/4) 6 C(1/4) = 2 <∞.

Therefore, the point z0 = 1/4 is a singular point of G(z) that is not a pole, so G(z) is not
a rational function.

5 Involutions

5.1 The pattern 231

If p is a 231-avoiding involution, then p also avoids the inverse of 231, that is, the pattern
312. That means that p is a layered permutation, meaning that it consists of a series of
decreasing subsequences of consecutive entries, (the layers), so that the entries decrease
within each layer but increase among the layers, as in 32154876. The only way for such a
permutation to have a ULIS is by having layers of length one only. That happens if and
only if p is the identity permutation, so in(231) = 1 for all n.

5.2 The pattern 132

Consider the usual bijection φ from the set of 132-avoiding permutations of length n to
the set of Dyck paths of semilength n. The latter are lattice paths from (0, 0) to (2n, 0)
consisting of n steps (1, 1), called U(p) steps, and n steps (1,−1), called D(own) steps
that never go below the line y = 0. The bijection φ is constructed inductively. If p is
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skew decomposable, then φ(p) = φ(B1)φ(B2) · · ·φ(Bk), where the Bk are the skew blocks
of p. If p is skew indecomposable, then p is necessarily of the form Ln, and then we set
φ(p) = Uφ(L)D.

A peak in a Dyck path is a point that is immediately preceded by an U step and is
immediately followed by a D step. The height of a peak is its y-coordinate.

The following facts are straightforward to prove by induction.

Proposition 14. Let p be a 132-avoiding permutation. Then p has a ULIS of length k if
and only if φ(p) has a unique peak of maximum height k.

Proposition 15. Let p be a 132-avoiding permutation. Then p is an involution if and
only if φ(p) is symmetric to the vertical line x = n.

Therefore, if p is a 132-avoiding involution of length n so that φ(p) has a unique peak
P of maximum height, then P must be on the vertical line x = n, otherwise it would not
be unique.

Corollary 16. Let n be a positive integer. Then the number of 132-avoiding involutions
of length n which have a ULIS is equal to the number of lattice paths π consisting of
n + 1 steps (each of which are U steps or D steps) so that each prefix and each suffix of
π contains strictly more U steps than D steps.

Proof. If p is a 132-avoiding involution of length n, just prepend the first half of φ(p) with
an U step.

The lattice paths occurring in Corollary 16 have been studied in numerous papers,
such as [4, 6, 13]. The main term of their asymptotic enumeration can be found in [4],
while the most precise enumerative result is proved in [6], where these lattice paths are
called bidirectional ballot sequences, and the number of such paths of length n is denoted
by Bn. The result is that

Bn

2n
∼ 1

4n
+

1

6n2
+O

(
1

n3

)
.

In particular,

in(132) = Bn+1 ∼
2n+1

4(n+ 1)
=

2n−1

n+ 1
.

On the other hand, it is well-known that the total number of 132-avoiding involutions of

length n is In(132) =
(

n
bn/2c

)
∼ 2n ·

√
2
πn

. Therefore, the probability that a 132-avoiding

involution of length n chosen uniformly at random has a ULIS is about
√

π
8n

.

5.3 The pattern 321

A theorem of Schützenberger [1, 11] says that if p is an involution, then the number of fixed
points of p is equal to the number of odd columns in the standard Young tableau P (p)
into which the RS correspondence maps p. Now if p is 321-avoiding, then the columns of
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those tableaux are of length at most two, so all odd columns must be of length 1. Finally,
note that if p = p1p2 · · · pn is an involution, and pi1 < pi2 < · · · < pij is an increasing
subsequence in p, then the sequence i1 < i2 < · · · < ij is also an increasing subsequence
in p = p−1. So, it can be shown the only way for the involution p to have a ULIS is by
having a ULIS consisting of entirely of fixed points.

Let p be a 321-avoiding involution with a ULIS of length k. Then P (p) has at most
two rows, of length k and n− k, with k > n− k. In particular, P (p) has k columns. On
the other hand, as we proved in the previous paragraph, P (p) must have k columns of
length 1. Therefore, all columns of P (p) must be of length 1, so k = n, and p = 12 · · ·n.
This proves that in(321) = 1 for all n.
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