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Abstract

Let G be a graph. We say an r-uniform hypergraph H is a Berge-G if there
exists a bijection φ : E(G) → E(H) such that e ⊆ φ(e) for each e ∈ E(G). Given
a family of r-uniform hypergraphs F and an r-uniform hypergraph H, a spanning
sub-hypergraph H ′ of H is F-saturated in H if H ′ is F-free, but adding any edge
in E(H)\E(H ′) to H ′ creates a copy of some F ∈ F . The saturation number of F
is the minimum number of edges in an F-saturated spanning sub-hypergraph of H.
In this paper, we asymptotically determine the saturation number of Berge stars in
random r-uniform hypergraphs.

Mathematics Subject Classifications: 05C65, 05C35, 05C80

1 Introduction

Given a family of graphs F , a graph G is F-saturated if G does not contain any F ∈ F
as a subgraph, but adding any missing edge to G creates a copy of some F ∈ F . In other
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words, G is F -saturated if and only if it is an edge-maximal F -free graph. The maximum
possible number of edges in a graph G that is F -saturated is known as the Turán number
of F . The study of Turán numbers for various families of graphs is a cornerstone of
extremal combinatorics.

On the other hand, the minimum number of edges in an F -saturated graph with n
vertices, denoted by sat(n,F), is called the saturation number of F . Saturation numbers
were first studied by Erdős, Hajnal and Moon [6] and since then have been researched
extensively. In 1986, Kászonyi and Tuza [9] showed that saturation numbers are always
linear. That is, sat(n, F ) = O(n) for any graph F . In the same paper, they also deter-
mined the saturation number of star K1,s. To be specific, they proved that

sat(n,K1,s) =


(
n− s

2

)
+

(
s

2

)
, if s+ 1 6 n < 3s/2,⌈

(s− 1)n

2
− s2

8

⌉
, if n > 3s/2.

(1)

For more results on graph saturation, we refer the reader to the survey [7].
Graph saturation has been generalized in several natural ways, including studying

other host graphs besides the complete graph, and the saturation number of hypergraphs.
Recall that a hypergraph H = (V (H), E(H)) is a pair consisting of a vertex set V (H),
and a set E(H) of subsets of V (H), the edges of H. An r-uniform hypergraph or simply
r-graph is a hypergraph such that all its edges have size r. Throughout this paper, we
always assume that r > 2 is an integer.

To state our result precisely, we introduce some terminology and notation. Given
a family of r-uniform hypergraphs F and an r-uniform hypergraph H, a spanning sub-
hypergraphH ′ ofH is F-saturated inH ifH ′ is F -free, but adding any edge in E(H)\E(H ′)
to H ′ creates a copy of some F ∈ F . The minimum number of edges in an F -saturated
spanning sub-hypergraph of H is called the saturation number of F , denoted by sat(H,F).

Note that with this general notation, sat(n,F) = sat(K
(r)
n ,F), where K

(r)
n is the complete

r-uniform hypergraph on n vertices.
Let G be a graph. We say an r-uniform hypergraph H is a Berge-G if there exists a

bijection φ : E(G)→ E(H) such that e ⊆ φ(e) for each edge e ∈ E(G). Recently, extremal
problems for Berge hypergraphs have attracted the attention of a lot of researchers, see,
e.g., [3, 2, 4, 5, 8, 13]. In 2018, Austhof and English [2] studied the saturation number of
Berge stars. They proved that

sat(n,Berge-K1,s) = min
a∈[n], (a−1

r−1)6s−2

⌈
(s− 1)(n− a)

r

⌉
+

(
a

r

)
for large n, which generalizes equation (1) to uniform hypergraphs. In 2019, English et
al. [5] proved that sat(n,Berge-F ) = O(n) for any graph F and uniformities 3 6 r 6 5.

In recent years, some classic extremal problems were extended to random analogues.
The random r-uniform hypergraph Hr(n, p) is the probability space of all r-uniform hy-
pergraphs with vertex set [n] := {1, 2, . . . , n}, and each edge is chosen with probability
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p independently of all the other edges. In particular, for r = 2 this model reduces to
the well known Erdős-Rényi random graph G(n, p). In 2017, Korándi and Sudakov [10]
initiated the study of graph saturation in random graphs. More precisely, they proved
that with high probability

sat(G(n, p), Km) = (1 + o(1))n · log1/(1−p) n

for each fixed p ∈ (0, 1). Let us recall that an event holds with high probability (w.h.p.
for short) in G(n, p) if its probability goes to 1 as n tends to infinity. In 2018, Mohamma-
dian and Tayfeh-Rezaie [11] asymptotically determined the saturation number of stars in
random graphs. It is proved that w.h.p.

sat(G(n, p), K1,s) =
(s− 1)n

2
− (1 + o(1))(s− 1) · log1/(1−p) n (2)

for every fixed p ∈ (0, 1), which supplements the early work of Zito [14].
The main goal of this paper is to extend (2) to random hypergraphs. To be specific,

we asymptotically determine the saturation number of Berge stars in random r-uniform
hypergraphs.

Using a similar but more complicated technique than that of [11], we can prove the
main result of this paper.

Theorem 1. Let p ∈ (0, 1) be a fixed number and s > 2. Then w.h.p.

sat(Hr(n, p), Berge-K1,s) =
s− 1

r

(
n− (1 + o(1))

(
r! · log1/(1−p) n

)1/(r−1)
)
.

Note that the proof of Theorem 1 is a combination of Theorem 4 and Theorem 9.
Taking r = 2, we obtain the result of Mohammadian and Tayfeh-Rezaie described in
Equation (2), so Theorem 1 generalizes that result. Let us note that most of our results
are about n tending to infinity, so we tacitly assume that n is large enough throughout
this paper.

2 Lower bound on the saturation number of Berge stars

We start this section with some notation. Let H be a hypergraph and S be a subset of
V (H), the sub-hypergraph of H induced by S is the hypergraph H[S] consisting of all
edges of H that are contained in S. A set X ⊆ V (H) is an independent set of H if X
contains no edges of H. We also denote by αk(H) the maximum cardinality of a subset
S of V (H) such that the maximum degree of H[S] is at most k.

Lemma 2 ([11]). Let X be a binomial random variable with parameters n and p ∈ (0, 1).
Then

P(X 6 s) 6

(
n

s

)
(1− p)n−s

for any s ∈ {0, 1, . . . , n}.
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Lemma 3. Let p ∈ (0, 1) be a fixed number and k > 1. Then w.h.p.

αk(Hr(n, p)) 6 (1 + o(1))
(
r! · log1/(1−p) n

)1/(r−1)
.

Proof. For convenience, we denote q := 1/(1− p) and

i :=
⌈(
r! · logq n+ k(r − 1)! · logq logq n

)1/(r−1)
⌉

+ r − 1. (3)

Let Xi be the number of induced sub-hypergraphs in Hr(n, p) on i vertices with at most
bik/rc edges. For any A ⊆ V (Hr(n, p)) with |A| = i, let YA be the number of edges in
Hr(n, p)[A].

Our first goal is to estimate the expectation E(Xi). By Theorem 2 we have

P(YA 6 bik/rc) 6
( (

i
r

)
bik/rc

)
(1− p)(

i
r)−bik/rc.

Noting that the function

f(x) :=

(
e
(
i
r

)
x

)x

is non-decreasing in x ∈ (0,
(
i
r

)
), we have

P(YA 6 bik/rc) 6

(
e
(
i
r

)
bik/rc

)bik/rc
(1− p)(

i
r)−bik/rc

6

(
re
(
i
r

)
ik

)ik/r

(1− p)(
i
r)−ik/r.

In view of the above inequality, we can give an estimation of E(Xi) as follows:

E(Xi) =
∑

A⊆V (Hr(n,p)), |A|=i

P(YA 6 bik/rc)

6

(
n

i

)(
re
(
i
r

)
ik

)ik/r

(1− p)(
i
r)−ik/r

6
(ne
i

)i(re(i
r

)
ik

)ik/r

(1− p)(
i
r)−ik/r

6

((
er+1+r/k

(1− p)rr−1k

)k

i(r−1)k−rnr(1− p)(
i−1
r−1)

)i/r

.
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To finish the proof, we shall prove that i(r−1)k−rnr(1 − p)(
i−1
r−1) = o(1), and therefore

E(Xi) = o(1). Indeed, by some algebra we have

i(r−1)k−rnr(1− p)(
i−1
r−1) 6

(
2(r! · logq n)1/(r−1)

)(r−1)k−r
nr(1− p)(

i−1
r−1)

6 (2r−1r!)k(logq n)k−1nr(1− p)(i−r+1)r−1/(r−1)!

6
(2r−1r!)k

logq n
,

the last inequality follows from the fact that (1−p)(i−r+1)r−1/(r−1)! 6 n−r(logq n)−k by (3).
Therefore, E(Xi) = o(1).

Finally, by the Markov inequality, P(Xi > 0) 6 E(Xi) = o(1). Hence, w.h.p. Xi =
0, which yields that for any X ⊆ V (Hr(n, p)) with |X| = i, the number of edges of
Hr(n, p)[X] is at least bik/rc+ 1. Hence, the maximum degree ∆ of Hr(n, p)[X] satisfies
i∆ > r(bik/rc+ 1). Consequently,

∆ >
r(bik/rc+ 1)

i
> k.

Therefore, we have

αk(Hr(n, p)) < i = (1 + o(1))
(
r! · log1/(1−p) n

)1/(r−1)
,

completing the proof of Theorem 3.

In view of Theorem 3, we can obtain a lower bound of the saturation number of Berge
stars.

Theorem 4. Let p ∈ (0, 1) be a fixed number and s > 2. Then w.h.p.

sat(Hr(n, p), Berge-K1,s) >
s− 1

r

(
n− (1 + o(1))

(
r! · log1/(1−p) n

)1/(r−1)
)
.

Proof. Let H ′ be a Berge-K1,s-saturated spanning sub-hypergraph of Hr(n, p), and let
A ⊆ V (H ′) be the set of vertices with degree at most s − 2 in H ′. Then each vertex in
V (Hr(n, p))\A is of degree at least s− 1 in H ′. Therefore,

r|E(H ′)| >
∑

v∈V (Hr(n,p))\A

degH′(v) > (s− 1)(n− |A|).

Clearly, H ′[A] = Hr(n, p)[A]. Hence, |A| 6 αs−2(Hr(n, p)). It follows from Theorem 3
that

|E(H ′)| > (s− 1)(n− |A|)
r

>
s− 1

r

(
n− (1 + o(1))

(
r! · log1/(1−p) n

)1/(r−1)
)
,

completing the proof of Theorem 4.
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3 Upper bound on the saturation number of Berge stars

In this section, we will give an upper bound on the saturation number of Berge stars in
random hypergraphs. Before continuing, we need the following lemma.

Lemma 5 ([12]). Let H be a fixed r-uniform hypergraph on n vertices with maximum
degree ∆. There exists a constant C > 0 such that for p = C(lnn/n)1/∆, w.h.p. the
random r-uniform hypergraph Hr(n, p) contains a copy of H.

Lemma 6. Let r > 2 and a =
⌊(
r! · (log1/(1−p) n − 3 · log1/(1−p) log1/(1−p) n)

)1/(r−1)⌋ − 2,
and

Ai =

(
a
i

)(
n−a
a−i

)(
n
a

)
(1− p)(

i
r)
, i > r.

Then limn→∞
∑a

i=r Ai = 0.

Proof. For any r 6 i 6 a, our main goal is to show that Ai 6 Ar. To this end, note that
Ar+1 6 Ar, hence it suffices to show that Ai 6 Ar for i > r + 2.

By simple algebra, we get

Aj+1

Aj

=
(a− j)2

(j + 1)(n− 2a+ j + 1)
· (1− p)(

j
r)−(j+1

r )

6

(
1 +O

(
(log1/(1−p) n)1/(r−1)

n

))
a2(1− p)(

j
r)−(j+1

r )

(j + 1)n
.

Therefore, we obtain

Ai

Ar

=
i−1∏
j=r

Aj+1

Aj

6 (1 + o(1))

(
a2

n

)i−r
r!(1− p)1−(i

r)

i!
.

Noting that e > (1 + 1/j)j for each j ∈ [i], we have i! > ((i+ 1)/e)i > (i/e)i. Therefore,

Ai

Ar

6 r!(1 + o(1))

(
a2

n

)i−r (e
i

)i
(1− p)1−(i

r). (4)

To simplify inequality (4), we need the following claim.

Claim 7. r!
(
i
r

)
6 (i− r)(i+ 2)r−1, where i > r + 2.

Proof of Theorem 7. Assume that i > r + 2, then we have

r!

(
i

r

)
=

i!

(i− r + 2)!
· (i− r + 2)(i− r + 1)

6 (i+ 2)r−2(i− r + 2)(i− r + 1)

6 (i− r)(i+ 2)r−1.
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The last inequality follows from a simple fact that

(i− r)(i+ 2)− (i− r + 2)(i− r + 1) = (r − 1)(i− r)− 2 > 0.

The proof of the claim is completed.

Finally, in view of (4) and Theorem 7 we deduce that

Ai

Ar

6 r!(1− p)(1 + o(1))

(
a2e

ni
(1− p)−(i

r)/(i−r)

)i−r

6 r!(1− p)(1 + o(1))

(
a2e

ni
(1− p)−(i+2)r−1/r!

)i−r

.

Since i 6 a, we have

(1− p)−(i+2)r−1/r! 6
n

(log1/(1−p) n)3
.

Combining these two inequalities, we see

Ai

Ar

6 r!(1− p)(1 + o(1))

(
a2e

i(log1/(1−p) n)3

)i−r

6 1.

It follows that
a∑

i=r

Ai 6 aAr =
a
(
a
r

)(
n−a
a−r

)
(1− p)

(
n
a

) = o(1),

completing the proof of Theorem 6.

An r-uniform hypergraph is nearly-d-regular if every vertex has degree either d or d−1,
and less than r vertices have degree d− 1. A hypergraph H is called linear if every pair
of edges intersects in at most one vertex. The following theorem guarantees the existence
of nearly-regular linear hypergraphs.

Theorem 8 ([2]). Let d > 1 and r > 2. Then for all sufficiently large n, there exists a
nearly-d-regular r-uniform linear hypergraph on n vertices.

Armed with Theorem 5, Theorem 6 and Theorem 8, we are ready to propose our main
result in this section.

Theorem 9. Let p ∈ (0, 1) be a fixed number. Then w.h.p.

sat(Hr(n, p), Berge-K1,s) 6
s− 1

r

(
n− (1 + o(1))

(
r! · log1/(1−p) n

)1/(r−1)
)
.

Proof. For short, we denote H := Hr(n, p) and let

a =
⌊(
r! · (log1/(1−p) n− 3 · log1/(1−p) log1/(1−p) n)

)1/(r−1)⌋− 2.
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Fix a nearly-(s − 1)-regular r-uniform linear hypergraph R on n − a vertices. For any
A ⊆ V (H) with |A| = a, let

XA =

{
1, if A is an independent set in H and R ⊆ H[V (H)\A],

0, otherwise,

and set X :=
∑

A⊆V (H), |A|=aXA.

Our first goal is to show that P(X = 0) = o(1) with high probability. To this end,
note that for any 0 < ε < 1/5 we have

E(XA) > (1− p)(
a
r)(1− ε) (5)

from Theorem 5. By linearity of expectation we deduce that

E(X) >

(
n

a

)
(1− p)(

a
r)(1− ε). (6)

Moreover, for subsets S, T ⊆ V (H) of size a with |S ∩ T | = i, we find that

E(XSXT ) 6 (1− p)2(a
r)−(i

r), (7)

where
(
i
r

)
= 0 if i 6 r − 1.

By the Chebyshev’s inequality (See [1, Theorem 4.3.1]), we have

P(X = 0) 6
Var(X)

E(X)2
=

∑
S, T⊆V (H),
|S|=|T |=a

E(XSXT )− E(XS) · E(XT )

E(X)2
.

It follows from (5) – (7) and Theorem 6 that

P(X = 0) 6
a∑

i=0

∑
S, T⊆V (H),

|S|=|T |=a, |S∩T |=i

E(XSXT )− E(XS) · E(XT )

E(X)2

6

(
n

a

) a∑
i=0

(
a
i

)(
n−a
a−i

)
·
(

(1− p)2(a
r)−(i

r) − (1− p)2(a
r)(1− ε)2

)
(
n
a

)2
(1− p)2(a

r)(1− ε)2

=
a∑

i=0

(
a
i

)(
n−a
a−i

)(
n
a

)
(1− p)(

i
r)
· 1− (1− p)(

i
r)(1− ε)2

(1− ε)2

6 3ε
r−1∑
i=0

(
a
i

)(
n−a
a−i

)(
n
a

) + 2
a∑

i=r

(
a
i

)(
n−a
a−i

)(
n
a

)
(1− p)(

i
r)

= o(1).

Hence, P(X = 0) = o(1). This shows that w.h.p. there is A ⊆ V (H) with |A| = a such
that A is an independent set in H and H[V (H)\A] has a copy of R as a sub-hypergraph.
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Let H ′ be a Berge-K1,s-saturated spanning sub-hypergraph of H such that

H ′[V (H)\A] = R.

Denote by α and β the numbers of vertices of degree s − 1 and s − 2 in H ′[V (H)\A]
respectively, where α + β = n − a and β 6 r − 1. Clearly, the number of edges in H ′

which have nonempty intersection with A and V (H)\A is at most β. Therefore,

r|E(H ′)| 6 α(s− 1) + β(s− 2) + rβ

= (s− 1)(α + β) + (r − 1)β

6 (s− 1)(n− a) + (r − 1)2,

which yields that

|E(H ′)| 6 s− 1

r

(
n− (1 + o(1))

(
r! · log1/(1−p) n

)1/(r−1)
)
,

completing the proof.
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