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Abstract

We prove a recent conjecture of Beisegel et al. that for every positive integer k,
every graph containing an induced Pk also contains an avoidable Pk. Avoidability
generalises the notion of simpliciality best known in the context of chordal graphs.
The conjecture was only established for k ∈ {1, 2} (Ohtsuki et al. 1976, and Beisegel
et al. 2019, respectively). Our result also implies a result of Chvátal et al. 2002,
which assumed cycle restrictions. We provide a constructive and elementary proof,
relying on a single trick regarding the induction hypothesis. In the line of previous
works, we discuss conditions for multiple avoidable paths to exist.

Mathematics Subject Classifications: 05C38, 05C60

1 Introduction

A graph G is chordal if every induced cycle is of length three. A classical result of
Dirac [Dir61] states that every chordal graph has a simplicial vertex, that is, a vertex
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whose neighbourhood is a clique. However, not all graphs exhibit the nice structure of
chordal graphs, and the statement does not extend to general graphs.

1.1 From simplicial vertices to avoidable paths

One way to generalise Dirac’s result is through the following more flexible notion.

Definition 1 (Avoidable vertex). A vertex v in a graph G is avoidable if every induced
path on three vertices with middle vertex v is contained in an induced cycle in G.

Note that in a chordal graph, every avoidable vertex is simplicial. The next theorem
can be inferred from [OCF76, BB98, ACTV15]; see also [BCG+19] for a nice introduction.

Theorem 2. Every graph has an avoidable vertex.

Recently in [BCG+19], the authors considered a generalisation of the concept of avoid-
able vertices to edges, and extended Theorem 2 to that notion.

Definition 3 (Avoidable edge). An edge uv in a graph G is avoidable if every induced
path on four vertices with middle edge uv is contained in an induced cycle in G.

Theorem 4 (Beisegel et al. [BCG+19]). Every graph that has an edge has an avoidable
edge.

This notion naturally generalises to paths, as follows.

Definition 5 (Extension). Given an induced path P in a graph G, an extension of P is
an induced path xPy in G for some vertices x, y.

Definition 6 (Failing). An induced path P in a graph G is failing if there is no induced
cycle of G containing P .

Definition 7 (Avoidable). A path P in a graph G is avoidable if it is induced and has
no failing extension. Given a subgraph G′ of G, we say that P is an avoidable path of G
in G′ if it is avoidable in G and V (P ) ⊆ V (G′).

A graph G is Pk-free if it does not contain a Pk, that is, an induced path on k vertices.
In fact all paths considered in this paper are induced unless specifically stated otherwise.
In [BCG+19] the authors conjecture that for every positive integer k, every graph either
is Pk-free or contains an avoidable path on k vertices. This conjecture is motivated by the
following result of Chvátal et al. [CRS02], which generalises Dirac’s theorem. A C⩾p-free
graph is a graph where every induced cycle has at most p − 1 vertices. The C⩾4-free
graphs are exactly the chordal graphs. Unless specified otherwise, we consider cycles to
be induced.

Theorem 8 (Chvátal et al. [CRS02]). For every positive integer k, every C⩾k+3-free graph
either is Pk-free or contains an avoidable path on k vertices.
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In fact, Theorem 8 originally states the existence of a simplicial path in the class of
C⩾k+3-free graphs. A simplicial path is an induced path with no extension: it is avoidable
by vacuity. Note that these two definitions coincide in such a class, as no cycle on at most
k + 2 vertices can contain the extension of an induced path on k vertices.

Here, we confirm the aforementioned conjecture [BCG+19, Conjecture 1], as follows.

Theorem 9. For every positive integer k, every graph either is Pk-free or contains an
avoidable Pk.

In fact, we prove Theorem 9 using a stronger induction hypothesis, in the exact same
flavour as [CRS02], see Theorem 17 in Section 2.

1.2 Consequences

We point out that the proof of Theorem 9 is self-sufficient, thus this supersedes the
arguments for theorems 2, 4 and 8.

By using ingredients of Theorem 17 (namely Lemma 15), we obtain a way to build more
than one avoidable Pk. The following corollary follows from Lemma 16 and Theorem 17.

Corollary 10. For every positive integer k, graph G and subset X ⊆ V (G) such that G[X]
is connected, either G−N [X] is Pk-free or there is an avoidable Pk of G in G−N [X].

Two paths Q1 and Q2 are adjacent if there is an edge between a vertex of Q1 and a
vertex of Q2.

Corollary 11. For every positive integer k and graph G, either G does not contain two
non-adjacent Pk, or it contains two non-adjacent avoidable Pk.

Proof. Let Q1 and Q2 be two non-adjacent Pk. By Corollary 10, either G − N [Q1] is
Pk-free or there is an avoidable Pk of G in G − N [Q1]. The first outcome is ruled out
by the existence of Q2. Let Q′

2 be an avoidable Pk of G in G − N [Q1]. We repeat the
argument with Q′

2 instead of Q1, and obtain an avoidable Pk of G in G−N [Q′
2], call it Q′

1.
The two paths Q′

1 and Q′
2 are two non-adjacent avoidable Pk, as desired.

We can also wonder:

Question 12. For every positive integer k, does every graph G either not contain two
disjoint Pk, or contain two disjoint avoidable Pk?

We know the answer to be positive in the case k ∈ {1, 2}, due to [BCG+19, Theorems
3.3 and 6.4]. The answer turns out to be negative in all other cases, as exhibited in the
following counterexample for k ⩾ 3, which consists of a cycle on 2k − 1 vertices with an
added vertex adjacent to two consecutive vertices on the cycle (see Figure 1 for the case
k = 3). This graph contains two disjoint Pk, and it has 2k vertices, so the vertex sets
of any two disjoint Pk are in fact complementary in the graph. Suppose that the graph
contains two disjoint avoidable Pk, and note that each intersects the triangle (otherwise
the complement would not be a path). Since there are three vertices in the triangle,
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Figure 1: A graph that contains two disjoint P3 (in blue and in green) but no two disjoint
avoidable P3 (there is a unique partition into two disjoint P3, up to symmetry). In red, a
failing extension of the blue path.

there is an avoidable Pk containing a single vertex in the triangle. This Pk has a failing
extension, a contradiction.

In Section 3, we present a concise algorithm which follows the proof of Theorem 17.
As discussed there, the algorithm has complexity O(nk+2) which, while naive, is the right
order of magnitude under ETH.

2 A stronger induction hypothesis

All graphs considered in this paper are finite, simple and undirected. Given a graph G, we
denote by V (G) its set of vertices, and by E(G) ⊆ {{x, y} | x, y ∈ V (G), x ̸= y} its set of
edges. Edges are denoted by uv (or vu) instead of {u, v}. If uv is an edge, then we say that
u and v are adjacent. Given a vertex u, the neighbourhood N(u) of u is the set of vertices
of G that are adjacent to u. The closed neighbourhood N [u] of u is the set N(u)∪{u}. If
X ⊆ V (G), then we define N [X] :=

⋃
x∈X N [x] and N(X) := N [X] \X. The subgraph of

G induced by X, denoted by G[X], is the graph (X,E(G) ∩ {{x, y} | x, y ∈ X, x ̸= y}),
and G − X is the graph G[V (G) \ X]. Given two adjacent vertices u1 and u2 of G, the
graph obtained by merging u1 and u2 is the graph obtained from G by replacing u1 and
u2 with a new vertex u such that N(u) = N({u1, u2}). Given a graph G and two subsets
X and Y of V (G), we say that X dominates Y if every vertex of Y \X has a neighbour
in X (equivalently, if Y ⊆ N [X]).

We first define two useful properties.

Definition 13 (Basic property HB). Given a positive integer k and a graph G, the
property HB(G, k) holds if either G is Pk-free or there is an avoidable Pk in G.

Definition 14 (Refined property HR). Given a positive integer k, a graph G and a
vertex u ∈ V (G), the property HR(G, k, u) holds if either G−N [u] is Pk-free or there is
an avoidable Pk of G in G−N [u].

Given a positive integer k and a graph G, the property HR(G, k) holds if HR(G, k, u)
holds for every u ∈ V (G).
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Note that property HR does not directly imply property HB. We also emphasise the
fact that an avoidable path of a subgraph is not necessarily an avoidable path of the whole
graph.

We now prove a form of heredity in HR.

Lemma 15. Let k be a positive integer, G a graph and u1u2 an edge of G. Let G′ be
the graph obtained from G by merging the two vertices u1 and u2 into one vertex u. If
G′ −N [u] contains a Pk, then HR(G′, k, u) implies HR(G, k, u1).

Proof. Suppose G′−N [u] contains a Pk, and that HR(G′, k, u) holds but not HR(G, k, u1).
Since G′ − N [u] is not Pk-free, there is an avoidable Pk of G′ in G′ − N [u]. Call it Q.
The path Q is contained in G′ − N [u] = G − N [{u1, u2}], so in particular in G − N [u1].
Since HR(G, k, u1) does not hold, Q is not an avoidable Pk of G. Thus, there is a failing
extension xQy of Q in G. Note that x, y, u1, and u2 are all pairwise distinct.

Hence, xQy is an extension of Q in G′, and, since Q is avoidable in G′, there is an
induced cycle C in G′ containing the path xQy. If u ̸∈ V (C), then the cycle C is also an
induced cycle in G containing xQy, a contradiction. Therefore, u ∈ V (C). By replacing
u with either u1, u2 or the edge u1u2 as appropriate, we obtain an induced cycle in G
containing xQy, a contradiction.

This even holds if we consider a connected subset of vertices in a graph instead of a
single edge.

Lemma 16. Let G be a graph and X a subset of its vertices such that G[X] is connected
and G−N [X] contains a Pk. Let G

′ be the graph obtained from G by merging all vertices
of X into a single vertex x. Then HR(G′, k, x) implies that there is an avoidable Pk of G
in G−N [X].

Proof. Suppose HR(G′, k, x) holds but there is no avoidable Pk of G in G−N [X]. Since
G′−N [x] is not Pk-free, there is an avoidable Pk of G′ in G′−N [x], call it Q, that is not
an avoidable Pk of G. Thus, there is a failing extension aQb of Q in G. Note that a, b,
and x are all pairwise distinct.

Hence, aQb is an extension of Q in G′, and, since Q is avoidable in G′, there is an
induced cycle C in G′ containing the path aQb. If x ̸∈ V (C), then the cycle C is also
an induced cycle in G containing aQb, a contradiction. Therefore, x ∈ V (C). Now let
a′, b′ be the two neighbours of x on C. By replacing a′xb′ in C by a shortest a′-b′-path
within X (which exists because G[X] is connected) we obtain an induced cycle C ′ in G
containing aQb, a contradiction.

We are now ready to prove the main technical result of this paper.

Theorem 17. For every positive integer k and every graph G, both properties HB(G, k)
and HR(G, k) hold.

Proof. Suppose the statement is false and consider a counterexample G which is minimal
with respect to the number of vertices.
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Lemma 18. The property HR(G, k) holds for every k.

Proof. We proceed by contradiction. Suppose that HR(G, k, u) does not hold for some
k and some vertex u ∈ V (G), that is, there exists a Pk in G − N [u], and every Pk in
G−N [u] has a failing extension in G. We prove the following.

Claim 19. Every Pk in G−N [u] dominates N(u).

Proof. Assume towards a contradiction that there is a Pk in G − N [u], call it Q, which
is not adjacent to some vertex v ∈ N(u). Then G − N [{u, v}] contains a Pk. Let G′

be the graph obtained from G by merging u and v into a vertex u′. Since G′ has fewer
vertices than G, property HR(G′, k, u′) holds by minimality of G. Then, by Lemma 15,
also HR(G, k, u) holds, a contradiction. ⌟

Let G′ := G − N [u]. Then G′ contains a Pk. As G′ contains fewer vertices than G,
the property HB(G′, k) holds. Let Q be an avoidable Pk of G′. By assumption, Q is not
an avoidable Pk of G. So there is a failing extension xQy of Q in G. Since Q has no
failing extension in G′, we can assume without loss of generality that y ∈ N(u). It follows
that x ̸∈ N(u): otherwise the cycle xQyu contradicts the fact that xQy is failing. By
definition of an extension, xQy is an induced path. Let z be the only neighbour of y in Q,
and let us now consider the path xQ − z (which is the path obtained from Q by first
removing z from one end and then adding x to the other end). It is a Pk, and it does not
intersect N [u]. However, no vertex in it is adjacent to y which lies in N(u), contradicting
Claim 19.

Lemma 20. The property HB(G, k) holds for every k.

Proof. Assume towards a contradiction that for some k, property HB(G, k) does not hold.
By Lemma 18, the property HR(G, k, u) holds for every vertex u ∈ V (G). In other words,
the graph G contains a Pk but no avoidable Pk, and for every vertex u ∈ V (G), either
G−N [u] is Pk-free or there is an avoidable Pk of G in G−N [u].

We derive the following claim.

Claim 21. Every Pk in G dominates V (G).

Proof. Suppose there is a Pk, call it Q, that does not dominate some vertex u of G. Since
HR(G, k) holds, either G−N [u] is Pk-free or there is an avoidable Pk of G in G−N [u].
The first case contradicts the existence of Q, and the second contradicts the fact that
HB(G, k) does not hold. ⌟

Since HB(G, k) does not hold, G contains a Pk, say Q, that is not avoidable. So it has
a failing extension xQy. Let z be the only neighbour of y in Q, and consider the path
xQ − z. It is an induced Pk and none of its vertices is adjacent to y. This contradicts
Claim 21.

Finally, lemmas 18 and 20 together contradict G being a counterexample.

Theorem 9 directly follows from Theorem 17.
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3 An algorithm for Theorem 17

By going through the proof and extracting the key ingredients, we obtain a straightforward
algorithm verifying both properties (see Algorithm 1).

Algorithm 1 Finds an avoidable path of given length in a given connected graph, if any.

1: procedure FindAvoidablePathRefined(G, k, u)
2: for all v ∈ N(u) do
3: if InducedPath(G−N [{u, v}], k) ̸= null then
4: G′ ← G with u and v merged into u′

5: return FindAvoidablePathRefined(G′, k, u′)
6: return FindAvoidablePath(G−N [u], k)

7: procedure FindAvoidablePath(G, k)
8: for all u ∈ V (G) do
9: if InducedPath(G−N [u], k) ̸= null then
10: return FindAvoidablePathRefined(G, k, u)
11: return InducedPath(G, k)

It suffices to consider connected graphs here, because if the graph is not connected,
then its components can be computed in linear time and the algorithm can be run on
the components separately. The algorithm uses the subprocedure InducedPath that,
given a graph G and a positive integer k, decides whether G contains a Pk. If it does,
the procedure returns a Pk, otherwise it returns null. The naive algorithm for that
(testing all subsets of size k) has complexity O(nk). However, this is nearly optimal.
Indeed, the problem of finding a Pk in a given graph is W[1]-hard1 when parametrised by
k (see [CFK+15, Ex. 13.16, p. 460]). In fact, the hinted reduction has a linear blow-up,
so it follows that there is no f(k) · no(k) algorithm under ETH.

Let k be a positive integer, then for n ∈ N+ we define Bk(n) (resp. Rk(n)) to be the
worst case complexity of FindAvoidablePath (resp. FindAvoidablePathRefined)
on an n-vertex graph with parameter k. We have Bk(n) ⩽ n · nk + max(Rk(n), nk), and
Rk(n) ⩽ n · nk + max(Rk(n − 1), Bk(n − 1)) (here the recursive instances are smaller
by one when merging two vertices and smaller by at least 2, when removing the closed
neighbourhood because in a connected graph every vertex has at least one neighbour). We
obtain Rk(n) ∈ O(nk+2) and Bk(n) ∈ O(nk+2 + nk+1). While this may well be improved,
the known limitations for finding an induced path on k vertices also apply for an induced
avoidable path on k vertices (by Theorem 9, if the first exists, then so does the second).
Therefore, the order of magnitude of this naive algorithm is correct.

Note that there is a yet more naive algorithm blindly checking for every subset of size
k if it corresponds to an avoidable path. That algorithm has comparable complexity to
ours (though slightly worse, at least at first sight). However, we wanted to emphasise
that our proof of Theorem 17 is constructive and yields an elementary algorithm. Also,
we believe that it provides an outline of the proof, which might be helpful to the reader.

1see e.g. [CFK+15] for definitions around complexity
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4 Conclusion

Given the discussions in Section 1.2, it is tempting to ask when a graph admits three (or
more) disjoint (resp. pairwise non-adjacent) avoidable paths. Note that though Corol-
lary 10 arms us with sufficient conditions for there to be more than two avoidable Pk,
we do not believe that the corresponding sufficient conditions are necessary. However, it
seems the picture is murky already for chordal graphs.

It is tempting to wonder whether we can obtain another avoidable structure. Though
in some cases the very notion of extension becomes unclear (what should an extension of
a clique be?), it does not seem like any other structure survives the test of chordal graphs
or simple ad hoc constructions – even when allowing a family of graphs instead of fixing
a single pattern (like a path on k vertices). This motivates us to formulate the following
question.

Question 22. Does there exist a family H of connected graphs, not containing any path,
such that any graph is either H-free or contains an avoidable element of H?

The notion of avoidability in this context is deliberately left up to interpretation.
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