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Abstract

We prove the 1991 conjecture by Brightwell and Winkler [BW91] that counting
the number of linear extensions for posets of height two is #P-complete. We further
extend this result to incidence posets of graphs.

Mathematics Subject Classifications: 06A07, 68Q17

1 Introduction

Counting linear extensions (#LE) of a finite poset is a fundamental problem in both
Combinatorics and Computer Science. In 1991, Brightwell and Winkler showed that #LE
is #P-complete [BW91]. They conjectured that the following problem is #P-complete:

#H2LE (Number of linear extensions of height-2 posets)
Input: A partially ordered set P = (X,≺) of height 2.
Output: The number e(P ) of linear extensions.

Here height two means that P has two levels, i.e. no chains of length 3. This problem has
been open for 27 years, most recently reiterated in [Hub14, LS17]. Its solution is the first
result in this paper.

Theorem 1. #H2LE is #P-complete.

Our second result is an extension of Theorem 1. It was proposed recently by Lee
and Skipper in [LS17], motivated by the optimization of nonlinear functions over the
much-studied correlation polytope (see e.g. [DL97, LSS18]).

#IPLE (Number of linear extensions of incidence posets)
Input: A graph G = (V,E).
Output: The number e(IG) of linear extensions of the incidence poset IG.

Here the incidence poset IG is defined as a height 2 posets with vertices V on one level,
edges E on another level, and the inequalities defined by adjacencies in G.
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Theorem 2. #IPLE is #P-complete.

Theorem 2 implies Theorem 1, of course. Formally, the proofs of both results are
independent, but use the same technical ideas of using number theory to to obtain targeted
reductions modulo primes. Since the proof Theorem 1 is both technically and conceptually
simpler, we chose to include both proofs.

Remark 3. The height-2 posets is an important and well studied class of posets. Brightwell
and Winkler write: “We strongly suspect that Linear Extension Count for posets of
height 2 is still #P-complete, but it seems that an entirely different construction is required
to prove this” [BW91]. Incidence posets have also been studied quite intensely. We refer
to recent papers [LS17, TW14] for an overview of the area and further references.

Notation

We assume the reader is familiar with basic definitions on posets, see e.g. [Tro95] and
[Sta97, Ch. 3]. We describe a linear extension of a poset P = (X,≺) on a set X with n
elements informally as an assignment of the values {1, 2, . . . , n} to X, or formally as a
function η : X → {1, 2, . . . , n}, s.t. η(x) < η(y) for all x ≺ y, x, y ∈ X. Finally, we refer
to [MM11, Pap94] for notation, basic definitions and results in computational complexity.

2 Height two posets

Let P = (X,<) be a poset on a set X of n elements {x1, . . . , xn}. Denote by Γ = (X,E)
its comparability graph, with oriented edges (xi, xj) ∈ E if xi < xj in P . Denote by X ′ a
identical copy of X with elements {x′1, . . . , x′n}.

Define the poset Q = (X ∪X ′,≺) on 2n elements, by having xi ≺ x′i for all xi ∈ X,
and xi ≺ x′j for all xi < xj, with xi, xj ∈ X. In particular, the Hasse diagram of Q
consists of n+ |E| edges. Note that Q is a poset of height 2, see Figure 2.

x4

x2 x3

x1

Figure 1: The Hasse diagram of a poset P .

x′1 x′2 x′3 x′4

x1 x2 x3 x4

Figure 2: Poset Q associated to poset P .

For every prime p between n and n2, we construct the modified poset Qp by adding, for
all i and j satisfying 1 6 i 6 n and 1 6 j 6 p−2, the element xij and the relation xij ≺ x′i.
Note that Qp is still of height 2 and has pn elements (see Figure 3).

We will use the numbers of linear extensions of posets Q and Qp, to compute the
number of linear extensions of P . Consider first the number e(Q) of linear extensions
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of Q. Let A ∈
(
[2n]
n

)
, i.e. A is a n-subset of [2n] = {1, 2, . . . , 2n}. Denote by eA(Q) be the

number of linear extensions ` of Q such that `(X ′) = A. In other words, eA(Q) counts
linear extensions that assign values in A to elements of X ′ = {x′1, . . . , x′n}, defined as
above. A linear extension ` of Q is counted in exactly one eA(Q), so we have:

e(Q) =
∑

A∈([2n]
n )

eA(Q).

x′1 x′2 x′3 x′4

x11 x1 x21 x2 x31 x3 x41 x4

Figure 3: Qp for p = 3.

Lemma 4. e(P) = e{2,4,6,...,2n}(Q).

Proof. We construct a bijection Φ explictly from e(P) → e{2,4,6,...,2n}(Q), and give its
inverse Ψ. First, given a linear extension ρ of P , let Φ(ρ) ∈ e{2,4,6,...,2n}(Q) be defined by

Φ(ρ)[xi] = 2ρ[xi]− 1

and
Φ(ρ)[x′i] = 2ρ[xi].

Note that Φ(ρ)[xi] < Φ(ρ)[x′i] for all i, and if xi < xj ∈ P , then

Φ(ρ)[xi] = 2ρ[xi]− 1 < 2ρ[xj]− 1 < 2ρ[xj] = Φ(ρ)[x′j].

Thus Φ(ρ) is indeed a linear extension of Q. Since Φ : e(P)→ e{2,4,6,...,2n}(Q) is injective,
we have e(P) 6 e{2,4,6,...,2n}(Q).

We next give the inverse map Ψ. Given a linear extension η ∈ e{2,4,6,...,2n}(Q) we
construct a linear extension Ψ(η) ∈ e(P). For every xi ∈ P , we set

Ψ(η)[xi] = η[x′i]/2.

For every ρ ∈ e(P) we have Ψ(Φ(ρ)) = ρ, by construction. To complete the proof, we
must show that Φ(Ψ(η)) = η for every η ∈ e{2,4,6,...,2n}(Q), and that Ψ(η) ∈ e(P) for
every η ∈ e{2,4,6,...,2n}(Q), that is, we must show that Ψ(η) is a linear extension of P .

Consider η ∈ e{2,4,6,...,2n}(Q). We will show that η[xi] = η[x′i]−1 for all i with 1 6 i 6 n.
Since

η[X ′] = {2, 4, 6, . . . , 2n}

we must have
η[X] = {1, 3, 5, . . . , 2n− 1}.
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For some x′i ∈ X ′ and for some xj ∈ X, we have η[x′i] = 2n and η[xj] = 2n − 1. For
the relation xj ≺ x′j to be satisfied, we must have η[xj] < η[x′j]. We must therefore
have x′j = 2n, that is, i = j and η[xi] = η[x′i]− 1 for this value of i.

Suppose that for some m we have that η[xi] = η[x′i]− 1 for all xi with η[xi] > 2m. We
have just proved this statement holds for the case m = n − 1. We proceed by induction
on n −m. There exist x′j ∈ X ′ and xk ∈ X with η[x′j] = 2m and η[xk] = 2m − 1. Note
that we cannot have η[x′k] > 2m, since then we would have η[xk] = η[x′k]− 1 > 2m− 1 by
the induction hypothesis. But η[x′k] > η[xk] = 2m− 1, so that we must have η[x′k] = 2m
and η[xj] = η[x′j] − 1. Thus by induction η[xi] = η[x′i] − 1 for all i with 1 6 i 6 n, as
desired.

Applying this result, we have

Φ(Ψ(η))[x′i] = 2Ψ(η)[xi] = η[x′i]

and
Φ(Ψ(η))[xi] = 2Ψ(η)[xi]− 1 = η[x′i]− 1 = η[xi],

so that Φ(Ψ(η)) = η, as desired.
Finally, for every pair xi < xj ∈ P , we have xi ≺ x′j ∈ Q. Then η[xi] < η[x′j],

so that η[xi] + 1 = η[x′i] 6 η[x′j]. Of course η is a bijection so we have η[x′i] < η[x′j].
Thus Ψ(η)[xi] < Ψ(η)[xj], and Ψ(η) is a linear extension of P . We conclude that Φ and Ψ
are inverse maps, which completes the proof.

The above lemma should be compared with the following result:

Lemma 5. e(Qp) ≡ (−1)ne{2,4,6,...,2n}(Q) mod p.

Proof. Throughout the proof of this lemma, we will consider colorings of a set of integers.
A coloring of a set is a function from that set to some list of acceptable colors.

Let A ∈
(
[2n]
n

)
, and write A = {a1, . . . , an}, with a1 < a2 < · · · < an. A coloring of the

set [pn] = {1, 2, . . . , pn} is called A-compatible if the following conditions are satisfied:

1. there is a sequence of 2n integers b1 < · · · < b2n colored black,

2. there are another n colors C1, . . . , Cn, and p − 2 integers are colored with each of
these colors,

3. all of the elements colored with Ck lie before bak .

Let fp(A) be the number ofA-compatible colorings of [pn]. Given a linear extension η ∈
e(Q), we write eη(Qp) for the number of linear extensions of Qp which preserve the
ordering on X ∪X ′ given by η. When η ∈ eA(Q), we claim that

eη(Qp) = fp(A)
(
(p− 2)!

)n
.

Given a linear extension η ∈ eA(Q) and a coloring in fp(A), we can construct
(
(p− 2)!

)n
linear extensions ρ ∈ eη(Qp) as follows. Let

ρ[xi] = bη[xi]
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for all xi ∈ X, and similarly let
ρ[x′i] = bη[x′i]

for all x′i ∈ X ′. Thus ρ[xi] < ρ[xj] if and only if η[xi] < η[xj]. Note that for every
integer k, with 1 6 k 6 n, there is some i with η[x′i] = ak and ρ[x′i] = bak . For the p− 2
elements xij ≺ x′i, assign to ρ[xij] some permutation of the integers with color Ck. This
gives (p− 2)! choices for each k, so the total number of linear extensions ρ preserving the
ordering η for a fixed coloring is

(
(p − 2)!

)n
, as desired. Reversing this procedure gives

a linear extension for every choice of a linear extension η ∈ eA(Q) and an A-compatible
coloring.

We then have, by Wilson’s theorem:

e(Qp) =
∑

A∈([2n]
n )

∑
η∈eA(Q)

eη(Qp)

= ((p− 2)!)n
∑

A∈([2n]
n )

eA(Q)fp(A)

≡
∑

A∈([2n]
n )

eA(Q)fp(A) mod p.

In an A-compatible coloring of {1, 2, . . . , pn}, there are ak− 1 + k(p− 2) terms to the left
of bak colored either black or one of the colors C1, . . . , Ck. Among these terms, we can
choose the position of the elements colored Ck arbitrarily. This gives

fp(A) =
n∏
k=1

(
ak − 1 + k(p− 2)

p− 2

)
.

For A = {2, 4, 6, . . . , 2n}, we have ak = 2k, so this becomes

fp ({2, 4, 6, . . . , 2n}) =
n∏
k=1

(
kp− 1

p− 2

)
≡ (−1)n mod p,

by Lucas’s theorem. For every other A with eA(Q) 6= 0, we have fp(A) ≡ 0 mod p.
Indeed, suppose eA(Q) 6= 0 and consider some η ∈ eA(Q). Then η[x′i] = 2n for some i,
since η[xi] = 2n contradicts xi ≺ x′i. Thus an = 2n. We proceed by induction on n − k.
Suppose that

(ak+1, . . . , an) = (2k + 2, . . . , 2n).

Then for every integer j > ak with j 6∈ (2k+2, . . . , 2n), we have η[xi] = j, for some xi ∈ X.
The relation xi ≺ x′i gives η[x′i] > η[xi] > ak, so that η[x′i] ∈ (2k + 2, . . . , 2n). If we
had ak < 2k, we would then have at least (n − k + 2) possible values of j > ak, but
only (n− k + 1) possible values for η[x′i] to take in (2k + 2, . . . , 2n). Thus either ak = 2k
or ak = 2k + 1.

If ak = 2k + 1, then (
ak − 1 + kp− 2k

p− 2

)
=

(
kp

p− 2

)
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will divide fp(A). By another application of Lucas’s theorem,
(
kp
p−2

)
≡ 0 mod p, so

we have fp(A) ≡ 0 mod p unless ak = 2k. This completes the induction, and we
conclude eA(P)fp(A) ≡ 0 mod p unless A = {2, 4, . . . , 2n}.

We need the following number theory result:

Proposition 6 (see e.g. [BW91, p. 4]). For k > 4, the product of primes between k
and k2 is at least 2kk!.

Proof of Theorem 1. We make an argument based on the Chinese Remainder Theorem
similar to that in [BW91]. Since e(P) 6 n!, the proposition above together with the
Chinese Remainder Theorem shows that computing the residue of e(P) mod p for the
primes p with n 6 p 6 n2 is sufficient to determine e(P). The lemmas above show that we
can compute the residue of e(P) mod p by computing e(Qp). Since #LE is #P-complete,
so is #H2LE.

3 Incidence posets

3.1 Counting incidence posets

Given a graph G = (V,E), we construct its incidence poset IG, with elements correspond-
ing to vertices and edges of G, with x < y in P if and only if x ∈ E, y ∈ V and y is an
endpoint of x. We write e(G) for the number of linear extensions of IG.

Our approach here is similar to our approach in Section 2. We produce, given a
poset P and a prime p > |P|, a graph Gp(P) with:

e (Gp(P)) ≡ (−1)|P| · 8e(P) mod p.

Let G = (V,E) be a graph, with V = {x1, . . . , xn}, and σ ∈ Sn a permutation. Denote
by eσ(G) the number of linear extensions of IG, which satisfy the following condition:
when restricted to V , induce the permutation σ, so that xσ−1(1) 6 xσ−1(2) 6 · · · 6 xσ−1(n).
We have:

e(G) =
∑
σ∈Sn

eσ(G).

Informally, to compute eσ(G) we visit the vertices of G in the order dictated by σ,
accounting for the new edges we meet at each step.

Formally, given a permutation σ ∈ Sn, we produce the sequence {t1, . . . , tn}, where ti
is the number of edges in E with xσ−1(i) as an endpoint, and no endpoint xσ−1(j) for j < i.
Let {u1, . . . , un} be the sequence of partial sums of the ti’s, so that

uk = t1 + . . . + tk .

Note that uk is the total number of edges incident to the set of vertices xσ−1(1), . . . , xσ−1(k).
Let |E| = m. Then we call a coloring of the set {1, 2, . . . ,m+ n} (G, σ)-compatible if

the following conditions are satisfied:

the electronic journal of combinatorics 27(4) (2020), #P4.48 6



1. there is a sequence of n integers b1 < · · · < bn colored black,

2. there are another n colors C1, . . . , Cn, and tk integers are colored with the color Ck ,

3. all of the elements colored with Ck lie before bk .

Let f(G, σ) be the number of (G, σ)-compatible colorings. In such a coloring, there are
uk + k − 1 numbers to the left of bk colored either black or one of the colors C1, . . . , Ck.
Among these terms, we can choose the position of the elements colored Ck arbitrarily.
This gives:

f(G, σ) =
n∏
k=1

(
uk + k − 1

tk

)
.

A (G, σ)-compatible coloring corresponds to a collection of linear extensions of IG counted
by eσ(G). The values assigned to the tk new edges at xσ−1(k) are given by the numbers
colored with Ck, and these values can be assigned in (tk)! ways, so that we have:

e(G) =
∑
σ∈Sn

f(G, σ)
n∏
k=1

(tk)! =
∑
σ∈Sn

n∏
k=1

(tk)!

(
uk + k − 1

tk

)
. (1)

In particular, when we are counting modulo p we can restrict our attention to permuta-
tions σ, which have corresponding sequences {t1, . . . , tn} with ti < p for all i. Informally,
we want to visit each vertex of G in the order given by σ, deleting the edges incident to
each vertex after we visit it, and ensure that no vertex has at least p edges by the time
we visit it.

Now we give the actual construction of Gp(P). The first step is to construct a gad-
get Jp, which is a graph defined as follows. Start with the complete bipartite graph
Kp−1,p−1 on 2p − 2 vertices. Call these vertices y1, . . . , yp−1 and z1, . . . , zp−1 and add an
additional p − 2 edges from zp−1 to zi for 1 6 i < p − 1. Note that each of the yi’s has
degree p− 1 and the zi’s have degree > p (see Figure 4). We need the following:

Lemma 7. e(Jp) ≡ −8 mod p.

We defer the proof of this lemma to the end of this section.
To construct Gp(P), add below Jp the Hasse diagram of P (treated as an undirected

graph). For each element x ∈ P , let vx be the number of elements in P that cover x.
Add p− 1− vx edges from x to the degree p− 1 vertices yi of Jp in an arbitrarily way (see
Figure 5).

Theorem 2 follows immediately from the following:

Lemma 8. e(Gp(P)) ≡ (−1)|P|+1 · 8e(P) mod p

Proof. Every maximal element of P has vx = 0, and so is connected to each of the yi’s
in Jp. Since P has at least one maximal element, every element of Jp has degree > p.
Thus every σ which visits a vertex in Jp before visiting every maximal element of P has
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z1 z2

y1 y2

Figure 4: Jp for p = 3.

z1 z2

y1 y2

x4

x2 x3

x1

Figure 5: Gp(P) for P as in Figure 1 and
p = 3.

a term ti > p, so that eσ(Gp(P)) ≡ 0 mod p. Likewise, of these permutations, every
permutation σ that visits an element of P before visiting all of its immediate predecessors
has eσ(Gp(P)) ≡ 0 mod p.

Thus we can restrict our count of e(Gp(P)) modulo p to permutations that have as
their first n terms a linear extension of P . For these permutations, we have t1 = t2 =
. . . = tn = p− 1, so that (tk)! ≡ −1 mod p by Wilson’s theorem, and(

uk + k − 1

tk

)
=

(
kp− 1

p− 1

)
≡ 1 mod p.

Furthermore, for every k > n, we have t1 + . . .+ tk = np− n+ (tn+1 + · · ·+ tk) + k − 1,
so that (

uk + k − 1

tk

)
≡
(
uk − un + (k − n)− 1

tk

)
mod p.

Now comparing the expressions for e(Gp(P)) and e(Jp) given by (1), we have

e (Gp(P)) ≡ (−1)|P|e(P)e(Jp) mod p,

and Lemma 7 completes the proof.

Proof of Theorem 2. Using the same Chinese Remainder Theorem argument we used in
Section 2, the two lemmas above show that computing e(Gp(P )) for the primes between
|P| and |P|2 is sufficient to determine e(P). Since #LE is #P-Complete, so is #IPLE.

3.2 Proof of Lemma 7

Note that the values tk and uk + k − 1 in (1) are both independent of the order in which
the previous k − 1 vertices are visited. They can be computed solely by identifying
the vertex xσ−1(k) and the collection of vertices {xσ−1(i)}i<k. This motivates the following
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(4, 3, 1)
0
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1
&&

(4, 2, 1)
0
xx

1
&&

(3, 3, 1)
2
xx

2
&&

(4, 1, 1)
0
xx

3
&&

(3, 2, 1)
3
xx

3
&&

(2, 3, 1)
3
xx

3
&&

(4, 0, 1)
1
&&

(3, 1, 1)
4
xx

1
&&

(2, 2, 1)
0
xx

0
&&

(1, 3, 1)
1
xx

4
&&

(3, 0, 1)
3
&&

(2, 1, 1)
0
xx

0
&&

(1, 2, 1)
0
xx

0
&&

(0, 3, 1)
3
xx

(2, 0, 1)
1
&&

(1, 1, 1)
1
xx

1
&&

(0, 2, 1)
1
xx

(1, 0, 1)
0
&&

(0, 1, 1)
0
xx

(0, 0, 1)

Figure 6: The c = 1 half of the directed graph G ′, with weights, for p = 5.

construction. Recall that the induced subgraphs of a graph G are those formed by deleting
some vertices together with all incident edges. Take a directed graph G whose vertices are
the induced subgraphs of Jp and whose edges point from each subgraph to those obtained
from it by deleting a single vertex. Attach to each edge the weight

(tk)!

(
uk + k − 1

tk

)
= (tk)!

(
uk + k − 1

uk − uk−1

)
. (2)

Then e(Jp) is equal to the sum of all weighted paths in G from Jp to the empty subgraph.
Let Jp(a, b, c) be an induced subgraph of Jp with a of the yi’s, b of the zi’s, for 1 6 i <

p− 1, and c = 1 if zp−1 ∈ Jp(a, b, c), c = 0 otherwise, for 0 6 a 6 p− 1 and 0 6 b 6 p− 2.
Since the yi’s, and the zi’s, except for zp−1, are indistinguishable, these subgraphs Jp(a, b, c)
are all of the induced subgraphs of Jp, up to isomorphism.

We can thus reduce our graph of subgraphs G to the graph G ′ containing only these
2p2−2p vertices. We re-weight the edges from Jp(a, b, c) where a, b or c is reduced by one,
by multiplying by a, b or c, respectively. This accounts for the a, b or c choices of vertex
to remove. Write `(a, b, c) for the value of uk−1 + k − 1 upon reaching Jp(a, b, c), that is,
`(a, b, c) is the number of vertices and edges that must be deleted from Jp(p− 1, p− 2, 1)
to give Jp(a, b, c). Then (2) gives the weight of the edge from Jp(a, b, c) to Jp(a − 1, b, c)
in terms of a, b, c and `:

a(b+ c)!

(
`(a, b, c) + b+ c

b+ c

)
= a(b+ c)!

(
`(a− 1, b, c)− 1

`(a− 1, b, c)− `(a, b, c)− 1

)
. (3)
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The equations for the edges from Jp(a, b, c) to Jp(a, b−1, c) and Jp(a, b, c−1) are the same
up to a cyclic permutation of (a, b, c). The total number of edges in Jp is (p−1)2+(p−2) =
p2 − p− 1. The number of edges in Jp(a, b, c) is ab + ac + bc, and we reach Jp(a, b, c) by
deleting (p− 1− a) + (p− 2− b) + (1− c) vertices. We then calculate:

`(a, b, c) = p2 − p− 1 − (ab+ (a+ b)c) + (p− 1− a) + (p− 2− b) + (1− c)
≡ (a+ 2)(p− b− 2) + (c− 1)(a+ b+ 2) mod p.

Lemma 9. When c = 1, (a+ 2)(p− b− 2) > p and (p− a− 2)(b+ 2) > p, every path in
G ′ that visits Jp(a, b, c) has weight zero modulo p.

Proof. We argue by induction on (2p − 3) − (a + b), that is, on the distance in G ′ from
Jp(p − 1, p − 2, 1) to Jp(a, b, c). When a = p − 1, b = p − 2, c = 1, the conditions of the
lemma are not met, and the statement is true vacuously.

Now suppose that a, b, c satisfy the conditions in this lemma. Then a path that visits
Jp(a, b, c) must come from either Jp(a + 1, b, c) or Jp(a, b + 1, c). If the values a + 1, b, c
satisfy the conditions in this lemma, we can then apply the induction hypothesis to show
that every path through Jp(a+ 1, b, c) has weight 0 modulo p. In particular, a path that
includes the edge from Jp(a+ 1, b, c) to Jp(a, b, c) has weight 0 modulo p.

On the other hand, suppose that a+1, b, c do not satisfy the conditions in this lemma.
Then (a+ 3)(p− b− 2) > (a+ 2)(p− b− 2) > p, so we must have (p− a− 3)(b+ 2) 6 p.
Note that if a or b is greater than or equal to p − 2, either (a + 2)(p − b − 2) 6 0 or
(p − a − 2)(b + 2) 6 0. We thus have a, b < p − 2, so that (p − a − 3)(b + 2) = p is
impossible.

However, when (p− a− 3)(b+ 2) < p, since b < p− 2, we have (p− a− 3)(b− 2) >p

(p−a−2)(b+2). Thus, `(a+1, b, c) >p `(a, b, c), and so by (3), the edge from Jp(a+1, b, c)
to Jp(a, b, c) has weight 0 modulo p. The argument for the edge from Jp(a, b + 1, c) to
Jp(a, b, c) is the same by symmetry.

Lemma 10. Given a, b with (b+ 2)(p− a− 2) 6 p the edge from Jp(a, b, 1) to Jp(a, b, 0)
has weight 0 unless a = p − 3 and b = 0, a = p − 2 and b = 0 or 1, or a = p − 1 with
b arbitrary. Similarly, given a, b with (a + 2)(p − b − 2) 6 p, the edge from Jp(a, b, 1) to
Jp(a, b, 0) has weight 0 unless b = p− 3 and a = 0, or b = p− 2 and a = 0 or 1.

Proof. We give the proof of the first statement, since the proof of the second is essen-
tially identical. Permuting (a, b, c) in (3) to find the weight of the edge from Jp(a, b, 1)
to Jp(a, b, 0), we note that we must have a + b < p and a + b <p a + b + `(a, b, 1). Since
`(a, b, 1) ≡ (b+ 2)(p− a− 2) mod p, this gives:

a+ b+ (b+ 2)(p− a− 2) < p.

This implies that

p < a+ 1 + 3
b+1

6 a+ 4.

We conclude that a > p − 4, and the rest of the lemma follows by elementary case
analysis.
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Proof of Lemma 7. Note that the edges from Jp(p− 1, p− 2, 1) to Jp(p− 1, p− 3, 1) and
Jp(p−1, p−2, 0) have weight 0 modulo p. Combining this with the previous two lemmas,
we conclude that every path in G ′ has weight 0 modulo p unless it visits either Jp(p−2, 1, 1)
or Jp(1, p−2, 1). We now complete the desired calculation, through repeated applications
of (3), symmetry, and Wilson’s theorem:

e(Jp(p− 1, p− 2, 1)) ≡ (p− 1)(p− 1)!e
(
Jp(p− 2, p− 2, 1)

)
≡ (p− 2)! (−1)p−3

[
e(Jp(p− 2, 1, 1)) + e

(
Jp(p− 2, 0, 1)

)]
≡ 2e

(
Jp(p− 2, 1, 1)

)
≡ 2 (p− 1)!

[
e
(
Jp(p− 2, 1, 0)

)
+ e

(
Jp(p− 2, 0, 1)

)]
≡ −4e

(
Jp(p− 2, 0, 1)

)
≡ −4 (p− 2)!e

(
Jp(p− 2, 0, 0)

)
− 4 (p− 2) e

(
Jp(p− 3, 0, 1)

)
≡ −4e

(
Jp(p− 2, 0, 0)

)
+ 8

(
p− 1

2

)
e
(
Jp(p− 3, 0, 0)

)
≡ −4 (p− 2)! + 4 (p− 1)(p− 2)(p− 3)!

≡ −8 mod p.

This completes the proof.

4 Polytope of modes

Motivated by probabilistic applications, Montúfar and Rauh [MR16] recently defined the
polytope of modes M(G,X), for every simple graph G = (V,E) and independent subset of
vertices X ⊂ V . The polytope M(G,X) consists of all functions p : V → [0, 1] satisfying∑

v∈V

p(v) = 1

and
p(x) > p(y)

for every pair (x, y) with x ∈ X and (x, y) ∈ E. From the perspective of probability, the
functions p are probability distributions, and the points x are modes of the distribution.
Montúfar and Rauh proved that

volM(G,X) =
vol(∆n)

n!
e
(
PG,X

)
,

where n = |V |, vol(∆n) =
√
n/(n − 1)!, and PG,X is a poset constructed from G

and X [MR16, Prop. 3] (see also [Sta97] for a strongly related order polytope). The
poset PG,X is formed by taking the elements of V together with the relation x < y for
every pair (x, y) with x ∈ X and (x, y) ∈ E. This poset has height 2, with vertices in X

the electronic journal of combinatorics 27(4) (2020), #P4.48 11



on one level and V rX on the other. The authors then discuss the problem of computing
e
(
PG,X

)
.

The following result follows easily from our Theorem 2. Curiously, we learned about
this problem after the paper had been written.

Proposition 11. For every incidence poset IG of a simple graph G = (V,E), there exists
some graph H and some independent set X ⊆ H with PH,X = IG.

Proof. The desired graphH is the medial graph defined as a graph on the set of vertices V ∪
E. The edges of this graph are pairs (v, e) where v is incident to e in G. This graph is
bipartite, so V is an independent set, and we take X = V . Now we note that the
poset PH,X consists of the set V ∪ E together with the relation v < e whenever v is
incident to e, so that PH,X = IG, as desired.

Corollary 12. The problem of computing e
(
PG,X

)
is #P-complete.

Proof. By the proposition, computing e
(
PH,X

)
allows us to compute e(IG) for any graph

G. Applying Theorem 2 completes the proof.
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