Low weight perfect matchings

Stefan Ehard* Elena Mohr Dieter Rautenbach

Institute of Optimization and Operations Research
Ulm University
Germany

{stefan.ehard,elena.mohr,dieter.rautenbach}@uni-ulm.de

Submitted: Nov 3, 2020; Accepted: Dec 8, 2020; Published: Dec 24, 2020
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Answering a question posed by Caro, Hansberg, Lauri, and Zarb, we show
that for every positive integer n and every function o: E(Ky,) — {—1,1} with
0 (E(K4n)) = 0, there is a perfect matching M in K4, with o(M) = 0. Strengthen-
ing the consequence of a result of Caro and Yuster, we show that for every positive
integer n and every function o: E(Ky,) — {—1,1} with |0 (E(K4,))| < n?+11n+2,
there is a perfect matching M in Ky, with |o(M)| < 2. Both these results are best
possible.

Mathematics Subject Classifications: 05C22, 05C70

1 Introduction

In [2] Caro, Hansberg, Lauri, and Zarb considered connected graphs G together with a
function o: E(G) — {—1,1} labeling the edges of G with —1 or +1, and they studied
conditions that imply the existence of different types of spanning trees T with

ecE(T)

where, as usual, for a set E of edges, o(FE) is just the sum of o(e) over all e in E. As
a variation of this problem, they ask whether, for every positive integer n and every
labeling o: E(Ky4,) — {—1,1} of the edges of the complete graph Ky, of order 4n with
o (E(Ky,)) = 0, there is a perfect matching M in Ky, with o(M) = 0. We answer their
question in the affirmative.
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Theorem 1. For every positive integer n and every function o: E(Ky,) — {—1,1} with
o (E(Kyn)) =0, there is a perfect matching M in Ky, with o(M) = 0.

In order to put our result into some wider perspective, we briefly discuss the notion
of local amoebas studied in [2, 3]: A graph G of order n is a local amoeba if, for every
two isomorphic copies H and H' of G in K, there is a sequence Gy, . .., G}, of isomorphic
copies of G in K, such that H = Gy, H' = G, and each G;,; arises from G; by an
edge-replacement, that is, E(Gi11) = (E(G;) \ {e}) U {e'} for some e € E(G;) and €' €
E(K,) \ E(G;). Note that a path P, is an example of a local amoeba, and that local
amoebas are defined by an exchange property that very closely resembles the well-known
exchange property of the bases of a matroid: For every two bases B and B’ of a matroid,
and for every ¢/ € B’ \ B, there is some e € B\ B’ such that (B \ {e}) U {¢’} is again
a basis of the matroid. Now, perfect matchings of a complete graph are a very natural
example of spanning subgraphs that are no local amoebas, and for which, consequently,
the machinery developed in [2] fails. In fact, perfect matchings have the following slightly
weaker exchange property: If M and M’ are two distinct perfect matchings in K, then,
considering an M-M'-alternating cycle defined by their symmetric difference MAM’, it
follows that there are two edges eq, ey in M, one edge €] in M’, and one further edge e,
which might not belong to M U M, such that M"” = (M \ {e1,ea}) U{€], €5} is a perfect
matching in K, for which |M’AM"| is strictly smaller than |M’'AM]|, that is, one can
transform M into M’ by a sequence of exchange operations removing and adding two
edges, and not just one, at every step.

Under the hypothesis of Theorem 1, the existence of a perfect matching M in Ky, with
lo(M)| < 2 already follows from more general results due to Caro and Yuster, cf. The-
orem 1.1 in [4]. More precisely, Caro and Yuster showed that the weaker hypothesis
lo (E(Kyn))| < 2(4n — 1) suffices for the existence of such a perfect matching M with
lo(M)| < 2. As observed in [2], for infinitely many positive integers n, there are functions
0: E(Ky,) — {—1,1} with 0 (E(K4,)) = 4y/n — 2 such that o(M) # 0 for every per-
fect matching M in Ky,. Slightly modifying their construction, we obtain the following
proposition, which implies that Theorem 1 is best possible for infinitely many values of n.

Proposition 2. For infinitely many positive integers n, there is a function o: E(Ky,) —
{=1,1} with o0 (E(Ky4,)) = 2 such that o(M) # 0 for every perfect matching M in Ky,.

Considering the construction in the proof of Proposition 2 suggests that zero weight
perfect matchings are excluded rather by parity reasons than by the value of the imbalance
|0 (E(K4y))| of 0. We confirm this with our second main result showing that much weaker
conditions on the imbalance imply the existence of low weight perfect matchings.

Theorem 3. For all positive integers n and k such that k > 2, and every function
o: BE(Ky,) = {—1,1} with |0 (E(Ky,))| < n(n — 1) + k(6n — 1) + k?, there is a perfect
matching M in Ky, with |o(M)| < 2k — 2.

For k£ = 2, Theorem 3 implies the following strengthening of the above-mentioned
consequence of the result of Caro and Yuster.
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Corollary 4. For every positive integer n and every function o: E(Ky,) — {—1,1} with
lo (E(K4))| < n?+ 11n+ 2, there is a perfect matching M in Ky, with |o(M)| < 2.

Both, Theorem 3 and, hence, also Corollary 4 are best possible. If, for instance,
o: F(Ky4,) — {—1,1} is such that the graph (V(K},),07*(1)) consists of a clique of order
3n + 2 and n — 2 isolated vertices, then |o(M)| > 4 for every perfect matching M in
Ky, while |0 (E(Ky,))| = n? + 11n + 2. In conjunction, Theorem 1, Proposition 2, and
Corollary 4 imply an interesting behavior: If n is a positive integer and o is a +1-labeling
of the edges of Ky,, then, in order to force the existence of a zero weight perfect matching,
one needs to require zero imbalance, that is, |0 (E(Ky,))| = 0, while |o(M)| > 2 for every
perfect matching M in Ky, already forces a quadratic imbalance, that is, |0 (E(K4,))| is
at least quadratic in n.

All proofs are given in the next section.

For a survey concerning related results, we refer the reader to [1] and the introduction

of [2].

2 Proofs

We start with the proof of our first main result.

Proof of Theorem 1. We suppose, for a contradiction, that o: F(K4,) — {—1,1} is such
that o (E(K4,)) = 0 but that o(M) # 0 for every perfect matching M in Ky,. First, we
consider the case n = 1. The edge set of K, is the union of three edge-disjoint perfect
matchings M, Ms, and M3. Since o(M;) # 0 for every i, we obtain o(M;) € {—2,2},
which implies the contradiction o(F(Ky,)) = o(My) + o(Mz) + o(M3) # 0. Hence, we
may assume that n > 2. We call an edge e a plus-edge if o(e) = 1, and a minus-edge if
o(e) = —1. Since o(E(Ky,)) =0,

1/4
there are exactly 5( 271) = 4n* — n plus-edges and minus-edges in Ky,, respectively. (1)

For a matching M, we denote by M+ and M~ the sets of plus-edges and minus-edges in
M, respectively. We choose a perfect matching M in Ky, such that |o(M)] is as small as
possible. Possibly replacing o with —o, we may assume that o(M) > 0. Since M contains
2n edges, (M) is even, which implies (M) > 2.

We start with some easy observations.

Claim 5. For every two edges e in M™ and [ in M, there are no two disjoint minus-
edges between e and f. In particular, there are at most two minus-edges between e and f.

Proof of Claim 5. If there are two disjoint minus-edges ¢’ and f’ between two edges e €
M™* and f € M~, then the perfect matching N = (M \ {e, f}) U {¢, f'} satisfies 0 <
o(N)=0(M)—2< o(M), contradicting the choice of M. O

Claim 6. There are two edges e and f in M™* such that there exists a minus-edge between

e and f.
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Proof of Claim 6. Suppose, for a contradiction, that there is no minus-edge between ver-
tices in V/(M™); that is, more formally, the subgraph of Ky, induced by the set V(M)
of vertices that are incident with a plus-edge from M contains no minus-edge of Ky,. For
mt = |M*|, we have m* > n+ 1. By Claim 5, at least half the 2m™(4n — 2m™) edges
between V(M™T) and V(M ™) are plus-edges, and, hence, the total number of plus-edges
is at least

2m+t 1 . n + 2
9 +§-2m (An—=2m")=[An—1)m" > (4dn —1)(n+ 1) > 4n* —n,

contradicting (1). O

Claim 7. For every two edges ujus and vivy in M, if ujvy is a minus-edge, then usvs
is also a minus-edge. Furthermore, o(M) = 2.

Proof of Claim 7. If ujus and vivy are two edges in M™ such that uyv; is a minus-edge
and ugvy is a plus-edge, then the perfect matching N = (M \ {ujug, vyva}) U {ujvy, ugvy }
satisfies 0 < o(N) = o(M) — 2 < o(M), contradicting the choice of M. This implies
the first part of the statement. Now, suppose, for a contradiction, that o(M) > 2. Since
o(M) is even, we have o(M) > 4. By Claim 6, there are two edges ujus and vyvg in M
such that uyv; and usvy are both minus-edges. Now, the perfect matching N as above
satisfies 0 < o(N) = o(M) — 4 < o(M), contradicting the choice of M. This completes
the proof of the claim. O

Since o(M) = 2, the matching M contains exactly n + 1 plus-edges and n — 1 minus-
edges. We call a perfect matching N in Ky, good if o(N) = o(M). If N is a good
matching, then an edge et in NT is called special if there is no minus-edge between
vertices in V (N1 \ {e'}), that is, all minus-edges between vertices in V(N *) are adjacent
with e™.

We distinguish the following two cases.

Case 1. Every good matching contains a special edge.
Let e* be a special edge in M.

Claim 8. For every edge e in M™*\ {eT}, there exist only minus-edges between e and e.
Proof of Claim 8. Suppose, for a contradiction, that there is a plus-edge between e™ and
some edge e in M\ {eT}. By Claim 7, there are at least two plus-edges between e*

and e. Since e is special, it follows that there are at most 4n — 2 minus-edges between
vertices in V(M ™). Therefore, by Claim 5, the total number of plus-edges is at least

<2n+2

1
) )—(4n—2)+§-(2n—|—2)(2n—2):4n2—n—|—1,

contradicting (1). O
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Claim 9. There is no plus-edge between vertices in V(M ™). Furthermore, there is an edge
e~ in M~ such that there are exactly three plus edges between et and e, and, for every
two edges e in M and €' in M~ with (e,e’) # (e*,e™), there are exactly two plus-edges
between e and €.

Proof of Claim 9. By Claim 8, there are exactly 4n minus-edges between vertices in
V(MT), and, hence, exactly (2”;' 2) — 4n plus-edges between vertices in V(M™). By
Claim 5, there are at least 3 - (2n 4 2)(2n — 2) plus-edges between V(M) and V(M ™).

Since S .
(( n2—i— )—4n) +§-(2n+2)(2n—2):4n2—n—1,

observation (1) implies the existence of exactly one further plus-edge not yet accounted
for.

Suppose, for a contradiction, that V(M ™) contains a plus-edge fi, that is, there are
two edges e; and ey in M~ such that f; lies between e; and e;. Let fs be the edge
between e; and e, that is disjoint from f;. Since, by (1), f; is the only plus-edge between
vertices in V(M™), it follows that f, is a minus-edge. Let es be in M™ \ {e*}, and
let f3 and f; be disjoint minus-edges between ez and e*. Now, the perfect matching
N = (M\A{e",eq,ea,e3}) U{f1, fo, f3, fa} satisfies o(N) = o(M) — 2 = 0, contradicting
the choice of M.

It follows that there is no plus-edge between vertices in V(M ™) and that there are
exactly £ - (2n+2)(2n —2) 41 plus-edges between V(M) and V(M ™). By Claim 5, this
implies that there is an edge ¢ in M and an edge e~ in M~ such that there are exactly
three plus edges between ¢ and e~, and, for every two edges e in M™ and ¢’ in M~ with
(e,e') # (é,e7), there are exactly two plus-edges between e and €’. In order to complete
the proof of the claim, it remains to show that é = e*. Suppose, for a contradiction, that
é # et. Since [M*| =n+1 > 3, there is an edge e; in M T\ {e,é}. Let f; and f, be
two disjoint minus-edges between et and e;, and let f3 and f; be two disjoint plus-edges
between é and e~. The perfect matching N = (M \{e",é,e,e1})U{f1, fo, f3, f1} satisfies
o(N) =o(M) — 2 = 0, contradicting the choice of M. Hence, é = e, which completes
the proof of the claim. O

Let f* and f~ be two disjoint edges between e™ and e~ such that f* is a plus-edge
and f~ is a minus-edge. The perfect matching N = (M \ {eT,e"}) U {fT, f7} satisfies
o(N) = o(M), that is, N is good. By the assumption in Case 1, IV contains a special edge.
Since there are exactly three plus-edges between f* in N* and f~ in N, Claim 9 implies
that f* is a special edge in N. If u~ is such that {u=} = e~ N fT, then Claim 8 implies that
there are only minus-edges between v~ and V(M \{e*}) = V(NT\{f*}). Let f; be the
plus-edge between e and e~ that is not incident with u~. Let e € M*\{e}. Let fy and f3
be two disjoint edges between et Ue™ and e that are disjoint from fi, in particular, f, and
f3 are both minus-edges. Now, the perfect matching M’ = (M \ {e*,e™,e}) U{f1, fo, f3}
satisfies 0(M') = 0(M) —2 = 0, contradicting the choice of M, which completes the proof
in this case.
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Case 2. Some good matching contains no special edge.

In this case, we may assume that the good matching M chosen at the beginning of the
proof contains no special edge.

First, suppose, for a contradiction, that there are two edges e; in M+ and ey in M~ such
that there are two disjoint plus-edges f; and f; between e; and es. Since e; is not a special
edge in M, Claim 7 implies the existence of two edges e3 and e, both in M *\{e; } such that
there are two disjoint minus-edges f3 and f4 between e3 and e4. Now, the perfect matching
N = (M \ {e1,e2,e3,e4}) U{f1, fo, f3, fa} satisfies 0(N) = o(M) — 2 = 0, contradicting
the choice of M. Hence, there are no two such edges as e; and e;. Together with Claim 5
this implies that there are exactly 3 - (2n+2)(2n—2) = 2(n+1)(n—1) plus-edges between
V(M) and V(M~). Consequently, there are exactly - (2n+2)(2n—2) = 2(n+1)(n—1)
minus-edges between V(M ™) and V(M ™).

Next, suppose, for a contradiction, that the number of plus-edges between vertices in
V(M™) is odd. In this case, there are two edges e; and e; in M~ and two disjoint edges fi
and fy between e; and eg such that f; is a plus-edge and f5 is a minus-edge. By Claim 6
and Claim 7, there are two edges e3 and ¢4 in M and two disjoint minus-edges f3 and f;
between es and e;. Again, the perfect matching N = (M \ {e1, e2, e3,e4}) U{ f1, fo, f3, fa}
satisfies o(N) = (M) — 2 = 0, contradicting the choice of M. Hence, the number of
plus-edges between vertices in V(M ™) is even, say equal to 2k for some integer k. By (1),
the number of minus-edges between vertices in V(M) is

2n — 2

(4n* —n) —2(n+1)(n—1) — (( 5 )—ri) =4n + 2k — 1,

which is odd. Nevertheless, by Claim 7, the number of minus-edges between vertices in
V(M) is even, which is a contradiction, and completes the proof. O

The following is based on a construction given at the end of [2].

Proof of Proposition 2. Let n be such that there exists a positive even integer k with
4n = k* + 4. Let (A, B) be a partition of the vertex set of Ky, with [A| = $(k* + k) + 2
and |B| = 3(k? — k) + 2. Now, we define a function o: E(Ky,) — {—1,1} such that all
edges between A and B receive the value 1 and all remaining edges receive the value —1.
Note that

k2—|—k+2 k2—k+2 (R4 (k+3)+4
B 4

o7 (1) = |A] - |B] = (

L f4n 4
2\ 2
and thus,

o (B(Ku)) = o= (1)] = o= (=1)] = (% (42”) + 1) _ (% (42”) _ 1) _
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Now, suppose, for a contradiction, that M is a perfect matching in Ky, with o(M) = 0.
Clearly, M contains n plus-edges between A and B. Hence, the number of vertices in A
that are not covered by a plus-edge in M is

k> +k E+4 k(K
Al —n= 2] — =—(=+1 1.
|A| —n < 5 +> 1 2(2+)+

Since this is an odd number, by construction, not all these vertices can be covered by
minus-edges in M, which is a contradiction, and completes the proof. O

For the proof of our second main result, Theorem 3, we need the following extremal
result about matchings due to Erdés and Gallai [5].

Theorem 10 (Erdés and Gallai [5]). If G is a graph of order 4n with matching number
n — k for some positive integer k, then the number of edges of G is at most ( ) (3";1“)
with equality if and only if G is the complement of the disjoint union of a complete graph

of order 3n + k and n — k isolated vertices.

We proceed to the proof of our second main result.

Proof of Theorem 3. Let o: E(Ky,) — {—1,1} be such that o (E(Ky,)) > 0 and such
that |o(M)| > 2k > 4 for every perfect matching M in Ky,. As observed above, |o(M)] is
even for every perfect matching M in Ky,. Therefore, it remains to show that o (E(Ky,))
is at least the term stated in the theorem.

We distinguish the following two cases.

Case 1. o(M) < 0 for some perfect matching M in Ky, .

We choose a perfect matching M in Ky, with o(M) < 0 such that o(M) is as large as
possible. Since (M) < —2k < —4, we obtain |[M~| > n + k and |[M*| < n — k, where
we use the notation and terminology as in the proof of Theorem 1. The following two
observations correspond to Claim 5 and Claim 6 within the proof of Theorem 1.

If there is an edge e in M and an edge f in M~ such that there are two disjoint
plus-edges ¢’ and f’ between e and f, then the perfect matching N = (M \{e, f})U{¢, f'}
satisfies o(M) < o(N) = o(M) + 2 < 0, contradicting the choice of M. Hence, between
every edge in M and every edge in M, there are at least two minus-edges, which implies
that at least half the edges between V(M™) and V(M) are minus-edges.

If there is no plus-edge between vertices in V(M ™), then there are strictly more minus-
edges than plus-edges, contradicting o (F(Ky,)) = 0. Hence, there are two edges e and
f in M~ such that there exists a plus-edge ¢’ between e and f. Let f’ be the edge
between e and f that is disjoint from ¢’. The perfect matching N = (M \{e, f})U{é, '}
satisfies o(M) < o(N) < o(M) + 4 < —2k + 4 < 0, contradicting the choice of M. This
contradiction completes the proof in this case.

Case 2. o(M) > 0 for every perfect matching M in Ky,.

Note that (M) > 2k for every perfect matching M in Ky,. Let v be the matching
number of the graph G = (V(Ky,),o071(=1)).
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Suppose, for a contradiction, that v > n—k. If M is a maximum matching in G, then
V(G)\ V(M™) is an independent set in G. This implies that there is a matching M* in
(V(Kyn),071(1)) covering all vertices in V(G)\ V(M ™). Note that |MT| = 2n—v < n+k,
and, hence, M~UM™ is a perfect matching in Ky, with o(M-UM™) < —(n—k)+(n+k) =
2k, which is a contradiction. Hence, we have v < n — k.

Let v = n — k' for some integer k' > k. By Theorem 10, we obtain

o (B0 = ()~ 2m0)

5= ((5)- (")
(") - (%)
(" )- ()

=n(n—1)+k(6n — 1)+ k?,

WV

\
)

which completes the proof. O]
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