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Abstract

Answering a question posed by Caro, Hansberg, Lauri, and Zarb, we show
that for every positive integer n and every function σ : E(K4n) → {−1, 1} with
σ (E(K4n)) = 0, there is a perfect matching M in K4nwith σ(M) = 0. Strengthen-
ing the consequence of a result of Caro and Yuster, we show that for every positive
integer n and every function σ : E(K4n)→ {−1, 1} with |σ (E(K4n))| < n2+11n+2,
there is a perfect matching M in K4n with |σ(M)| 6 2. Both these results are best
possible.

Mathematics Subject Classifications: 05C22, 05C70

1 Introduction

In [2] Caro, Hansberg, Lauri, and Zarb considered connected graphs G together with a
function σ : E(G) → {−1, 1} labeling the edges of G with −1 or +1, and they studied
conditions that imply the existence of different types of spanning trees T with

|σ(E(T ))| =
∣∣∣ ∑
e∈E(T )

σ(e)
∣∣∣ 6 1,

where, as usual, for a set E of edges, σ(E) is just the sum of σ(e) over all e in E. As
a variation of this problem, they ask whether, for every positive integer n and every
labeling σ : E(K4n) → {−1, 1} of the edges of the complete graph K4n of order 4n with
σ (E(K4n)) = 0, there is a perfect matching M in K4n with σ(M) = 0. We answer their
question in the affirmative.
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Theorem 1. For every positive integer n and every function σ : E(K4n)→ {−1, 1} with
σ (E(K4n)) = 0, there is a perfect matching M in K4n with σ(M) = 0.

In order to put our result into some wider perspective, we briefly discuss the notion
of local amoebas studied in [2, 3]: A graph G of order n is a local amoeba if, for every
two isomorphic copies H and H ′ of G in Kn, there is a sequence G0, . . . , Gk of isomorphic
copies of G in Kn such that H = G0, H

′ = Gk, and each Gi+1 arises from Gi by an
edge-replacement, that is, E(Gi+1) = (E(Gi) \ {e}) ∪ {e′} for some e ∈ E(Gi) and e′ ∈
E(Kn) \ E(Gi). Note that a path Pn is an example of a local amoeba, and that local
amoebas are defined by an exchange property that very closely resembles the well-known
exchange property of the bases of a matroid: For every two bases B and B′ of a matroid,
and for every e′ ∈ B′ \ B, there is some e ∈ B \ B′ such that (B \ {e}) ∪ {e′} is again
a basis of the matroid. Now, perfect matchings of a complete graph are a very natural
example of spanning subgraphs that are no local amoebas, and for which, consequently,
the machinery developed in [2] fails. In fact, perfect matchings have the following slightly
weaker exchange property: If M and M ′ are two distinct perfect matchings in Kn, then,
considering an M -M ′-alternating cycle defined by their symmetric difference M∆M ′, it
follows that there are two edges e1, e2 in M , one edge e′1 in M ′, and one further edge e′2,
which might not belong to M ∪M ′, such that M ′′ = (M \ {e1, e2}) ∪ {e′1, e′2} is a perfect
matching in Kn for which |M ′∆M ′′| is strictly smaller than |M ′∆M |, that is, one can
transform M into M ′ by a sequence of exchange operations removing and adding two
edges, and not just one, at every step.

Under the hypothesis of Theorem 1, the existence of a perfect matching M in K4n with
|σ(M)| 6 2 already follows from more general results due to Caro and Yuster, cf. The-
orem 1.1 in [4]. More precisely, Caro and Yuster showed that the weaker hypothesis
|σ (E(K4n))| 6 2(4n − 1) suffices for the existence of such a perfect matching M with
|σ(M)| 6 2. As observed in [2], for infinitely many positive integers n, there are functions
σ : E(K4n) → {−1, 1} with σ (E(K4n)) = 4

√
n − 2 such that σ(M) 6= 0 for every per-

fect matching M in K4n. Slightly modifying their construction, we obtain the following
proposition, which implies that Theorem 1 is best possible for infinitely many values of n.

Proposition 2. For infinitely many positive integers n, there is a function σ : E(K4n)→
{−1, 1} with σ (E(K4n)) = 2 such that σ(M) 6= 0 for every perfect matching M in K4n.

Considering the construction in the proof of Proposition 2 suggests that zero weight
perfect matchings are excluded rather by parity reasons than by the value of the imbalance
|σ (E(K4n))| of σ. We confirm this with our second main result showing that much weaker
conditions on the imbalance imply the existence of low weight perfect matchings.

Theorem 3. For all positive integers n and k such that k > 2, and every function
σ : E(K4n) → {−1, 1} with |σ (E(K4n))| < n(n − 1) + k(6n − 1) + k2, there is a perfect
matching M in K4n with |σ(M)| 6 2k − 2.

For k = 2, Theorem 3 implies the following strengthening of the above-mentioned
consequence of the result of Caro and Yuster.
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Corollary 4. For every positive integer n and every function σ : E(K4n)→ {−1, 1} with
|σ (E(K4n))| < n2 + 11n+ 2, there is a perfect matching M in K4n with |σ(M)| 6 2.

Both, Theorem 3 and, hence, also Corollary 4 are best possible. If, for instance,
σ : E(K4n)→ {−1, 1} is such that the graph (V (K4n), σ−1(1)) consists of a clique of order
3n + 2 and n − 2 isolated vertices, then |σ(M)| > 4 for every perfect matching M in
K4n while |σ (E(K4n))| = n2 + 11n + 2. In conjunction, Theorem 1, Proposition 2, and
Corollary 4 imply an interesting behavior: If n is a positive integer and σ is a ±1-labeling
of the edges of K4n, then, in order to force the existence of a zero weight perfect matching,
one needs to require zero imbalance, that is, |σ (E(K4n))| = 0, while |σ(M)| > 2 for every
perfect matching M in K4n already forces a quadratic imbalance, that is, |σ (E(K4n))| is
at least quadratic in n.

All proofs are given in the next section.
For a survey concerning related results, we refer the reader to [1] and the introduction

of [2].

2 Proofs

We start with the proof of our first main result.

Proof of Theorem 1. We suppose, for a contradiction, that σ : E(K4n)→ {−1, 1} is such
that σ (E(K4n)) = 0 but that σ(M) 6= 0 for every perfect matching M in K4n. First, we
consider the case n = 1. The edge set of K4 is the union of three edge-disjoint perfect
matchings M1, M2, and M3. Since σ(Mi) 6= 0 for every i, we obtain σ(Mi) ∈ {−2, 2},
which implies the contradiction σ(E(K4n)) = σ(M1) + σ(M2) + σ(M3) 6= 0. Hence, we
may assume that n > 2. We call an edge e a plus-edge if σ(e) = 1, and a minus-edge if
σ(e) = −1. Since σ(E(K4n)) = 0,

there are exactly
1

2

(
4n

2

)
= 4n2 − n plus-edges and minus-edges in K4n, respectively. (1)

For a matching M , we denote by M+ and M− the sets of plus-edges and minus-edges in
M , respectively. We choose a perfect matching M in K4n such that |σ(M)| is as small as
possible. Possibly replacing σ with −σ, we may assume that σ(M) > 0. Since M contains
2n edges, σ(M) is even, which implies σ(M) > 2.

We start with some easy observations.

Claim 5. For every two edges e in M+ and f in M−, there are no two disjoint minus-
edges between e and f . In particular, there are at most two minus-edges between e and f .

Proof of Claim 5. If there are two disjoint minus-edges e′ and f ′ between two edges e ∈
M+ and f ∈ M−, then the perfect matching N = (M \ {e, f}) ∪ {e′, f ′} satisfies 0 6
σ(N) = σ(M)− 2 < σ(M), contradicting the choice of M .

Claim 6. There are two edges e and f in M+ such that there exists a minus-edge between
e and f .
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Proof of Claim 6. Suppose, for a contradiction, that there is no minus-edge between ver-
tices in V (M+); that is, more formally, the subgraph of K4n induced by the set V (M+)
of vertices that are incident with a plus-edge from M contains no minus-edge of K4n. For
m+ = |M+|, we have m+ > n + 1. By Claim 5, at least half the 2m+(4n − 2m+) edges
between V (M+) and V (M−) are plus-edges, and, hence, the total number of plus-edges
is at least(

2m+

2

)
+

1

2
· 2m+(4n− 2m+) = (4n− 1)m+ > (4n− 1)(n+ 1) > 4n2 − n,

contradicting (1).

Claim 7. For every two edges u1u2 and v1v2 in M+, if u1v1 is a minus-edge, then u2v2
is also a minus-edge. Furthermore, σ(M) = 2.

Proof of Claim 7. If u1u2 and v1v2 are two edges in M+ such that u1v1 is a minus-edge
and u2v2 is a plus-edge, then the perfect matching N = (M \ {u1u2, v1v2}) ∪ {u1v1, u2v2}
satisfies 0 6 σ(N) = σ(M) − 2 < σ(M), contradicting the choice of M . This implies
the first part of the statement. Now, suppose, for a contradiction, that σ(M) > 2. Since
σ(M) is even, we have σ(M) > 4. By Claim 6, there are two edges u1u2 and v1v2 in M+

such that u1v1 and u2v2 are both minus-edges. Now, the perfect matching N as above
satisfies 0 6 σ(N) = σ(M) − 4 < σ(M), contradicting the choice of M . This completes
the proof of the claim.

Since σ(M) = 2, the matching M contains exactly n+ 1 plus-edges and n− 1 minus-
edges. We call a perfect matching N in K4n good if σ(N) = σ(M). If N is a good
matching, then an edge e+ in N+ is called special if there is no minus-edge between
vertices in V (N+ \ {e+}), that is, all minus-edges between vertices in V (N+) are adjacent
with e+.

We distinguish the following two cases.

Case 1. Every good matching contains a special edge.

Let e+ be a special edge in M .

Claim 8. For every edge e in M+ \ {e+}, there exist only minus-edges between e+ and e.

Proof of Claim 8. Suppose, for a contradiction, that there is a plus-edge between e+ and
some edge e in M+ \ {e+}. By Claim 7, there are at least two plus-edges between e+

and e. Since e+ is special, it follows that there are at most 4n − 2 minus-edges between
vertices in V (M+). Therefore, by Claim 5, the total number of plus-edges is at least(

2n+ 2

2

)
− (4n− 2) +

1

2
· (2n+ 2)(2n− 2) = 4n2 − n+ 1,

contradicting (1).
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Claim 9. There is no plus-edge between vertices in V (M−). Furthermore, there is an edge
e− in M− such that there are exactly three plus edges between e+ and e−, and, for every
two edges e in M+ and e′ in M− with (e, e′) 6= (e+, e−), there are exactly two plus-edges
between e and e′.

Proof of Claim 9. By Claim 8, there are exactly 4n minus-edges between vertices in
V (M+), and, hence, exactly

(
2n+2

2

)
− 4n plus-edges between vertices in V (M+). By

Claim 5, there are at least 1
2
· (2n + 2)(2n − 2) plus-edges between V (M+) and V (M−).

Since ((
2n+ 2

2

)
− 4n

)
+

1

2
· (2n+ 2)(2n− 2) = 4n2 − n− 1,

observation (1) implies the existence of exactly one further plus-edge not yet accounted
for.

Suppose, for a contradiction, that V (M−) contains a plus-edge f1, that is, there are
two edges e1 and e2 in M− such that f1 lies between e1 and e2. Let f2 be the edge
between e1 and e2 that is disjoint from f1. Since, by (1), f1 is the only plus-edge between
vertices in V (M−), it follows that f2 is a minus-edge. Let e3 be in M+ \ {e+}, and
let f3 and f4 be disjoint minus-edges between e3 and e+. Now, the perfect matching
N = (M \ {e+, e1, e2, e3}) ∪ {f1, f2, f3, f4} satisfies σ(N) = σ(M) − 2 = 0, contradicting
the choice of M .

It follows that there is no plus-edge between vertices in V (M−) and that there are
exactly 1

2
· (2n+ 2)(2n− 2) + 1 plus-edges between V (M+) and V (M−). By Claim 5, this

implies that there is an edge ê in M+ and an edge e− in M− such that there are exactly
three plus edges between ê and e−, and, for every two edges e in M+ and e′ in M− with
(e, e′) 6= (ê, e−), there are exactly two plus-edges between e and e′. In order to complete
the proof of the claim, it remains to show that ê = e+. Suppose, for a contradiction, that
ê 6= e+. Since |M+| = n + 1 > 3, there is an edge e1 in M+ \ {e+, ê}. Let f1 and f2 be
two disjoint minus-edges between e+ and e1, and let f3 and f4 be two disjoint plus-edges
between ê and e−. The perfect matching N = (M \{e+, ê, e−, e1})∪{f1, f2, f3, f4} satisfies
σ(N) = σ(M) − 2 = 0, contradicting the choice of M . Hence, ê = e+, which completes
the proof of the claim.

Let f+ and f− be two disjoint edges between e+ and e− such that f+ is a plus-edge
and f− is a minus-edge. The perfect matching N = (M \ {e+, e−}) ∪ {f+, f−} satisfies
σ(N) = σ(M), that is, N is good. By the assumption in Case 1, N contains a special edge.
Since there are exactly three plus-edges between f+ in N+ and f− in N−, Claim 9 implies
that f+ is a special edge in N . If u− is such that {u−} = e−∩f+, then Claim 8 implies that
there are only minus-edges between u− and V (M+ \{e+}) = V (N+ \{f+}). Let f1 be the
plus-edge between e+ and e− that is not incident with u−. Let e ∈M+\{e+}. Let f2 and f3
be two disjoint edges between e+∪e− and e that are disjoint from f1, in particular, f2 and
f3 are both minus-edges. Now, the perfect matching M ′ = (M \ {e+, e−, e})∪ {f1, f2, f3}
satisfies σ(M ′) = σ(M)−2 = 0, contradicting the choice of M , which completes the proof
in this case.
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Case 2. Some good matching contains no special edge.

In this case, we may assume that the good matching M chosen at the beginning of the
proof contains no special edge.

First, suppose, for a contradiction, that there are two edges e1 inM+ and e2 inM− such
that there are two disjoint plus-edges f1 and f2 between e1 and e2. Since e1 is not a special
edge in M , Claim 7 implies the existence of two edges e3 and e4 both in M+\{e1} such that
there are two disjoint minus-edges f3 and f4 between e3 and e4. Now, the perfect matching
N = (M \ {e1, e2, e3, e4}) ∪ {f1, f2, f3, f4} satisfies σ(N) = σ(M) − 2 = 0, contradicting
the choice of M . Hence, there are no two such edges as e1 and e2. Together with Claim 5
this implies that there are exactly 1

2
·(2n+2)(2n−2) = 2(n+1)(n−1) plus-edges between

V (M+) and V (M−). Consequently, there are exactly 1
2
·(2n+2)(2n−2) = 2(n+1)(n−1)

minus-edges between V (M+) and V (M−).
Next, suppose, for a contradiction, that the number of plus-edges between vertices in

V (M−) is odd. In this case, there are two edges e1 and e2 in M− and two disjoint edges f1
and f2 between e1 and e2 such that f1 is a plus-edge and f2 is a minus-edge. By Claim 6
and Claim 7, there are two edges e3 and e4 in M+ and two disjoint minus-edges f3 and f4
between e3 and e4. Again, the perfect matching N = (M \ {e1, e2, e3, e4})∪{f1, f2, f3, f4}
satisfies σ(N) = σ(M) − 2 = 0, contradicting the choice of M . Hence, the number of
plus-edges between vertices in V (M−) is even, say equal to 2k for some integer k. By (1),
the number of minus-edges between vertices in V (M+) is

(4n2 − n)− 2(n+ 1)(n− 1)−
((

2n− 2

2

)
− 2k

)
= 4n+ 2k − 1,

which is odd. Nevertheless, by Claim 7, the number of minus-edges between vertices in
V (M+) is even, which is a contradiction, and completes the proof.

The following is based on a construction given at the end of [2].

Proof of Proposition 2. Let n be such that there exists a positive even integer k with
4n = k2 + 4. Let (A,B) be a partition of the vertex set of K4n with |A| = 1

2
(k2 + k) + 2

and |B| = 1
2
(k2 − k) + 2. Now, we define a function σ : E(K4n) → {−1, 1} such that all

edges between A and B receive the value 1 and all remaining edges receive the value −1.
Note that

|σ−1(1)| = |A| · |B| =
(
k2 + k

2
+ 2

)(
k2 − k

2
+ 2

)
=

(k2 + 4)(k2 + 3) + 4

4

=
1

2

(
4n

2

)
+ 1

and thus,

σ (E(K4n)) = |σ−1(1)| − |σ−1(−1)| =
(

1

2

(
4n

2

)
+ 1

)
−
(

1

2

(
4n

2

)
− 1

)
= 2.
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Now, suppose, for a contradiction, that M is a perfect matching in K4n with σ(M) = 0.
Clearly, M contains n plus-edges between A and B. Hence, the number of vertices in A
that are not covered by a plus-edge in M is

|A| − n =

(
k2 + k

2
+ 2

)
− k2 + 4

4
=
k

2

(
k

2
+ 1

)
+ 1.

Since this is an odd number, by construction, not all these vertices can be covered by
minus-edges in M , which is a contradiction, and completes the proof.

For the proof of our second main result, Theorem 3, we need the following extremal
result about matchings due to Erdős and Gallai [5].

Theorem 10 (Erdős and Gallai [5]). If G is a graph of order 4n with matching number
n− k for some positive integer k, then the number of edges of G is at most

(
4n
2

)
−
(
3n+k

2

)
,

with equality if and only if G is the complement of the disjoint union of a complete graph
of order 3n+ k and n− k isolated vertices.

We proceed to the proof of our second main result.

Proof of Theorem 3. Let σ : E(K4n) → {−1, 1} be such that σ (E(K4n)) > 0 and such
that |σ(M)| > 2k > 4 for every perfect matching M in K4n. As observed above, |σ(M)| is
even for every perfect matching M in K4n. Therefore, it remains to show that σ (E(K4n))
is at least the term stated in the theorem.

We distinguish the following two cases.

Case 1. σ(M) 6 0 for some perfect matching M in K4n.

We choose a perfect matching M in K4n with σ(M) 6 0 such that σ(M) is as large as
possible. Since σ(M) 6 −2k 6 −4, we obtain |M−| > n + k and |M+| 6 n − k, where
we use the notation and terminology as in the proof of Theorem 1. The following two
observations correspond to Claim 5 and Claim 6 within the proof of Theorem 1.

If there is an edge e in M+ and an edge f in M− such that there are two disjoint
plus-edges e′ and f ′ between e and f , then the perfect matching N = (M \{e, f})∪{e′, f ′}
satisfies σ(M) < σ(N) = σ(M) + 2 < 0, contradicting the choice of M . Hence, between
every edge in M+ and every edge in M−, there are at least two minus-edges, which implies
that at least half the edges between V (M+) and V (M−) are minus-edges.

If there is no plus-edge between vertices in V (M−), then there are strictly more minus-
edges than plus-edges, contradicting σ (E(K4n)) > 0. Hence, there are two edges e and
f in M− such that there exists a plus-edge e′ between e and f . Let f ′ be the edge
between e and f that is disjoint from e′. The perfect matching N = (M \{e, f})∪{e′, f ′}
satisfies σ(M) < σ(N) 6 σ(M) + 4 6 −2k + 4 6 0, contradicting the choice of M . This
contradiction completes the proof in this case.

Case 2. σ(M) > 0 for every perfect matching M in K4n.

Note that σ(M) > 2k for every perfect matching M in K4n. Let ν be the matching
number of the graph G = (V (K4n), σ−1(−1)).
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Suppose, for a contradiction, that ν > n−k. If M is a maximum matching in G, then
V (G) \ V (M−) is an independent set in G. This implies that there is a matching M+ in
(V (K4n), σ−1(1)) covering all vertices in V (G)\V (M−). Note that |M+| = 2n−ν < n+k,
and, hence, M−∪M+ is a perfect matching in K4n with σ(M−∪M+) < −(n−k)+(n+k) =
2k, which is a contradiction. Hence, we have ν 6 n− k.

Let ν = n− k′ for some integer k′ > k. By Theorem 10, we obtain

σ (E(K4n)) =

(
4n

2

)
− 2m(G)

>

(
4n

2

)
− 2

((
4n

2

)
−
(

3n+ k′

2

))
= 2

(
3n+ k′

2

)
−
(

4n

2

)
> 2

(
3n+ k

2

)
−
(

4n

2

)
= n(n− 1) + k(6n− 1) + k2,

which completes the proof.
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