A counterexample to a conjecture on Schur positivity of chromatic symmetric functions of trees

Emmanuella Sandratra Rambeloson
African Institute for Mathematical Sciences
Accra, Ghana

emmanuella@aims.ac.za

John Shareshian*
Washington University
St Louis, MO, U.S.A.
jshareshian@wustl.edu

Submitted: Jul 6, 2020; Accepted: Jul 21, 2020; Published: Oct 16, 2020
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We show that no tree on twenty vertices with maximum degree ten has Schur positive chromatic symmetric function, thereby providing a counterexample to a conjecture of Dahlberg, She and van Willigenburg.

Mathematics Subject Classifications: 05E05, 05C15
Among the many nice results on chromatic symmetric functions in the paper [1] of Dahlberg, She, and van Willigenburg is Theorem 39 therein, which says that no bipartite graph on n vertices with a vertex of degree more than $\left\lceil\frac{n}{2}\right\rceil$ has Schur positive chromatic symmetric function. In particular, Theorem 39 applies to trees. A near-converse to Theorem 39 for trees is posed in [1, Conjecture 42], which says that for every $n \geqslant 2$, there is a tree T on n vertices, one of which has degree $\left\lfloor\frac{n}{2}\right\rfloor$, such that the chromatic symmetric function of T is Schur positive. The authors of [1] confirmed this conjecture for $n \leqslant 19$, using computer calculations. The conjecture turns out to be false for $n=20$, as we show here. We use SageMath [2] calculations after a preparatory proposition that reduces the number of trees that we must examine.

We give the requisite definitions and reiterate more formally. Given a (finite, loopless, simple) graph $G=(V, E)$, a proper coloring of G is a function κ from V to the set \mathbb{P} of positive integers such that $\kappa(v) \neq \kappa(w)$ whenever $\{v, w\} \in E$. We fix an infinite set $\mathbf{x}:=\left\{x_{i}: i \in \mathbb{P}\right\}$ of pairwise commuting variables, and write $\mathbf{K}(G)$ for the set of all proper colorings of G. To each proper coloring κ one associates a monomial

$$
\mathbf{x}^{\kappa}:=\prod_{v \in V} x_{\kappa(v)} .
$$

[^0]The chromatic symmetric function X_{G} of G is the sum of all such monomials,

$$
X_{G}(\mathbf{x}):=\sum_{\kappa \in \mathbf{K}(G)} \mathbf{x}^{\kappa} .
$$

Chromatic symmetric functions were introduced by Stanley in [5] and have drawn considerable attention. Various results and conjectures, including the above-mentioned theorem and conjecture from [1], relate the structure of G to the expansion of X_{G} in terms of one or more familiar bases for the algebra Λ of symmetric functions. Recall that if B is a basis for Λ and $f \in \Lambda$, we call $f B$-positive if, when we expand $f=\sum_{b \in B} \alpha_{b} b$, each α_{b} is non-negative. The Schur basis for Λ is a fundamental object in symmetric function theory. See for example [3, Chapter 7] for basic properties of Schur functions and other rudimentary facts about symmetric functions that will be used herein without reference.

We prove the following result, thereby disproving Conjecture 42 of [1].
Theorem 1. If T is a tree on twenty vertices, one of which has degree ten, then $X_{T}(\mathbf{x})$ is not Schur positive.

A stable partition of G is a set partition $\pi: V=\bigcup_{j=1}^{k} \pi_{j}$ with each π_{j} an independent set in G. We assume without loss of generality that $\left|\pi_{j}\right| \geqslant\left|\pi_{j+1}\right|$ for each $j \in[n-1]$. Setting $\lambda_{j}=\left|\pi_{j}\right|$ for each j, we get that $\lambda:=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is a partition of the integer $|V|$. We call λ the type of π. Given another partition $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ of $|V|$, we write $\mu \preceq \lambda$ if λ dominates μ, that is, if $\sum_{j=1}^{m} \mu_{j} \leqslant \sum_{j=1}^{m} \lambda_{j}$ for all $m \in[k]$. Our proof of Theorem 1 rests on the following basic result, due to Stanley. This result follows quickly from the fact that if $\mu \preceq \lambda$, then when the Schur function s_{λ} is expanded in the monomial basis, the coefficient of m_{μ} is positive.
Lemma 2 (Proposition 1.5 of [4]). If $X_{G}(\mathbf{x})$ is Schur positive and G admits a stable partition of type λ, then G admits a stable partition of type μ whenever $\mu \preceq \lambda$.

Corollary 3. Assume that $T=(V, E)$ is a tree on $2 n$ vertices and $v \in V$ has degree n in T. If $X_{T}(\mathbf{x})$ is Schur positive, then every $x \in V$ that is neither v nor a neighbor of v is a leaf in T.

Proof. As T is connected and bipartite, T has a unique bipartition π : $V=\pi_{1} \cup \pi_{2}$. If $X_{T}(\mathbf{x})$ is Schur positive, then π has type (n, n) by Lemma 2 . We assume without loss of generality that $v \in \pi_{1}$. Then the neighborhood $N_{T}(v)$ is contained in π_{2} and so $\pi_{2}=N_{T}(v)$. Were the claim of the corollary false, some $z \in V$ would be at distance three from v in T and therefore lie in π_{2}, which is impossible.

For each partition $\nu=\left(\nu_{1}, \ldots, \nu_{t}\right)$ of $n-1$, let $T(\nu)$ be a tree on $2 n$ vertices in which one vertex v has exactly n neighbors v_{1}, \ldots, v_{n}, and for $1 \leqslant i \leqslant t, v_{i}$ has exactly ν_{i} neighbors other than v (each of which is necessarily a leaf). The next result follows immediately from Corollary 3.

Corollary 4. If T is a tree on $2 n$ vertices, one of which has degree n, and $X_{T}(\mathbf{x})$ is Schur positive, then there is some partition ν of $n-1$ such that T is isomorphic with $T(\nu)$.

Theorem 1 follows from the next result, which we prove by inspection using SageMath calculations.

Proposition 5. If ν is a partition of the integer nine, then $X_{T(\nu)}$ is not Schur positive.
Our computations reveal in particular that if $n=10$ and $\nu_{1} \geqslant 6$, then the coefficient of $s_{(9,9,2)}$ in the Schur expansion of $X_{T(\nu)}(\mathbf{x})$ is negative; and if $n=10$ and $\nu_{1} \leqslant 5$, then the coefficient of $s_{(3,3,2,2,2,2,2,2,2)}$ in the Schur expansion of $X_{T(\nu)}(\mathbf{x})$ is negative. This Schur expansion has can have as few as four negative coefficients (when ν is one of $(6,2,1),(6,1,1,1)$ or $(5,4))$ and as many as thirty (when ν is one of $(2,2,2,2,1)$, $(2,2,2,1,1,1)$ or $(1,1,1,1,1,1,1,1,1))$. Our programs, along with the complete Schur expansion of $X_{T(\nu)}(\mathbf{x})$ for each partition ν of nine, can be found at https://github. com/emmanuellasa/Schur_Decomposition_20.

We close with some comments. In addition to Schur positivity, it is of interest to study e-positivity of chromatic symmetric functions, that is, positivity with respect to the basis of elementary symmetric functions. (See in particular [5, Section 5] and [6, Secton 5].) Dahlberg, She and van Willigenburg posit in [1, Conjecture 41] that the chromatic symmetric function of a tree with a vertex a degree at least four cannot be e-positive (that is, a non-negative linear combination of elementary symmetric functions). In the preprint [7], K. Zheng proves a similar but slightly weaker claim: if a tree T has a vertex of degree at least six, then $X_{T}(\mathbf{x})$ is not e-positive. Together, [1, Conjectures 41 and 42] suggest that trees behave differently with respect to Schur positivity than they do with respect to e-positivity. (This is in contrast to a conjecture of Stanley and Stembridge found in [5, 6].) Given Zheng's result and ours, it is natural to ask whether there exists some constant k such that every tree with a vertex of degree at least k cannot have Schur positive symmetric function.

Acknowledgement

We thank Stephanie van Willigenburg for helpful comments.

References

[1] S. Dahlberg, A. She and S. van Willigenburg, Schur and e-positivity of trees and cut vertices, Electronic Journal of Combinatorics 27(1) (2020), \#P1.2.
[2] SageMath, the Sage Mathematics Software System (Version 8.6), The Sage Developers, 2019, https://www.sagemath.org.
[3] R. P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge, UK, 1999.
[4] R. P. Stanley, Graph colorings and related symmetric functions: ideas and applications, Discrete Mathematics 193 (1998), 267-286.
[5] R. P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Mathematics 111 (1995), 166-194.
[6] R. P. Stanley and J. R. Stembridge, On immanants of Jacobi-Trudi matrices and permutations with restricted position, Journal of Combinatorial Theory, Series A 62 (1993), 261-279.
[7] K. Zheng, On the e-positivity of trees and spiders, preprint, 2020, arXiv:2008.05038.

[^0]: *Supported in part by NSF grant DMS-1518389

