A counterexample to a conjecture on Schur positivity of chromatic symmetric functions of trees

Emmanuella Sandratra Rambeloson

African Institute for Mathematical Sciences
Accra, Ghana

emmanuella@aims.ac.za

John Shareshian*
Washington University
St Louis, MO, U.S.A.
jshareshian@wustl.edu

Submitted: Jul 6, 2020; Accepted: Jul 21, 2020; Published: Oct 16, 2020 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We show that no tree on twenty vertices with maximum degree ten has Schur positive chromatic symmetric function, thereby providing a counterexample to a conjecture of Dahlberg, She and van Willigenburg.

Mathematics Subject Classifications: 05E05, 05C15

Among the many nice results on chromatic symmetric functions in the paper [1] of Dahlberg, She, and van Willigenburg is Theorem 39 therein, which says that no bipartite graph on n vertices with a vertex of degree more than $\lceil \frac{n}{2} \rceil$ has Schur positive chromatic symmetric function. In particular, Theorem 39 applies to trees. A near-converse to Theorem 39 for trees is posed in [1, Conjecture 42], which says that for every $n \ge 2$, there is a tree T on n vertices, one of which has degree $\lfloor \frac{n}{2} \rfloor$, such that the chromatic symmetric function of T is Schur positive. The authors of [1] confirmed this conjecture for $n \le 19$, using computer calculations. The conjecture turns out to be false for n = 20, as we show here. We use SageMath [2] calculations after a preparatory proposition that reduces the number of trees that we must examine.

We give the requisite definitions and reiterate more formally. Given a (finite, loopless, simple) graph G = (V, E), a proper coloring of G is a function κ from V to the set \mathbb{P} of positive integers such that $\kappa(v) \neq \kappa(w)$ whenever $\{v, w\} \in E$. We fix an infinite set $\mathbf{x} := \{x_i : i \in \mathbb{P}\}$ of pairwise commuting variables, and write $\mathbf{K}(G)$ for the set of all proper colorings of G. To each proper coloring κ one associates a monomial

$$\mathbf{x}^{\kappa} := \prod_{v \in V} x_{\kappa(v)}.$$

^{*}Supported in part by NSF grant DMS-1518389

The chromatic symmetric function X_G of G is the sum of all such monomials,

$$X_G(\mathbf{x}) := \sum_{\kappa \in \mathbf{K}(G)} \mathbf{x}^{\kappa}.$$

Chromatic symmetric functions were introduced by Stanley in [5] and have drawn considerable attention. Various results and conjectures, including the above-mentioned theorem and conjecture from [1], relate the structure of G to the expansion of X_G in terms of one or more familiar bases for the algebra Λ of symmetric functions. Recall that if B is a basis for Λ and $f \in \Lambda$, we call f B-positive if, when we expand $f = \sum_{b \in B} \alpha_b b$, each α_b is non-negative. The Schur basis for Λ is a fundamental object in symmetric function theory. See for example [3, Chapter 7] for basic properties of Schur functions and other rudimentary facts about symmetric functions that will be used herein without reference.

We prove the following result, thereby disproving Conjecture 42 of [1].

Theorem 1. If T is a tree on twenty vertices, one of which has degree ten, then $X_T(\mathbf{x})$ is not Schur positive.

A stable partition of G is a set partition $\pi: V = \bigcup_{j=1}^k \pi_j$ with each π_j an independent set in G. We assume without loss of generality that $|\pi_j| \geqslant |\pi_{j+1}|$ for each $j \in [n-1]$. Setting $\lambda_j = |\pi_j|$ for each j, we get that $\lambda := (\lambda_1, \ldots, \lambda_k)$ is a partition of the integer |V|. We call λ the type of π . Given another partition $\mu = (\mu_1, \ldots, \mu_\ell)$ of |V|, we write $\mu \leq \lambda$ if λ dominates μ , that is, if $\sum_{j=1}^m \mu_j \leqslant \sum_{j=1}^m \lambda_j$ for all $m \in [k]$. Our proof of Theorem 1 rests on the following basic result, due to Stanley. This result follows quickly from the fact that if $\mu \leq \lambda$, then when the Schur function s_{λ} is expanded in the monomial basis, the coefficient of m_{μ} is positive.

Lemma 2 (Proposition 1.5 of [4]). If $X_G(\mathbf{x})$ is Schur positive and G admits a stable partition of type λ , then G admits a stable partition of type μ whenever $\mu \leq \lambda$.

Corollary 3. Assume that T = (V, E) is a tree on 2n vertices and $v \in V$ has degree n in T. If $X_T(\mathbf{x})$ is Schur positive, then every $x \in V$ that is neither v nor a neighbor of v is a leaf in T.

Proof. As T is connected and bipartite, T has a unique bipartition $\pi: V = \pi_1 \cup \pi_2$. If $X_T(\mathbf{x})$ is Schur positive, then π has type (n,n) by Lemma 2. We assume without loss of generality that $v \in \pi_1$. Then the neighborhood $N_T(v)$ is contained in π_2 and so $\pi_2 = N_T(v)$. Were the claim of the corollary false, some $z \in V$ would be at distance three from v in T and therefore lie in π_2 , which is impossible.

For each partition $\nu = (\nu_1, \dots, \nu_t)$ of n-1, let $T(\nu)$ be a tree on 2n vertices in which one vertex v has exactly n neighbors v_1, \dots, v_n , and for $1 \le i \le t$, v_i has exactly ν_i neighbors other than v (each of which is necessarily a leaf). The next result follows immediately from Corollary 3.

Corollary 4. If T is a tree on 2n vertices, one of which has degree n, and $X_T(\mathbf{x})$ is Schur positive, then there is some partition ν of n-1 such that T is isomorphic with $T(\nu)$.

Theorem 1 follows from the next result, which we prove by inspection using SageMath calculations.

Proposition 5. If ν is a partition of the integer nine, then $X_{T(\nu)}$ is not Schur positive.

Our computations reveal in particular that if n=10 and $\nu_1 \geqslant 6$, then the coefficient of $s_{(9,9,2)}$ in the Schur expansion of $X_{T(\nu)}(\mathbf{x})$ is negative; and if n=10 and $\nu_1 \leqslant 5$, then the coefficient of $s_{(3,3,2,2,2,2,2,2,2)}$ in the Schur expansion of $X_{T(\nu)}(\mathbf{x})$ is negative. This Schur expansion has can have as few as four negative coefficients (when ν is one of (6,2,1), (6,1,1,1) or (5,4)) and as many as thirty (when ν is one of (2,2,2,2,1), (2,2,2,1,1,1) or (1,1,1,1,1,1,1,1,1)). Our programs, along with the complete Schur expansion of $X_{T(\nu)}(\mathbf{x})$ for each partition ν of nine, can be found at https://github.com/emmanuellasa/Schur_Decomposition_20.

We close with some comments. In addition to Schur positivity, it is of interest to study e-positivity of chromatic symmetric functions, that is, positivity with respect to the basis of elementary symmetric functions. (See in particular [5, Section 5] and [6, Secton 5].) Dahlberg, She and van Willigenburg posit in [1, Conjecture 41] that the chromatic symmetric function of a tree with a vertex a degree at least four cannot be e-positive (that is, a non-negative linear combination of elementary symmetric functions). In the preprint [7], K. Zheng proves a similar but slightly weaker claim: if a tree T has a vertex of degree at least six, then $X_T(\mathbf{x})$ is not e-positive. Together, [1, Conjectures 41 and 42] suggest that trees behave differently with respect to Schur positivity than they do with respect to e-positivity. (This is in contrast to a conjecture of Stanley and Stembridge found in [5, 6].) Given Zheng's result and ours, it is natural to ask whether there exists some constant k such that every tree with a vertex of degree at least k cannot have Schur positive symmetric function.

Acknowledgement

We thank Stephanie van Willigenburg for helpful comments.

References

- [1] S. Dahlberg, A. She and S. van Willigenburg, Schur and e-positivity of trees and cut vertices, *Electronic Journal of Combinatorics* **27(1)** (2020), #P1.2.
- [2] SageMath, the Sage Mathematics Software System (Version 8.6), The Sage Developers, 2019, https://www.sagemath.org.
- [3] R. P. Stanley, *Enumerative Combinatorics*, *Volume 2*, Cambridge Studies in Advanced Mathematics **62**, Cambridge University Press, Cambridge, UK, 1999.
- [4] R. P. Stanley, Graph colorings and related symmetric functions: ideas and applications, *Discrete Mathematics* **193** (1998), 267-286.
- [5] R. P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, *Advances in Mathematics* **111** (1995), 166-194.

- [6] R. P. Stanley and J. R. Stembridge, On immanants of Jacobi-Trudi matrices and permutations with restricted position, *Journal of Combinatorial Theory*, *Series A* **62** (1993), 261-279.
- [7] K. Zheng, On the *e*-positivity of trees and spiders, preprint, 2020, arXiv:2008.05038.