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Abstract

For any n > 0 and 0 6 m < n, let Pn,m be the poset of projective equivalence
classes of {−, 0,+}-vectors of length n with sign variation bounded by m, ordered
by reverse inclusion of the positions of zeros. Let ∆n,m be the order complex of
Pn,m. A previous result from the third author shows that ∆n,m is Cohen-Macaulay
over Q whenever m is even or m = n−1. Hence, it follows that the h-vector of ∆n,m

consists of nonnegative entries. Our main result states that ∆n,m is partitionable
and we give an interpretation of the h-vector when m is even or m = n− 1. When
m = n − 1 the entries of the h-vector turn out to be the new Eulerian numbers of
type D studied by Borowiec and M lotkowski in [Electron. J. Combin., 23(1):#P1.38,
2016]. We then combine our main result with Klee’s generalized Dehn-Sommerville
relations to give a geometric proof of some facts about these Eulerian numbers of
type D.

Mathematics Subject Classifications: 05E45, 05A05, 06A07

1 Introduction

In this paper we are interested in a special simplicial complex, ∆n,m for n > 0 and
0 6 m < n. This complex arose from the work of [9] dedicated to a generalization of
Postnikov’s totally nonnegative Grassmannian [10]. Topologically the complex ∆n,m is
a combinatorial manifold (with boundary) [9, Theorem 3.4] with geometric realization
homotopy equivalent to RPm [9, Theorem 3.6]. It follows that ∆n,m is Cohen-Macaulay
over Q if and only if m is even or m = n − 1 [9, Corollary 3.7]. As seen in [11], when a
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simplicial complex is Cohen-Macaulay its h-vector has nonnegative entries. This led us
to investigate the combinatorial properties of ∆n,m.

Let us start with the simple example where n = 3 and m = 2. As depicted in
Figure 1, we can represent RP2 as the upper half sphere in R3 with the identification of
the antipodal points along the equator. We take a cell decomposition of RP2 according
to the signs of the coordinates. Since we work on projective space, this is well defined
up to a global sign, and we may choose the first nonzero coordinate to be positive. On
RP2, we get the interior of four triangles (2-dimensional cells) that correspond to elements
with the following sign vectors: (+,+,+), (+,−,+), (+,+,−) and (+,−,−). The six
segments between those triangles (1-dimensional cells) correspond to the sign vectors:
(+,+, 0), (+,−, 0), (+, 0,+), (+, 0,−), (0,+,+) and (0,+,−). Finally, the three vertices
(0-dimensional cells) are given by the sign vectors: (+, 0, 0), (0,+, 0) and (0, 0,+). We
then consider the poset P3,2 of cells, ordered by X 6 Y if X is in the closure of Y . With
the sign vectors, this corresponds to replacing some entries of the sign vector of Y by
zeros to obtain the sign vector of X.

The simplicial complex ∆3,2 is the order complex of the poset P3,2. Geometrically
that is the barycentric subdivision of the cells defining P3,2 (see Figure 1). If we look at
the barycentric subdivision of the closure of (+,+,+), then each face of the result can
be assigned a permutation very naturally. Notice that, given a face X, the coordinates
(x1, x2, x3) of any point in X will have the same relative ordering. The permutation σ
assigned to X is such the σ(i) is the position of the ith smallest coordinate, reading equal
coordinates from left to right. For example, (1, 2, 1) has permutation (1, 3, 2). In Figure 1
we give the permutation of the six facets and point toward the smallest face with the same
permutation. It turns out that all faces with the same permutation σ correspond exactly
to the interval of faces between the facet indexed by σ and the (unique) minimal one. The
full complex ∆3,2 has 24 facets that are in bijection with the signed permutations of type
D3 (as a subgroup of signed permutations of type B3). In this paper we will give a map
such that each face of ∆3,2 is assigned a type D3 permutation inducing a decomposition
of the face poset of ∆3,2 into Boolean intervals.

More generally, we show that the simplicial complexes ∆n,m are partitionable when
m is even or m = n − 1. This will give an interpretation for their h-vectors in terms
of descents in even signed permutations. For any n > 0 and 0 6 m < n, the simplicial
complex ∆n,m is the order complex of a poset Pn,m. The elements of Pn,m are projective
sign vectors of length n with sign variation bounded by m. Our main result is Theorem 15
which states that ∆n,m is partitionable and gives an interpretation of the h-vector when
m is even or m = n− 1. When m = n− 1 the entries of the h-vector turn out to be the
new Eulerian numbers of type D studied by Borowiec and M lotkowski [3]. In Corollary 17
we combine our main result with Klee’s generalized Dehn-Sommerville relations to give a
geometric proof of some facts about these Eulerian numbers of type D.

There are at least two ways to view the motivation of this paper. The first is that we
want to further understand the complexes ∆n,m by showing that they are partitionable and
determining their h-vectors. Given that ∆n,m is Cohen-Macaulay if m is even or m = n−1
it is natural to look for a partitioning since (even though it has been disproven [5]) a long
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Figure 1: On the left we have the cell decomposition of RP2 according the signs of
coordinates whose closure poset is P3,2. There are 4 interior triangles, 6 segments and
3 vertices. In the center, we show the barycentric subdivision and obtain the simplicial
complex ∆3,2 with 24 triangles, 36 segments and 13 vertices. On the right we look at the
facet (+,+,+) of P3,2 and see that the facets of the barycentric subdivision are naturally
indexed by permutations giving rise to a decomposition into Boolean intervals.

standing conjecture would suggest the complex may be partitionable [11, Conjecture 2.7].
It is not possible to show the stronger result that ∆n,m is shellable for m > 0 since the
complex is a manifold (with boundary) that is neither a ball nor a sphere [4, Proposition
1.2]. The second motivation is that our results give a geometric model for the new type-D
Eulerian numbers [3]. It is well-known that the classical Eulerian numbers of type A as
well as Eulerian numbers of other types show up as the h-vector of the Coxeter complex
(see e.g. Exercise 16 of Chapter 3 in [2]).

2 Sign variation and descents

2.1 Sign variation posets and complexes

We will let Vn = {−, 0,+}n denote the set of sign vectors of length n. Given a sign vector
ω the sign variation of ω is denoted var(ω) and is the number of times ω changes sign
where zeros are ignored. As an example we have that var((+,−, 0,−,+)) = 2. The weight
of a sign vector ω is denoted wt(ω) and is defined to be the number of non-zero entries
of ω.

For any ω ∈ Vn we have −ω ∈ Vn. We define an equivalence relation ∼ on Vn where
ω ∼ ω′ if and only if ω = ω′ or ω = −ω′. We will let PVn = (Vn \ {0}n)/ ∼ which is
the collection of nonzero sign vectors up to equivalence. Sign variation is well defined on
PVn since var(ω) = var(−ω).

We will let Pn,m denote the poset whose underlying set is {ω ∈ PVn : var(ω) 6 m} with
order relation ω′ < ω if and only if ±ω′ can be obtained from ω by replacing some elements
with 0. As examples (0,+, 0,−) < (+,+,+,−) and also (0,+, 0,−) < (+,−,−,+) since
(0,−, 0,+) ∼ (0,+, 0,−). The poset Pn,m is ranked where the rank of an element ω is
wt(ω)− 1.

A simplicial complex is a collection of sets such that if σ ∈ ∆ and τ ⊆ σ then τ ∈ ∆.
Notice this means that ∅ ∈ ∆ for any simplicial complex ∆. An element σ ∈ ∆ is called a
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face and the dimension of σ is dimσ = |σ| − 1. Faces which are maximal with respect to
inclusion are called facets. The order complex ∆(P ) of a poset P is the simplicial complex
on vertex set P whose k-dimensional faces are the chains of consisting of k + 1 elements
in P . We then let ∆n,m denote the order complex ∆(Pn,m).

Example 1. Let n = 2 and m = 1. Then

Vn = {(+,+), (+,−), (+, 0), (0,+), (0,−), (0, 0), (−,+), (−,−), (−, 0)} .

By our equivalence relation we have

PVn = {(+,+), (+,−), (+, 0), (0,+)} .

Since we can change 0 to either a + or a −, then the Hasse diagram of the poset P2,1 is
given on the left of Figure 2. Looking at chains in our poset P2,1 we see that we have four
1 element chains and four 2 element chains. Therefore, our order complex ∆2,1 has four
0-dimensional faces and four 1-dimensional faces. The Hasse diagram of the face poset of
∆2,1 is shown on the right of Figure 2.

(+, 0) (0,+)

(+,+) (+,−)

∅

(+, 0) (0,+)(+,+) (+,−)

(+, 0) < (+,+) (+, 0) < (+,−) (0,+) < (+,+) (0,+) < (+,−)

Figure 2: Hasse diagram of P2,1 and the face poset F(∆2,1) of the order complex.

For a simplicial complex of dimension d, let fi denote the number of i-dimensional
faces. The f -vector of a simplicial complex ∆ is then the fi arranged as a vector:

f(∆) = (f−1, f0, . . . , fd)

where f−1 = 1. The h-vector of a simplicial complex ∆ is defined using the f -vector. Let

hk =
k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1.

Then the h-vector of ∆ is the vector:

h(∆) = (h0, h1, . . . , hd+1) .

Looking at Example 2 we see that f(∆2,1) = (1, 4, 4) and h(∆2,1) = (1, 2, 1).
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The face poset of a simplicial complex ∆ is denoted F(∆) and consists of all faces of
∆ ordered by inclusion. Given a poset P and any two elements x, y ∈ P with x 6 y we
have the (closed) interval

[x, y] = {z ∈ P : x 6 z 6 y}.

The collection of all subsets of a given set ordered by inclusion is known as a Boolean
poset. A simplicial complex ∆ is said to be partitionable if its face poset can be written
as the disjoint union

F(∆) =
⊔

F∈Facets(∆)

[GF , F ]

where Facets(∆) is the set of facets (maximal faces) of ∆ and each interval [GF , F ] is a
Boolean poset for some GF . In general the h-vector of a simplicial complex may contain
negative entries. However, if ∆ is partitionable with its face poset written as above, then
by a result of Stanley (see [11]):

hj = |{F : |GF | = j and F ∈ Facets(∆)}|

Each ∆n,m is a combinatorial manifold (with boundary) [9, Theorem 3.4] with geomet-
ric realization homotopy equivalent to RPm [9, Theorem 3.6]. The geometric realization of
∆n,n−1 is the manifold RPn−1. It follows that ∆n,m is Cohen-Macaulay over Q if and only
if m is even or m = n−1 [9, Corollary 3.7]. When a simplicial complex is Cohen-Macaulay
its h-vector has nonnegative entries. For a treatment of Cohen-Macaulay simplicial com-
plexes and their properties we refer the reader to [11].

2.2 Signed permutations and descents

We will denote the set of permutations of [n] by SAn and usually think of permutations
in one-line notation. A signed permutation of [n] is a bijection π : [±n] → [±n] such
that π(−i) = −π(i) for all i ∈ [±n]. The set of signed permutations of [n] is denoted by
SBn . Any signed permutation π can be represented by the sequence [π(1), π(2), . . . , π(n)]
which is known as window notation. We will often use i to denote −i for i ∈ [n]. In this
way we can denote the signed permutation with window notation [−2, 3, 4,−1] by 2341.
We will also denote a signed permutation by an ordered pairs (π,X) consisting of a usual
permutation π ∈ SAn along with a set X ⊆ [n] recording the numbers of negative entries
in window notation, thus we can denote [−2, 3, 4,−1] by (2341, {1, 2}).

We let SDn denote the set of even signed permutations of [n] which means there is an
even number of negative entries in the window notation. Equivalently we can say

SDn = {(π,X) : π ∈ SAn , X ⊆ [n], |X| ≡ 0 mod 2}.

We then let SDn,m denote all elements of SDn with at most m negative entries in window
notation or equivalently

SDn,m = {(π,X) : π ∈ SDn , |X| 6 m}.
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For any sequence of integers w = (w0, w1, . . . , wn) we say that i is a descent of w if
wi > wi+1. For any signed permutation π with window notation [π(1), π(2), . . . , π(n)] we
let w(π) = (0, π(1), π(2), . . . , π(n)) and define

Des(π) = {i : i is a descent of w(π)} ⊆ {0, 1, . . . n− 1}

to be the descent set of π. We also let des(π) = |Des(π)|. Finally we let

D(n, k) = |{π ∈ SDn : des(π) = k}|

which count the number of even signed permutations with a given number of descents.

Remark 2. The quantity D(n, k) was first studied by Borowiec and M lotkowski [3]. There
is a general notion of descent in any Coxeter group. The number D(n, k) computes
descents with respect to the Coxeter group generators of SBn restricted to elements the
subgroup SDn . For the general theory of descents as well as other combinatorics in Coxeter
groups we refer the reader to [2].

3 The partitioning

Given ω ∈ PVn we will consider indices cyclically so that ωi = ωi+n for any i. We say
that i ∈ [n] is a cyclic sign flip of ω ∈ PVn if there exists a j such that ωi−jωi < 0 while
ωi−kωi = 0 for all 1 6 k < j. We define a function Bar : PVn → [n] by

Bar(ω) = {i ∈ [n] : i is a cyclic sign flip of ω}

for each ω ∈ PVn. For example, Bar((0,+,−,−, 0,+,−)) = {2, 3, 6, 7}. Here 2 ∈
Bar((0,+,−,−, 0,+,−)) since ω2 = + and for j = 2, as we are looking at the indices
cyclically, ω0 = ω7 = −. We have the following results which follow immediately from the
definition of Bar.

Lemma 3. For any ω ∈ PVn the size of Bar(ω) is even.

Lemma 4. If ω ∈ PVn and i ∈ Bar(ω), then ωi 6= 0.

Definition 5. We define a function Φ : ∆n,m → SDn for any 0 6 m 6 n − 1. Consider
any chain C : ω(1) < ω(2) < · · · < ω(r). To obtain Φ(C) we start with the empty word,
setting ω(0) = 0n. For s = 1, 2, . . . , r iterate the following process:

1. Set Is := {i ∈ [n] : ω
(s)
i 6= 0, ω

(s−1)
i = 0}.

2. Set Is := {i : i ∈ Is, i 6∈ Bar(ω(r))} ∪ {i : i ∈ Is, i ∈ Bar(ω(r))}.

3. Let ω′s be the word where the elements of Is are written in increasing order.
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Finally set Ir+1 := {i ∈ [n] : ω
(r)
i = 0}. Let Ir+1 and ω′r+1 be defined as above. Then we

obtain Φ(C) by concatenating all the words in reverse order:

Φ(C) = ω′r+1ω
′
r . . . ω

′
2ω
′
1.

For π = Φ(C) = ω′r+1ω
′
r . . . ω

′
2ω
′
1 and 0 6 i 6 r+ 1 we let `(C, i) denote the number of

letters in the initial part of π, i.e. `(C, i) = |∪j>iIj|.

Example 6. Let n = 9 and m = 8. As a first example, take

C1 : (0,+,−, 0, 0, 0, 0, 0,+) < (0,+,−, 0,−,+, 0, 0,+) < (0,+,−,−,−,+,−,+,+).

Then
Bar(ω(3)) = Bar((0,+,−,−,−,+,−,+,+)) = {3, 6, 7, 8}.

For s = 1 we have:

1. I1 = {2, 3, 9}

2. I1 =
{

2, 3, 9
}

3. Therefore, ω′1 = 329.

For s = 2 we have:

1. I2 = {5, 6}

2. I2 =
{

5, 6
}

3. Therefore, ω′2 = 65.

For s = 3 we have:

1. I3 = {4, 7, 8}

2. I3 =
{

4, 7, 8
}

3. Therefore, ω′3 = 874.

Finally I4 = {1}. Therefore ω′4 = 1.
Concatenating these results gives:

Φ(C1) = ω′4ω
′
3ω
′
2ω
′
1 = 187465329.

Then we have:

`(C1, 4) = 0, `(C1, 3) = 1, `(C1, 2) = 4, `(C1, 1) = 6, `(C1, 0) = 9 = n.

Similarly, if we take

C2 : (0,+,−, 0, 0, 0, 0, 0,−) < (0,+,−, 0,−,+, 0, 0,−) < (0,+,−,−,−,+,−,+,−)

we have
Bar((0,+,−,−,−,+,−,+,−)) = {2, 3, 6, 7, 8, 9}

and Φ(C2) = 187465932.
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Lemma 7. If 0 6 m 6 n− 1 such that m is even, then Φ(∆n,m) ⊆ SDn,m.

Proof. Let C : ω(1) < ω(2) < · · · < ω(r) be any chain in ∆n,m. Also let k = var(ω(r)). Now
|Bar(ω(r))| = k if k is even and |Bar(ω(r))| = k + 1 if k is odd. Since k 6 m where m
is even it follows that |Bar(ω(r))| 6 m. Therefore, Φ(∆n,m) ⊆ SDn,m.

Lemma 8. For any n

{Facets of ∆n,n−1}
Φ−→ SDn

is a bijection and thus Φ(∆n,n−1) = SDn . Moreover, for 0 6 m 6 n − 1 such that m is
even, then

{Facets of ∆n,m}
Φ−→ SDn,m

is a bijection and Φ(∆n,m) = SDn,m.

Proof. Consider any n and 0 6 m 6 n − 1 with m even or m = n − 1. Given any chain
C : ω(1) < ω(2) < · · · < ω(r) in ∆n,m we see that Φ(C) ⊆ SDn,m by Lemma 7. So, showing
the bijection on the facets will imply that Φ(∆n,m) = SDn,m.

Let us describe the bijection between facets of ∆n,n−1 and elements of SDn . This
bijection will restrict to a bijection between facets of ∆n,m and elements of SDn,m whenever
m is even. Any facet of ∆n,n−1 is a saturated chain

C : ω(1) < ω(2) < · · · < ω(n)

with ω(i) ∈ PVn for 1 6 i 6 n. Such a statured chain C determines a permutation
πC whose ith entry for 1 6 i < n in one-line notation is the unique index k such that
ω

(n−i+1)
k 6= 0 but ω

(n−i)
k = 0 while its nth entry is the unique index k such that ω

(1)
k 6= 0.

Also, the statured chain C determines the set XC = Bar(ω(n)). So, the desired bijection
maps C to (πC , XC) which is indeed an element of SDn by Lemma 3. Moreover, it is clear
that (πC , XC) is in SDn,m if C is a chain in ∆n,m.

To see this map is a bijection we describe the inverse map. For any π ∈ SDn consider π
as an element of SAn by forgetting the sign of entries in window notation. This determines
a saturated chain of binary vectors in the usual way where permutations correspond to
saturated chains in a Boolean poset while subsets can be put into bijective correspondence
with binary vectors. The binary vectors can be made into elements of PVn in the only
way compatible with negative entries of π in window notation. This is done by taking
the set X of negative entries of π and creating the unique sign vector in PVn with no 0
components, whose set of cyclic sign flips is equal to X. An example of this bijection can
be seen in Example 9.

Example 9. The bijection in the proof of Lemma 8 maps 23154, which is equivalent to
the pair (23154, {2, 4}), to the chain

(0, 0, 0,+, 0) < (0, 0, 0,+,+) < (+, 0, 0,+,+) < (+, 0,−,+,+) < (+,−,−,+,+)

that is a facet of ∆5,2. In more details, it maps the permutation 23154 to the Boolean
chain (0, 0, 0, 1, 0) < (0, 0, 0, 1, 1) < (1, 0, 0, 1, 1) < (1, 0, 1, 1, 1) < (1, 1, 1, 1, 1). Then the
set {2, 4} determines (uniquely, up to a global sign) the sign changes as (+,−,−,+,+).
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For a chain C : ω(1) < ω(2) < · · · < ω(k), let Ci denote the subchain of C with ω(i)

removed:
Ci : ω(1) < · · · < ω(i−1) < ω(i+1) < · · · < ω(k).

For I ⊆ [k] let CI be the subchain of C with ω(i) removed for all i ∈ I. The sign vectors
we can remove from a chain C, without changing the value of Φ(C), are directly governed
by the descent set of the permutation to which it is associated. The reader is invited to
recall Definition 5 for the notation used in the following lemma and proof.

Lemma 10. Let 0 6 m 6 n− 1 such that either m is even or m = n− 1. Let

C : ω(1) < ω(2) < · · · < ω(k)

be a chain in ∆n,m and let Φ(C) = π = ω′k+1ω
′
kω
′
k−1 . . . ω

′
2ω
′
1 ∈ Φ(∆n,m) with descent set

Des(π).
For i ∈ [k − 1], Φ(Ci) = π = Φ(C) if and only if `(C, i) /∈ Des(π). For i = k,

Φ(Ck) = π = Φ(C) if and only if `(C, k) /∈ Des(π) and Bar(ω(k)) = Bar(ω(k−1)).

Proof. Suppose first that i < k. Recall that Ci is the subchain of C with ω(i) removed.
Let Is, Is and ω′s be the maps used in Definition 5 for C and let Js, Js and v′s be the
corresponding maps for Ci. By construction of Φ, it is clear that Is = Js, Is = Js and
ω′s = v′s for all s < i and Is = Js−1, Is = Js−1 for all s > i+ 1 and ω′s = v′s−1 for s > i+ 1.
It suffices to show that ω′i+1ω

′
i = v′i if and only if `(C, i) /∈ Des(π).

If ω′i+1ω
′
i = v′i then for every j ∈ Ii and k ∈ Ii+1 we have j > k and therefore there

is no descent at `(C, i). Similarly if there is no descent at `(C, i), then we can add an
arbitrary cut in vi and split it into ω′i+1ω

′
i, giving us the desired result.

Suppose next that i = k. This is similar to the previous case with the exception that if
Bar(ω(k)) 6= Bar(ω(k−1)), then we no longer have Is = Js for s < k hence the additional
requirement in the only if.

By repeated applications of the previous lemma we have the following.

Proposition 11. Let 0 6 m 6 n − 1 such that either m is even or m = n − 1. For
C ∈ ∆n,m a chain with k elements and I ⊆ [k], then Φ(CI) = Φ(C) if and only if
I ∩ Des(Φ(C)) = ∅ and Bar(ωI) = Bar(ω) where ω and ωI are the top sign vectors in
CI and C respectively.

For any π ∈ SnD we let Cπ denote the saturated chain which is in bijection with π
from Lemma 8. Let Cπ denote the rank selected subchain of Cπ restricted to the ranks
{n− i : i ∈ Des(π)}.

Example 12. Considering π = 23154 we have

Cπ : (0, 0, 0,+, 0) < (0, 0, 0,+,+) < (+, 0, 0,+,+) < (+, 0,−,+,+) < (+,−,−,+,+)

and
Cπ : (0, 0, 0,+, 0) < (+, 0, 0,+,+) < (+,−,−,+,+)

since Des(π) = {0, 2, 4}.
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Lemma 13. If π ∈ Φ(∆n,m) for 0 6 m 6 n− 1 such that m is even or m = n− 1, then
Φ−1(π) = [Cπ, C

π] is a Boolean interval in F(∆n,m)

Proof. Suppose π is an element in SDn and let Des(π) = {d1, d2, . . . dk} be the set of
descents (in numerical order). We write π in the following manner:

π = π1,1π1,2 . . . π1,d1π2,1π2,2 . . . π2,d2−d1 . . . πk,1πk,2 . . . πk,dk−dk−1

Let Cπ be the saturated chain which is in bijection with π from Lemma 8 and notice
that we can label each element in the saturated chain C by one of the πi,j as follows:

Cπ : ω(k,dk−dk−1) < · · · < ω(k,2) < ω(k,1)

< · · ·
< ω(2,d2−d1) < · · · < ω(2,2) < ω(2,1)

< ω(1,d1) < · · · < ω(1,2) < ω(1,1)

By Lemma 10, we can inductively remove any ω(i,j) as long as j is not maximal in πi
(or if i = 1, then we also require that the sign vector directly before has the same set
of cyclic sign flips). Since the order of the removals doesn’t alter our permutation, the
ordering of these subchains is isomorphic to the subsets of a set ordered by inclusion, in
other words the Boolean interval, with the bottom element being Cπ, the rank selected
subchain of Cπ restricted to the ranks {n− i : i ∈ Des(π)}.

Lemma 14. If 0 6 m 6 n− 1 such that either m is even or m = n− 1, then Φ−1(π1) ∩
Φ−1(π2) = ∅ for any π1, π2 ∈ Φ(∆n,m) with π1 6= π2.

Proof. This comes directly from Lemma 13 together with the characterization of removing
sign vectors from chains in Lemma 10.

∅

(0,+) (+, 0)(+,+) (+,−)

12

(+, 0) < (+,+)
21

(+, 0) < (+,−)
21

(+, 0) < (+,+)
12

(0,+) < (+,−)

Figure 3: An example of the partitioning on F(∆2,1).
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Theorem 15. If 0 6 m 6 n− 1 such that either m is even or m = n− 1, then ∆n,m is
partitionable with

F(∆n,m) =
⊔

π∈Φ(∆n,m)

[Cπ, C
π]

and thus
hj(∆n,m) = |{π ∈ Φ(∆n,m) : des(π) = j}|

for each 0 6 j 6 n.

Proof. By Lemma 13 and Lemma 14 it follows that ∆n,m is partitionable whenever m is
even or m = n− 1. The h-vector equality follows from the partitionability.

Remark 16. One interesting question that we leave open is the study of the flag-h vector of
∆m,n. Since Pn,m is a graded poset we have a flag-h vector and the content of Theorem 15
can be modified to describe the flag-h vector. Given a flag-h vector, there is a natural
quasisymmetric function assigned to it (see [1, 6]). It would be interesting to study this
function, but our initial computation shows that it is not symmetric. One may need to use
different notions of quasisymmetric as in [7], but we leave this question to the interested
reader.

In Figure 3 we give an example of the partitioning given in Theorem 15. Above each
facet we write the signed permutation given in the bijection from Lemma 8.

Next we give an application of Theorem 15 that uses Klee’s generalization of the
Dehn-Sommerville relations [8] which states that

hd−j − hj = (−1)j
(
d

j

)
((−1)d−1χ̃(∆)− 1) (1)

where h = (h0, h1, . . . , hd) is the h-vector of a (d − 1)-dimensional simplicial complex ∆
which is a (homology) manifold.

Corollary 17. If n is even, then D(n, j) = D(n, n − j) for all 0 6 j 6 n. If n is odd,
then D(n, j) = D(n, n− j) + (−1)j

(
n
j

)
for all 0 6 j 6 n.

Proof. By Theorem 15 we see that hj(∆n,n−1) = D(n, j). The geometric realization of
∆n,n−1 is the manifold RPn−1. It is known that

χ̃(∆n,n−1) =

{
−1 n ≡ 0 mod 2;

0 n ≡ 1 mod 2.

Thus by applying (1) we find that for n even

D(n, j) = hj(∆n,n−1) = hn−j(∆n,n−1) = D(n, n− j)
and for n odd

D(n, j) = hj(∆n,n−1) = hn−j(∆n,n−1) + (−1)j
(
d

j

)
= D(n, n− j) + (−1)j

(
d

j

)
.

for each 0 6 j 6 n.

Remark 18. The content of Corollary 17 was previously known as it follows from [3,
Proposition 4.1] and [3, Proposition 4.3].
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