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Abstract

The reconfiguration graph Rk(G) for the k-colorings of a graph G has as vertex
set the set of all possible proper k-colorings of G and two colorings are adjacent if
they differ in the color of exactly one vertex. A result of Bousquet and Perarnau
(2016) regarding graphs of bounded degeneracy implies that if G is a planar graph
with n vertices, then R12(G) has diameter at most 6n. We improve on the number
of colors, showing that R10(G) has diameter at most 8n for every planar graph G
with n vertices.

Mathematics Subject Classifications: 005C15

1 Introduction and result

Let G be a graph, and let k be a non-negative integer. A (proper) k-coloring of G is
a function ϕ : V (G) → {1, . . . , k} such that ϕ(u) 6= ϕ(v) whenever uv ∈ E(G). The
reconfiguration graph Rk(G) of the k-colorings of G has as vertex set the set of all k-
colorings of G, with two colorings adjacent if they differ in the color of exactly one vertex.
That is, two k-colorings ϕ1 and ϕ2 are joined by a path in Rk(G) if and only if we can
transform ϕ1 into ϕ2 by recoloring vertices one by one, always keeping the coloring proper,
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and the number of recolorings needed is equal to the distance between ϕ1 and ϕ2 in Rk(G).
Hence, it is natural to ask how the diameter of Rk(G) depends on k and the number of
vertices of G, subject to various conditions ensuring the k-colorability of G.

The study of the reconfiguration graph for colorings was begun by the statistical
physics community in the context of Glauber dynamics for random colorings; see for ex-
ample [14, 18]. It has also recently attracted the attention because of its connections to
the existence of FPTAS for the number of colorings, but also for its own structural and
computational merit. For example, typical questions include deciding whether two color-
ings belong to the same component of the reconfiguration graph, or that of determining
the diameter of its components. For more details, we refer the reader to the surveys by
van den Heuvel [17] and by Nishimura [15].

A graph is k-degenerate if every subgraph of the graph contains a vertex of degree at
most k. Clearly, every k-degenerate graph G is (k + 1)-colorable, but Rk+1(G) may be
disconnected (e.g. in the case G = Kk+1, but there are many more instances [2]). On the
other hand, Rk+2(G) is always connected [8]. Cereceda [7] conjectured the following.

Conjecture 1. If G is a k-degenerate graph on n vertices, then Rk+2(G) has diameter
O(n2).

This bound would be best possible [3]. Although the conjecture has resisted several
efforts, there have been some partial results surrounding it [1, 6, 5, 9, 10, 11, 13]. The most
important breakthrough is a theorem of Bousquet and Heinrich [5] where it was shown,
among other results, that Rk+2(G) has diameter O(nk+1). In particular, the conjecture is
still open even for k = 2.

Bousquet and Perarnau [6] gave the following bound in the situation when the number
of colors is substantially larger than k + 2.

Theorem 2 (Bousquet and Perarnau [6, Theorem 1]). If G is a k-degenerate graph on n
vertices and c > 2k + 2, then Rc(G) has diameter at most (k + 1)n.

It was also shown by Bartier and Bousquet [4] that Rk+4(G) has diameter O(n) for
every k-degenerate chordal graph G of bounded maximum degree. Another result in this
direction was obtained by the second author [12] by showing that, for every graph G of
maximum average degree at most k+ε (0 6 ε < 1), the reconfiguration graph Rk+2(G) has
diameter O(n(log n)k+1). In particular, for any fixed k, this diameter is O(n2), confirming
Conjecture 1 for this class of graphs.

Planar graphs are 5-degenerate and have maximum average degree less than 6, and
thus the aforementioned results imply that if G is a planar graph with n vertices, then
R8(G) has diameter O(n(log n)7) and R12(G) has diameter at most 6n. This motivates
the following question.

Problem 3. What is the minimum integer κ such that for every planar graph G with n
vertices, Rκ(G) has diameter O(n)?

The object of this paper is to show κ 6 10, improving on the bound 12 following from
Theorem 2.
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Figure 1: A graph obtained by cutting a toroidal drawing of K7 and gluing.

Theorem 4. Let G be a planar graph on n vertices. Then R10(G) has diameter at most
8n.

Consider the coloring of the icosahedron graph D where the opposite vertices get the
same color. This gives a 6-coloring of D where the closed neighborhood of each vertex
contains all 6 colors, and hence this 6-coloring forms an isolated vertex in R6(D). Con-
sequently, R6(G) does not even need to be connected for planar graphs, implying κ > 7.
However, not much is known about R7(G) for planar graphs G. The 5-degenerate graphs
for which R7(G) has quadratic diameter constructed in [3] (paths with four apex vertices)
are non-planar. A natural candidate for a planar graph G with R7(G) of quadratic diam-
eter is as follows: Consider an embedding of K7 on the torus. Cut this drawing along a
non-contractible triangle (that is, a triangle not bounding a disk) and glue together many
copies of the resulting cylinder (Figure 1 shows the graph obtained from gluing three
copies). We obtain a planar graph with a 7-coloring such that the closed neighborhood
of all but six vertices contains all 7 colors, so to recolor this graph, one has to “propa-
gate” from the ends of the cylinder. However, this graph G is 3-degenerate and chordal,
and thus R7(G) in fact has linear diameter by the aforementioned result of Bartier and
Bousquet [4]. Hence, we cannot exclude the possibility that the answer to Problem 3 is
κ = 7.

2 Outline of the proof

In this section, we lay out our strategy for proving Theorem 4. Let us start off by noting
that Theorem 4 will follow as an immediate consequence to the following theorem.
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Theorem 5. Let G be a planar graph. Let α be a 10-coloring of G. Then there exists a
sequence of recolorings from α to some 9-coloring of G that recolors every vertex either
at most once, to a color distinct from 10, or exactly twice, first to the color 10 and then
to a color distinct from 10.

Theorem 4 follows by a standard argument.

Proof of Theorem 4. Let α and β be 10-colorings of G. To prove the theorem, it suffices
to show that we can recolor α to β by at most 8n recolorings.

By Theorem 5, we can recolor α to some 9-coloring α1 of G by at most 2n recolorings
and β to some 9-coloring β1 by at most 2n recolorings. By [16], there exists a partition of
V (G) into an independent set I and a 3-degenerate graph D. From α1 and β1 recolor the
vertices in I to color 10 (the color that is not used in α1 and β1). Let α2 and β2 denote
the restrictions of α1 and β1 to D. Applying Theorem 2, the distance between α2 and
β2 in R9(D) is at most 4|V (D)|, and thus we can recolor α2 to β2 by at most 4|V (D)|
recolorings without using the color 10. This completes the proof.

The rest of this paper will be devoted to the proof of Theorem 5. In order to prove
the theorem, we must first make a few definitions. A scene is a pair (G,α), where G is
a plane graph and α is a 10-coloring of G. We say that a sequence of recolorings from
α to some coloring γ of G is valid if γ uses only colors 1, . . . , 9 and every vertex v of G
is recolored either at most once (to the color γ(v)) or exactly twice, first to the color 10
and then to the color γ(v). We say that the scene (G,α) is recolorable if G admits a valid
sequence of recolorings starting from α.

The scene (G,α) is said to be a minimal counterexample if (G,α) is not recolorable
and all scenes (G′, β) such that

• |V (G′)| < |V (G)|, or

• |V (G′)| = |V (G)| and |E(G′)| > |E(G)|, or

• G′ = G and |β−1(10)| > |α−1(10)|

are recolorable.
Our aim will be to exclude the existence of a minimal counterexample, which will

prove Theorem 5. We begin with an easy proposition.

Lemma 6. If (G,α) is a minimal counterexample, then G is a triangulation and the color
10 appears in the closed neighborhood of every vertex of G under α.

Proof. Suppose that G is not a triangulation; then for some face f of G, there exist
distinct non-adjacent vertices u and v incident with f . If α(u) 6= α(v), we insert the edge
uv. If α(u) = α(v) we identify u and v into a new vertex u′. The resulting graph G′ is
plane and, by minimality, (G′, α) is recolorable (we consider α to be a coloring of G′ by
defining α(u′) = α(u) = α(v)). As any valid sequence of recolorings in G′ easily translates
into a valid sequence of recolorings in G, this shows that G must be a triangulation.
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Suppose that the color 10 does not appear on some vertex v of G or any of its neighbors.
Recolor v to the color 10 and let α′ denote the resulting coloring. By minimality, (G,α′)
is recolorable. It follows, by definition, that (G,α) is recolorable.

We now analyze the structure of a minimal counterexample (G,α) by showing that G
cannot contain a number of induced subgraphs whose vertices are of prescribed degrees
(here and in Section 3). Afterwards, we will show that no such minimal counterexample
exists using the discharging method (see Section 4).

Let H be an induced subgraph of G. By the minimality of (G,α), there exists a valid
sequence of recolorings in G−V (H) from the restriction of α to G−V (H) to some coloring
γ of G− V (H). Let us define a list assignment LH for H by setting

LH(v) = {1, . . . , 9} \
( ⋃
u∈NG(v)\V (H)

{α(u), γ(u)}
)

for each v ∈ V (H). We say that LH is an assignment of available colors to H in (G,α);
let us remark that there may be several different assignments of available colors, corre-
sponding to different colorings of G− V (H).

We have the following proposition. A sequence of recolorings of H is said to be a
once-only recoloring if every vertex of H is recolored at most once. The induced subgraph
H of G is said to be reducible in (G,α) if for every assignment of available colors LH to
H, there exists a once-only recoloring of H from the restriction of α to some LH-coloring
of H.

Lemma 7. In a minimal counterexample (G,α), no induced subgraph of G is reducible.

Proof. Let H be an induced subgraph of G. By minimality, G−V (H) has a valid sequence
of recolorings σ to some coloring γ. Let LH be the corresponding assignment of available
colors to H. Suppose for a contradiction H is reducible. Then there exists a once-only
recoloring σ′ of H from the restriction of α to some LH-coloring γH of H. But σ′ followed
by σ is a valid sequence of recolorings in G. Indeed, recoloring of a vertex v ∈ V (H)
according to σ′ does not conflict with the colors of its neighbors in G − V (H), since
if u ∈ V (G) \ V (H) and uv ∈ E(G), then α(u) 6∈ LH(v). Afterwards, recolorings of
u ∈ V (G) \ V (H) do not conflict with the color of its neighbors v ∈ V (H), since u can
only be recolored to 10 or γ(u) and neither of these colors belongs to LH(v). This is a
contradiction.

It is often convenient to focus just on the sizes of the lists. For a function s : X → N
with V (H) ⊆ X, we say that a list assignment L for H is an s-list assignment if |L(v)| >
s(v) for every v ∈ V (H). Let

sHG (v) = 9− 2(degG v − degH v)

and
sHG,α(v) = 9− 2(degG v − degH v) + |(NG(v) ∩ α−1(10)) \ V (H)|

for v ∈ V (H).
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Remark 8. Notice, by definition, that any assignment of available colors to H in (G,α) is
an sHG,α-list assignment, and thus also an sHG -list assignment.

A motif M consists of a graph HM , a 10-coloring αM of HM , and an assignment LM of
subsets of {1, . . . , 9} to vertices of HM . For an induced subgraph F of HM , a motif M ′ is
an F -restriction of M if HM ′ = F , αM ′ is the restriction of αM to F , and LM ′(v) ⊆ LM(v)
for v ∈ V (F ). The motif M is oo-recolorable (to γ) if there exists a once-only recoloring
of HM from αM to an LM -coloring γ of HM . For a scene (G,α) and an induced subgraph
H of G, we say a motif M is induced by H if HM = H and αM is the restriction of α to
H, and LH is an sHG,α-list assignment. We use the following easy consequence of Lemma 7
and Remark 8 to constrain minimal counterexamples.

Lemma 9. Let (G,α) be a minimal counterexample. If H is an induced subgraph of G,
then there exist a motif M induced by H in (G,α) that is not oo-recolorable.

Proof. Let αH be the restriction of α to H. By Lemma 7, H is not reducible, and thus for
some assignment LH of available colors to H in (G,α), there does not exist any once-only
recoloring from αH to an LH-coloring of H. Let M be the motif with HM = H, αM = αH ,
and LM = LH . Then M is not oo-recolorable, and since LH is an sHG,α-list assignment by
Remark 8, the motif M is induced by H.

In the next section, we show a number of motifs that are oo-recolorable, and thus
they cannot be induced in a minimal counterexample. Before we do that, let us point
out the aspects of our argument that we consider to be novel: Our original plan was to
restrict ourselves to once-only recolorings; this enables us to apply the method of reducible
configurations which has not been previously used in the area, since we only need to forbid
two colors (the initial and the final color) per neighbor outside of the configuration. A bit
of a breakthrough for us then was the seemingly counterintuitive notion of valid sequences
of recolorings, where we introduce new vertices of color 10 in order to eventually eliminate
the color 10. This enables us to assume that color 10 appears in the closed neighborhood
of every vertex, which is extremely useful in proving the reducibility of configurations.

3 Structure of minimal counterexample

In this section, we show in a series of lemmas that if (G,α) is a minimal counterexample,
then G has minimum degree at least five and does not contain any of the graphs in Figure
2 as induced subgraphs with the prescribed degrees of vertices. Let us start with a trivial
observation.

Observation 10. Suppose M is a motif. If |V (HM)| = 1 and |LM(v)| > 1 for the unique
vertex v ∈ V (HM), then M is oo-recolorable.

Corollary 11. If (G,α) is a minimal counterexample, then G has minimum degree at
least five.
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Proof. Consider a vertex v ∈ V (G). By Lemma 9, there exists a motif M induced by v
that is not oo-colorable, and thus |LM(v)| = 0 by Observation 10. But |LM(v)| > svG(v) =
9− 2 degG v, implying degG v > 5.

In order to facilitate the proofs that the graphs in Figure 2 are reducible, we first require
a number of auxiliary lemmas. Consider a motif M . For brevity, let V (M) = V (HM),
and for v ∈ V (M), let NM(v) = NHM

(v) and degM v = degHM
v. Let us also define

deg′M(v) = degM v−|α−1(10)∩NM(v)| as the number of neighbors of v in M whose color
is not 10. For a vertex v ∈ V (M), let M − v denote the (HM − v) restriction of M with
LM−v equal to the restriction of LM to HM − v.

Lemma 12. Let M be a motif and let v be a vertex of M . If |LM(v)| > degM v+ deg′M v
and M − v is oo-recolorable, then M is oo-recolorable.

Proof. By assumptions, M − v is oo-recolorable to some coloring γ, via a sequence σ
of recolorings. Since |LM(v)| > degM v + deg′M v and 10 6∈ LM(v), there exists a color
c ∈ LM(v) \

⋃
u∈NM (v){α(u), γ(u)}. Hence, we can first recolor v to c and then perform

the recolorings according to σ, showing that M is oo-recolorable.

Similarly, we obtain the following observation.

Lemma 13. Let M be a motif and let v be a vertex of M . If αM(v) = 10 and |LM(v)| >
degM v and M − v is oo-recolorable, then M is oo-recolorable.

Proof. By assumptions, M − v is oo-recolorable to some coloring γ, via a sequence σ of
recolorings. We can first perform the recolorings σ in M , as they do not conflict with the
color 10 of v. Finally, we can recolor v to a color in LM(v)\

⋃
u∈NM (v){γ(u)}, which exists

since |L(v)| > degM v. This shows M is oo-recolorable.

For a motif M , a vertex v ∈ V (HM), and a color c, let M − (v → c) denote the
(HM − v)-restriction of M with LM−(v→c)(u) equal to LM(u) \ c for u ∈ NM(v) and to
LM(u) for all other vertices.

Lemma 14. Let M be a motif, let v be a vertex of M , and consider any color c ∈
LM(v) \

⋃
u∈NM (v){α(u)}. If the motif M − (v → c) is oo-recolorable, then M is oo-

recolorable.

Proof. By assumptions, M − (v → c) is oo-recolorable via a sequence σ of recolorings.
We can first recolor v to c (since no neighbor of v has color c) and then perform the
recolorings σ in M . For a neighbor u of v, the recoloring of u according to σ does not
conflict with the color c, since c 6∈ LM−(v→c)(u). This shows M is oo-recolorable.

In particular, repeatedly applying Lemma 14 until a motif with single vertex is ob-
tained and using Observation 10, we have the following consequence.

Corollary 15. Let M be a motif. If |LM(v)| > degM v for every v ∈ V (M), then M is
oo-recolorable.
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For a motif M , a vertex v ∈ V (M), and a color c ∈ LM(v), let M	 (v → c) denote the
(HM −v)-restriction of M with LM	(v→c)(u) equal to LM(u)\ ({αM(v), c}) for u ∈ NM(v)
and to LM(u) for all other vertices. In case that |LM(v)| = 1, we write M 	 v for brevity,
since the color c is uniquely determined in this case. Let us also remark that in case that
αM(v) = 10, we have M 	 (v → c) = M − (v → c).

Lemma 16. Let M be a motif, let v be a vertex of M , and consider any color c ∈ LM(v).
If the motif M 	 (v → c) is oo-recolorable, then M is oo-recolorable.

Proof. By assumptions, M 	 (v → c) is oo-recolorable via a sequence σ of recolorings.
This sequence of recolorings can also be performed in M , since no neighbor of v can be
assigned the color αM(v). Finally, we can recolor v to c, since no neighbor may end up
with the color c. This shows M is oo-recolorable.

We will generally repeatedly use the preceding claims to simplify the motif obtained by
Lemma 9, often to one contradicting Corollary 15. For brevity, let us introduce a notation
for this kind of arguments. Suppose m > |V (M) is a positive integer and V (M) = {vi : i ∈
I} for some I ⊆ {1, . . . ,m}. A vector (s1, . . . , sm) describes M if si is an integer smaller
or equal to |L(vi)| for i ∈ I and si = • for i ∈ {1, . . . ,m} \ I. Furthermore, a segment of
this vector can be enclosed in square brackets; this indicates that there exists an index i in

this segment such that αM(vi) = 10. By M ∼ (s1, . . . , si, . . . , sm)
Ln−→ (s′1, . . . , s

′
m) ∼ M ′,

we mean the following: The motif M is described by the vector (s1, . . . , sm), and applying
Lemma n with v = vi, we obtain a motif M ′ described by (s′1, . . . , s

′
m), such that if M is

not oo-colorable, then M ′ also is not oo-colorable. In case Lemma 14 or Lemma 16 with
more than one color choice is applied, we also specify the color c over the arrow. In case
the resulting motif M ′ is not further discussed (e.g., a contradiction with Corollary 15 is
obtained), the ∼ M ′ part is omitted. We can also chain several such statements in the
natural way. In all the arguments, we without loss of generality assume that |L(vi)| = si,
implicitly removing extra colors from the lists if needed.

Recall that by Lemma 6, the color 10 appears in the closed neighborhood of every
vertex of a minimal counterexample. The proofs of Lemmas 17–23 below mainly rely on
Observation 10 and Corollary 15 (which, in turn, relies on Lemma 14).

Lemma 17. Let (G,α) be a minimal counterexample and let v1 and v2 be adjacent vertices
of G. If deg v1 = deg v2 = 5, then either α(v1) = 10 or α(v2) = 10.

Proof. By Lemma 9, there exist a motif M induced by H = G[{v1, v2}] in (G,α) that is
not oo-recolorable. If neither u nor v has color 10, then since the color 10 appears in the
closed neighborhood of every vertex, we have sHG,α(u) > 2 and sHG,α(v) > 2. However, this
contradicts Corollary 15.

We also need the following three easy observations.

Lemma 18. Let M be a motif such that HM is an edge with vertices v1 and v2. If M
is described by (2, 1), then M is oo-recolorable unless α−1M (10) ∩ V (M) = ∅, LM(v1) =
{αM(v1), αM(v2)} and LM(v2) = {αM(v1)}.
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Proof. Suppose that M is not oo-recolorable. If there exists a color c2 ∈ LM(v2) \
{αM(v1)}, then M ∼ (2, 1)

L14,c2−−−→ (1, •), contradicting Observation 10. It follows that
LM(v2) = {αM(v1)}. Hence, if there exists a color c1 ∈ LM(v1) \ {αM(v1), αM(v2)}, then

M ∼ (2, 1)
L14,c1−−−→ (•, 1), contradicting Observation 10. Therefore, we have LM(v1) =

{αM(v1), αM(v2)}, and in particular α−1M (10) ∩ V (M) = ∅.

Lemma 19. Let M be a motif such that HM is a path v1v2v3. If M is described by (2, 2, 2)
and α−1(10) ∩ V (HM) 6= ∅, then M is oo-recolorable.

Proof. Suppose for a contradiction M is not oo-recolorable and that α−1(10)∩ V (HM) 6=
∅. If α(v1) = 10, then M ∼ ([2], 2, 2)

L13−−→ (•, 2, 2), contradicting Corollary 15. It follows

by symmetry that α(v2) = 10; but then M ∼ (2, [2], 2)
L12−−→ (•, [2], •), contradicting

Observation 10.

Lemma 20. Let M be a motif such that HM is a path v1v2v3. If M is described by
(1, 4, 1), then M is oo-recolorable.

Proof. Suppose M is not oo-recolorable. If there exists a color c1 ∈ LM(v1) \ {αM(v2)},
then M ∼ (1, 4, 1)

L14,c1−−−→ (•, 3, 1)
L12−−→ (•, •, 1), contradicting Observation 10. So we

can assume by symmetry that LM(v1) = LM(v3) = {αM(v2)}. But then for c2 ∈
LM(v2) \ {αM(v1), αM(v2), αM(v3)}, we have M ∼ (1, 4, 1)

L14,c2−−−→ (1, •, 1), contradicting
Corollary 15.

We now make two observations about triangles in a minimal counterexample.

Lemma 21. Let (G,α) be a minimal counterexample. If G contains a triangle T with
vertices v1, v2, and v3 such that v1 has degree five and v2 and v3 have degree at most six,
then α−1(10) ∩ V (T ) 6= ∅.

Proof. By Lemma 9, there exists a motif M induced by T in (G,α) that is not oo-
recolorable. Suppose for a contradiction that no vertex of T has color 10. Since the
color 10 appears in the closed neighborhood of every vertex, we have sTG,α(v1) > 4 and
sTG,α(v2), s

T
G,α(v3) > 2. If there existed a color c ∈ LM(v2) \ {α(v1), α(v3)}, we would

have M ∼ (4, 2, 2)
L14,c−−−→ (3, •, 1)

L12−−→ (•, •, 1), contradicting Observation 10. Therefore,
LM(v2) = {α(v1), α(v3)}, and by symmetry, LM(v3) = {α(v1), α(v2)}. Then, letting

c′ be a color in LM(v1) \ {α(v1), α(v2), α(v3)}, we have M ∼ (4, 2, 2)
L14,c′−−−→ (•, 2, 2),

contradicting Corollary 15.

Lemma 22. Let M be a motif such that HM is a triangle with vertices v1, v2, and
v3. If M is described by (4, 3, 1), then M is oo-recolorable, and if M is described by
(3, 3, 1) or (3, 3, 2), then M is oo-recolorable unless α−1M (10) = ∅ and LM(v1) = LM(v2) =
{αM(v1), αM(v2), αM(v3)} and LM(v3) ⊆ {αM(v1), αM(v2)}.
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Proof. Suppose first that M is described by (3, 3, 1) or (3, 3, 2), and that M is not oo-

recolorable. If there exists c3 ∈ LM(v3) \ {αM(v1), αM(v2)}, then M ∼ (3, 3, 1)
L14,c3−−−→

(2, 2, •), contradicting Corollary 15. Hence, we have LM(v3) ⊆ {αM(v1), αM(v2)}, and
by symmetry we can assume αM(v1) ∈ LM(v3). If there exists a color c1 ∈ LM(v1) \
{αM(v1), αM(v2), αM(v3)}, then we can first recolor v1 by c1, then v3 by αM(v1) and
finally v2 by a color in LM(v2) \ {αM(v1), c1}, showing that M is oo-recolorable, a contra-
diction. Therefore LM(v1) = {αM(v1), αM(v2), αM(v3)}, and in particular α−1M (10) = ∅.
If LM(v2) 6= LM(v1), then there would exist c2 ∈ LM(v2) \ {αM(v1), αM(v2), αM(v3)}, and

M ∼ (3, 3, 1)
L14,c2−−−→ (3, •, 1)

L12−−→ (•, •, 1), contradicting Observation 10. This gives the
characterization of non-oo-recolorable motifs described by (3, 3, 1) or (3, 3, 2).

Suppose now M is described by (4, 3, 1); then we can delete a color from LM(v1) to
obtain a motif M ′ described by (3, 3, 1), but with LM ′(v1) 6= LM ′(v2). The motif M ′ is
oo-recolorable by the previous paragraph, and thus M is oo-recolorable as well.

We also require the following observation on diamonds in a minimal counterexample.

Lemma 23. Let (G,α) be a minimal counterexample. Let v1, . . . , v4 be distinct vertices
of G such that the subgraph F of G induced by {v1, v2, v3, v4} contains all possible edges
except for v2v4. If deg v1 6 7, deg v2 6 5 and deg v3, deg v4 6 6, then α−1(10)∩V (F ) 6= ∅.

Proof. By Lemma 9, there exists a motif M induced by F in (G,α) that is not oo-
recolorable. Suppose for a contradiction no vertex of F has color 10. Since the color
10 appears in the closed neighborhood of every vertex, M is described by (2, 4, 4, 2). If

there exists a color c4 ∈ LM(v4) \ {α(v1), α(v3)}, then M ∼ (2, 4, 4, 2)
L14,c4−−−→ (1, 4, 3, •),

contradicting Lemma 22. Therefore LM(v4) = {α(v1), α(v3)}. If there exists a color c1 ∈
LM(v1) \ {α(v2), α(v3), α(v4}, then M ∼ (2, 4, 4, 2)

L14,c1−−−→ (•, 3, 3, 1)
L12−−→ (•, •, 3, 1)

L12−−→
(•, •, •, 1), contradicting Observation 10. Hence, LM(v1) ⊆ {α(v2), α(v3), α(v4}. If there

exists a color c3 ∈ LM(v3) \ {α(v1), . . . , α(v4)}, then M ∼ (2, 4, 4, 2)
L14,c3−−−→ (2, 3, •, 2)

L12−−→
(2, •, •, 2), contradicting Corollary 15. Therefore, LM(v3) = {α(v1), . . . , α(v4)}, and in
particular α(v2) 6= α(v4). Choose a color c2 ∈ LM(v2) \ {α(v1), α(v2), α(v3)}.

• If α(v2) ∈ LM(v1), we first recolor v2 to c2, then v1 to α(v2), and finally v4 to α(v1).

• Otherwise, LM(v1) = {α(v3), α(v4)}. We first recolor v2 to c2, then v3 to α(v2), then
v1 to α(v3), and finally v4 to α(v1).

We are now ready to demonstrate that the graphs in Figure 2 are reducible.

Lemma 24. If (G,α) is a minimal counterexample, then G contains none of the induced
subgraphs with prescribed vertex degrees depicted in Figure 2.

Proof. Suppose for a contradiction C is one of the graphs depicted in Figure 2 and con-
tained in G as an induced subgraph with the prescribed degrees of vertices. By Lemma 9,
there exist a motif M induced by C in (G,α) that is not oo-recolorable. We prove that
each of the cases are reducible separately, starting with C1 and working our way towards
C16. We fix the labeling of vertices as indicated in Figure 2.
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C1 C2 C3 C4

C5 C6 C7 C8

C9 C10 C11 C12

C13 C14 C15 C16

Figure 2: Reducible induced subgraphs, where � denotes a vertex of degree at most seven,
• denotes a vertex of degree five and · denotes a vertex of degree at most six.

(C1) By Lemma 17, either α(v1) = α(v3) = 10, or α(v2) = 10. In the former case,

M ∼ ([1], 3, [1])
L12−−→ (1, •, 1), contradicting Corollary 15. In the latter case, M ∼

(1, [3], 1)
L13−−→ (1, •, 1), again contradicting Corollary 15.

(C2) By Lemma 17 and symmetry, we can assume α(v3) = 10. But then

M ∼ (1, 3, [3])
L13−−→ (1, 3, •) L12−−→ (1, •, •),

contradicting Observation 10.

(C3) If α(v2) = α(v4) = 10, then M ∼ (3, [3], 3, [3])
L13−−→ (3, •, 3, •), contradicting

Corollary 15. Hence, by Lemma 21 and symmetry, we can assume α(v3) = 10.
Now, there exists a color c ∈ LM(v1) \ {α(v2), α(v4)}. However, then M ∼
(3, 3, [3], 3)

L14,c−−−→ (•, 2, [2], 2), contradicting Lemma 19.

(C4) If α(v1) = 10, then M ∼ ([5], 1, 3, 5, 1)
L13−−→ (•, 1, 3, 5, 1)

L12−−→ (•, 1, 3, •, 1)
L12−−→

(•, 1, •, •, 1), contradicting Corollary 15. If α(v3) = α(v5) = 10, then

M ∼ (5, 1, [3], 5, [1])
L12−−→ (5, 1, [3], •, [1])

L12−−→ (•, 1, [3], •, 1)
L13−−→ (•, 1, •, •, 1),
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contradicting Corollary 15. Hence, Lemma 21 implies α(v4) = 10, and thus

M ∼ (5, 1, 3, [5], 1)
L13−−→ (5, 1, 3, •, 1) ∼ M ′. Let {c5} = LM ′(v5). We have

M ′ ∼ (5, 1, 3, •, 1)
L16−−→ (3, 1, 3, •, •), and thus Lemma 22 implies that LM(v1)

is the disjoint union of LM(v3) = {α(v1), α(v2), α(v3)} and {α(v5), c5}. In par-

ticular, c5 6= α(v1), and thus M ′ ∼ (5, 1, 3, •, 1)
L14,c5−−−→ (4, 1, 3, •, •), contradicting

Lemma 22

(C5) If α(v1) = 10, then M ∼ ([5], 1, 3, 3, 1)
L13−−→ (•, 1, 3, 3, 1)

L12−−→ (•, 1, •, •, 1), con-

tradicting Corollary 15. If α(v3) = α(v4) = 10, then M ∼ (5, 1, [3], [3], 1)
L13−−→

(5, 1, •, •, 1)
L12−−→ (•, 1, •, •, 1), again contradicting Corollary 15. If α(v3) = α(v5) =

10, then M ∼ (5, 1, [3], 3, [1])
L13−−→ (5, 1, •, 3, [1])

L16−−→ (3, •, •, 3, [1]), contradict-
ing Lemma 22. Hence, by Lemma 21 and symmetry, we can assume α(v2) =
α(v5) = 10. But then, for any c3 ∈ LM(v3) \ (LM(v2) ∪ {α(v1)}) and c4 ∈
LM(v4) \ (LM(v3) ∪ {α(v1)}), M ∼ (5, [1], 3, 3, [1])

L14,c3−−−→∼ (4, [1], •, 3, [1])
L14,c4−−−→

(3, [1], •, •, [1])
L12−−→ (•, [1], •, •, [1]), contradicting Corollary 15.

(C6) If α(v1) = 10, then M ∼ ([5], 3, 3, 3, 3)
L13−−→ (•, 3, 3, 3, 3), contradicting Corol-

lary 15. Note that at most one of the adjacent vertices v3 and v4 can have color
10. Hence, by Lemma 21 and symmetry, we can assume α(v2) = 10. But then,

for any c3 ∈ LM(v3) \ {α(v1), α(v4)}, M ∼ (5, [3], 3, 3, 3])
L13−−→ (5, •, 3, 3, 3)

L14,c3−−−→
(4, •, •, 2, 3), contradicting Lemma 22.

(C7) If α(v2) = 10, then M ∼ (3, [3], 5, 3, 3)
L13−−→ (3, •, 5, 3, 3)

L12−−→ (3, •, •, 3, 3), which
contradicts Corollary 15. Hence, by Lemma 17 we have α(v3) = 10. It follows that

M ∼ (3, 3, [5], 3, 3)
L13−−→ (3, 3, •, 3, 3)

L12−−→ (3, •, •, 3, 3), which again contradicts
Corollary 15.

(C8) If α(v1) = 10, then

M ∼ ([7], 3, 3, 3, 3, 3)
L13−−→ (•, 3, 3, 3, 3, 3),

which contradicts Corollary 15. If α(v2) = α(v6) = 10, then

M ∼ (7, [3], 3, 3, 3, [3])
L13−−→ (7, •, 3, 3, 3, •) L12−−→ (•, •, 3, 3, 3, •),

again contradicting Corollary 15. If α(v3) = α(v5) = 10, choose c1 ∈ LM(v1) \
{α(v2), α(v4), α(v6)}; we have

M ∼ (7, 3, [3], 3, [3], 3)
L14,c1−−−→ (•, 2, [2], 2, [2], 2)

L12−−→ (•, •, [2], 2, [2], •),

contradicting Lemma 19.

Hence, by Lemma 21 and symmetry, we can assume α(v2) = α(v5) = 10. For c3 ∈
LM(v3) \ {α(v1), α(v4)}, we have M ∼ (7, [3], 3, 3, [3], 3)

L13−−→ (7, •, 3, 3, [3], 3)
L14,c3−−−→

(6, •, •, 2, [3], 3)
L12−−→ (•, •, •, 2, [3], 3), contradicting Corollary 15.
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(C9) If α(v1) = 10, then we have M ∼ ([7], 3, 3, 3, 5, 3, 1)
L13−−→ (•, 3, 3, 3, 5, 3, 1)

L12−−→
(•, 3, 3, 3, •, 3, 1)

L12−−→ (•, 3, 3, 3, •, •, 1), which contradicts Corollary 15. Therefore
by Lemma 23 we can assume that at least one of v2, v3, v4 has color 10 and at
least one of v5, v6, v7 has color 10. Choose a color c6 ∈ LM(v6) \ {α(v6), α(v7)},
let LM(v7) = {c7}, and choose a color c1 ∈ LM(v1) \ ({c6, c7} ∪

⋃7
i=2{α(vi)}).

Then M ∼ (7, [3, 3, 3], [5, 3, 1])
L14,c1−−−→ (•, [2, 2, 2], [4, 2, 1]) ∼ M ′, where LM ′(v6) 6=

{α(v6), α(v7)}.
If α(v5) = 10, then we can continue with

M ′ ∼ (•, [2, 2, 2], [4], 2, 1)
L13−−→ (•, [2, 2, 2], •, 2, 1)

L18−−→ (•, [2, 2, 2], •, •, •),

which contradicts Lemma 19. If α(v6) = 10, then M ′ ∼ (•, [2, 2, 2], 4, [2], 1)
L14−−→

(•, [2, 2, 2], 4, [1], •) L16−−→ (•, [2, 2, 2], 3, •, •) L12−−→ (•, [2, 2, 2], •, •, •), which again con-
tradicts Lemma 19. Finally, suppose α(v7) = 10. Then

M ′ ∼ (•, [2, 2, 2], 4, 2, [1])
L16−−→ (•, [2, 2, 2], 4, 1, •) ∼M∗.

If α(v4) = 10, then

M∗ ∼ (•, 2, 2, [2], 4, 1, •) L12−−→ (•, 2, 2, [2], •, 1, •) L19−−→ (•, •, •, •, •, 1, •),

which contradicts Observation 10. If α(v3) = 10, then M∗ ∼ (•, 2, [2], 2, 4, 1, •) L12−−→
(•, •, [2], 2, 4, 1)

L13−−→ (•, •, •, 2, 4, 1), which contradicts Lemma 20. If α(v2) = 10,

then M∗ ∼ (•, [2], 2, 2, 4, 1, •) L13−−→ (•, •, 2, 2, 4, 1)
L14−−→ (•, •, •, 1, 4, 1), which again

contradicts Lemma 20.

(C10) By Lemma 17 and symmetry, we can assume v5 has color 10. By Lemma 23,

it follows that v2 or v3 has color 10. We have M ∼ (7, [1, 3], 5, [5], 3, 1)
L13−−→

(7, [1, 3], 5, •, 3, 1)
L12−−→ (7, [1, 3], •, •, 3, 1) ∼ M ′. Let LM ′(vi) = {ci} for i ∈ {2, 7}

and choose c6 ∈ LM ′(v6) \ {α(v6), α(v7)}. Then there exists a color c1 ∈ LM ′(v1) \
{c2, c6, c7, α(v2), α(v3), α(v6), α(v7)}, and

M ′ ∼ (7, [1, 3], •, •, 3, 1)
L14,c1−−−→ (•, [1, 2], •, •, 2, 1) ∼M∗,

where LM∗(v6) 6= {α(v6), α(v7)}. This contradicts Lemma 18.

(C11) If α(v1) = 10, then M ∼ ([7], 3, 3, 3, 3, 3, 3)
L13−−→ (•, 3, 3, 3, 3, 3, 3), contradicting

Corollary 15. Lemma 23 thus implies α−1(10) ∩ {v2, v3, v4} 6= ∅ and α−1(10) ∩
{v5, v6, v7} 6= ∅. Now,

• for each i ∈ {2, 7}, if α(vi) = 10, apply Lemma 13 to vi, and
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• for all i ∈ {2, . . . , 7}, if α(vi) 6= 10 and deg′M(vi) 6 2, then choose a color
ci ∈ LM(vi) \ α(NM(vi)) and apply Lemma 14.

Let M ′ denote the resulting motif. Note that one of the two cases always applies
for i = 2 and i = 7, and thus v2, v7 6∈ V (M ′).

Suppose that for some i ∈ {3, 4}, we have vi ∈ V (M ′) and α(vi) 6= 10. By the
construction of M ′, we have deg′M(vi) = 3, and thus α(vi−1) 6= 10 6= α(vi+1).
Since α−1(10) ∩ {v2, v3, v4} 6= ∅, it follows that i = 4 and α(v2) = 10. Hence,
the number of vertices vi ∈ V (M ′) such that i ∈ {3, 4} and α(vi) 6= 10 is at most
|α−1(10) ∩ {v2}|. Symmetrically, the number of vertices vi ∈ V (M ′) such that
i ∈ {5, 6} and α(vi) 6= 10 is at most |α−1(10) ∩ {v7}|.
Therefore, deg′M ′(v1) 6 |α−1(10)∩{v2, v7}|. On the other hand, we have |LM(v1)| =
7 = |V (M)|. Note that during the construction of M ′, the colors are removed from
the list of v1 only in the second case; hence,

|LM ′(v1)| > |LM(v1)| − (|V (M)| − |V (M ′)|) + |α−1(10) ∩ {v2, v7}|
= |V (M ′)|+ |α−1(10) ∩ {v2, v7}| > degM ′(v1) + deg′M ′(v1).

Therefore, M ′ is oo-recolorable by Lemma 12 applied to v1 and by Corollary 15.
This is a contradiction.

(C12) If α(v1) = 10, let c1 ∈ LM(v1). We have

M ∼ ([5], 3, 3, 5, 3, 3)
L16,c1−−−→ (•, 2, 2, 4, 2, 2)

L14−−→ (•, •, 1, 4, 1, •),

contradicting Lemma 20. If α(v4) = 10, we have

M ∼ (5, 3, 3, [5], 3, 3)
L13−−→ (5, 3, 3, •, 3, 3)

L14−−→ (•, 2, 2, •, 2, 2),

which contradicts Corollary 15. If α(v3) = 10, then M ∼ (5, 3, [3], 5, 3, 3)
L14−−→

(•, 2, [2], 4, 2, 2)
L12−−→ (•, 2, [2], •, 2, 2), contradicting Corollary 15. The case α(v5) =

10 is symmetric. Therefore, Lemma 23 implies α(v2) = α(v6) = 10, and thus

M ∼ (5, [3], 3, 5, 3, [3])
L13−−→ (5, •, 3, 5, 3, •), contradicting Corollary 15.

(C13) By Lemma 17, either α(v2) = 10 or α(v3) = 10, and thus either

M ∼ (5, [3], 5, 3, 3, 1)
L13−−→∼ (5, •, 5, 3, 3, 1)

L12−−→ (5, •, •, 3, 3, 1) ∼M ′,

or
M ∼ (5, 3, [5], 3, 3, 1)

L13−−→∼ (5, 3, •, 3, 3, 1)
L12−−→ (5, •, •, 3, 3, 1) ∼M ′.

Let {c6} = LM ′(v6); we have M ′ ∼ (5, •, •, 3, 3, 1)
L16,c6−−−→ (3, •, •, 3, 1, •) ∼M∗, and

by Lemma 22, we have LM∗(v1) = LM ′(v4) = {α(v1), α(v4), α(v5)}. Consequently,
LM ′(v1) = {α(v1), α(v4), α(v5), α(v6), c6}, and in particular c6 6∈ {α(v1), α(v5)}.
Therefore M ′ ∼ (5, •, •, 3, 3, 1)

L14,c6−−−→ (4, •, •, 3, 2, •), contradicting Lemma 22.
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(C14) By Lemma 17, either α(v2) = 10 or α(v3) = 10, and thus either

M ∼ (5, [3], 5, 3, 1, 1)
L13−−→∼ (5, •, 5, 3, 1, 1)

L12−−→ (5, •, •, 3, 1, 1) ∼M ′,

or
M ∼ (5, 3, [5], 3, 1, 1)

L13−−→∼ (5, 3, •, 3, 1, 1)
L12−−→ (5, •, •, 3, 1, 1) ∼M ′.

Let {c6} = LM ′(v6); we have M ′ ∼ (5, •, •, 3, 1, 1)
L16,c6−−−→ (3, •, •, 3, 1, •) ∼M∗, and

by Lemma 22, we have LM∗(v1) = LM ′(v4) = {α(v1), α(v4), α(v5)}. Consequently,
LM ′(v1) = {α(v1), α(v4), α(v5), α(v6), c6}, and in particular c6 6= α(v1). Therefore

M ′ ∼ (5, •, •, 3, 1, 1)
L14,c6−−−→ (4, •, •, 3, 1, •), contradicting Lemma 22.

(C15) In this case M is described by (9, 3, 3, 3, 3, 3, 3, 3). Repeatedly apply Lemma 14
to the vertices v2, . . . , v8 as long as there exists i ∈ {2, . . . , 8} such that the list
of vi contains a color not appearing on its neighbors; let M ′ denote the resulting
motif. Note that |LM ′(v1)| > |V (M ′)| and that |LM ′(vi)| = degM ′ vi and LM ′(vi) ⊆
α(V (M ′)) for i ∈ {2, . . . , 8} such that vi ∈ V (M ′). Hence, there exists a color
c1 ∈ |LM ′(v1)| \α(V (M ′)), and this color does not appear in the lists of vertices of
{v2, . . . , v8}∩V (M ′). Applying Lemma 14, M ′−(v1 → c1) contradicts Corollary 15.

(C16) By Lemma 17 and symmetry, we can assume that α(v5) = 10. If α−1(10) ∩
{v2, v3} 6= ∅, then M ∼ (3, [3, 1], 3, [3])

L13−−→ (3, [3, 1], 3, •) L12−−→ (3, [3, 1], •, •), which
contradicts Lemma 22. Therefore, the color 10 does not appear in the closed
neighborhood of v2 in C16. Since the color 10 appears in the closed neighborhood

of every vertex in G, we have sCG,α(v2) > 4, and thus M ∼ (3, 4, 1, 3, [3])
L13−−→

(3, 4, 1, 3, •) L12−−→ (3, 4, 1, •, •), which contradicts Lemma 22.

4 Discharging phase

Consider a plane triangulation G, a vertex v ∈ V (G) of degree k > 3, and its neighbors
v1, . . . , vk in the clockwise order around G. We say that the subgraph of G consisting of
the cycle v1 . . . vk, the vertex v, and the edges vvi for i = 1, . . . , k is a wheel, v is its center
and v1, . . . , vk its rim. Note that a wheel is not necessarily an induced subgraph of G.
Let T be the triangle bounding the outer face of G. Let C be a graph and d : V (C)→ N
a function assigning a prescribed degree to each vertex of C. We say that C with the
prescribed degrees d appears in G if there exists a wheel W in G and an injective function
f : V (C)→ V (W ) such that

• for distinct x, y ∈ V (C), xy is an edge of C if and only if f(x)f(y) is an edge of W ,

• for all x ∈ V (C), degG f(x) 6 d(x), and

• f(V (C)) ∩ V (T ) = ∅.
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Hence, C is an induced subgraph of W , but the subgraph C of G is not necessarily induced
(since W may not be an induced subgraph of G). Let us remark that the last technical
condition from the definition of appearance will be later used to deal with this issue.

Lemma 25. Suppose G is a plane triangulation such that every vertex not incident with
the outer face of G has degree at least five. If |V (G)| > 4, then one of the graphs with
prescribed degrees depicted in Figure 2 appears in G.

Proof. Suppose for a contradiction none of these graphs appears in G. We assign the
initial charge ch0(v) = 10 · deg v − 60 to each vertex v of G. Since G is a triangulation,
we have |E(G)| = 3|V (G)| − 6 by Euler’s formula, and thus∑

v∈V (G)

ch0(v) = 20|E(G)| − 60|V (G)| = −120. (1)

A vertex is big if it either has degree at least 7 or it is incident with the outer face of
G, medium if it has degree six and is not incident with the outer face of G, and small if
it has degree five and is not incident with the outer face of G.

Our general aim will be to show that, provided G does not contain any of the graphs
depicted in Figure 2, we can redistribute the charge of vertices so that the total of their
final charges violates (1), and this contradiction will clearly complete the proof.

Let us now describe the redistribution rules. Let us remark that for a rule sending
some amount of charge from a vertex v to another vertex u, we also specify faces incident
with v through which the charge leaves v, and an edge e incident with u along which
the charge arrives to u. Additionally, we specify a face incident with e through which
the charge passes. This is for accounting purposes—e.g., in order to bound the amount
of charge leaving a vertex, we will bound the amount of charge which leaves the vertex
through each incident face.

(R1) A big vertex v sends 2 units of charge to each adjacent small vertex u along the edge
vu; of this charge, one unit leaves v and passes through one of the faces incident with
the edge uv, while the other unit leaving v passes through the other face incident
with uv.

(R2) Suppose vux is a face of G, v is big, u is small and x is medium or small. Then v
sends 1 unit of charge to u; the charge leaves v and passes through the face vux to
arrive to u along the edge xu.

(R3) Suppose v1, . . . , vm for some m ∈ {3, . . . , 6} are consecutive neighbors of a medium
vertex x in the clockwise or the counterclockwise order, v1 is small, v2, . . . , vm−1 are
medium and vm is big. Then vm sends 1 unit of charge to v1; the charge leaves vm
through the face xvm−1vm and passes through the face xv1v2 to arrive to v1 along
the edge v2v1.

Note that (R2) applies in addition to the two units of charge sent by v to u by (R1), but
the charge arrives to u along a different edge. In case x is small, the charge is also being
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sent from v to x by (R2) with the roles of u and x exchanged. Furthermore, note that
(R3) may possibly send charge from vm to v1 twice around the same vertex x, once in
the clockwise direction, once in the counterclockwise one (when x is the center of a wheel
whose rim contains v1 and vm and every other vertex of the rim is medium); similarly,
note that (R3) may also possibly send charge to v1 twice through the face xv1v2 (when
xv1v2 is adjacent to another face vmxv2 and v1vm 6∈ E(G) – thus, vm would send a unit
of charge clockwise around x and another unit of charge anticlockwise around v2, where
v2 here plays the role of x).

We now analyze the final charge ch(v) of each vertex v of G after the redistribution
of the charge. Clearly, for a medium vertex v, we have ch(v) = ch0(v) = 0.

Consider now a small vertex z. We claim that for each edge e = wz incident with z
and each face f = wzx incident with e, a unit of charge passes through f to arrive to z
along e, and thus ch(z) = ch0(z) + 10 × 1 = 0. Indeed, if w is big, then this is the case
by (R1). If w is not big and x is big, then a unit of charge passing through f arrives to
z along e from x by (R2). If neither w nor x is big, then since C2 does not appear in G,
both of them are medium. Since C4 does not appear in G, x has a neighbor y distinct
from z that is not medium. Let v1 = z, v2 = w, v3, . . . , vm be the neighbors of x in
order, where v3, . . . , vm−1 are medium and vm is not medium. Since C3, C6, C8 and C2

do not appear in G, the vertex vm is not small, and thus vm is big. Consequently, a unit
of charge passing through f arrives to z along e from vm by (R3).

Suppose now v is a vertex of degree d > 7 not incident with the outer face of G. For
a face f = vxy, let tv(f) denote the total amount of charge that leaves v through f ; in
the following, we omit the subscript v as long as the vertex v is fixed. If both x and y
are small, then t(f) = 4 since two units leave through f by (R1), one arriving along the
edge vx and the other along vy, and two by (R2), arriving along the edge xy in both
directions. If x is small and y is medium or vice versa, then t(f) = 2 since one unit leaves
through f by (R1) and one by (R2). If both x and y are medium, then t(f) 6 2, since
at most two units leave through f by (R3). If x is small and y is big or vice versa, then
t(f) = 1, since only one unit leaves through f by (R1). Otherwise, t(f) = 0.

Furthermore, consider the faces f1 and f2 following f in the clockwise order around v.
Since C1 does not appear in G, if t(f) = 4, then t(f1) 6 2 and t(f2) 6 2. Consequently,
there are at most bd/3c faces f incident with v such that t(f) = 4. If d > 8, this implies

ch(v) > ch0(v)− 2d− 2bd/3c = 8d− 2bd/3c − 60 > 0.

Hence, we can assume d = 7, and thus ch0(v) = 10. Let v1, . . . , v7 be the neighbors of v
in the clockwise order, and for i = 1, . . . , 7, let fi be the face vvivi+1 (where v8 = v1). Let
s =

∑7
i=1 t(fi) be the total amount of charge sent by v. We argue that s 6 10, and thus

ch(v) = ch0(v)− s > 0. To do so, we discuss several cases.

• v is adjacent to two consecutive small vertices in the cycle consisting of neighbors
of v. Thus v is incident with a face f such that t(f) = 4. By symmetry, we can
assume t(f1) = 4, and thus v1 and v2 are small. Since C1 does not appear in G, v3
and v7 are not small.
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If v5 is small, then since C16 does not appear in G, both v4 and v6 are big and hence
t(f4) = t(f5) = 1, t(f3) = t(f6) = 0, and t(f2), t(f7) 6 2, implying s 6 10. Hence,
we can assume v5 is not small.

Suppose v6 and v7 are both medium. Since C13 does not appear in G, v5 is big, and
thus t(f7) + t(f6) + t(f5) 6 2 + 2 + 0 = 4. Since C14 and C10 do not appear in G,
v4 is not small and v3 and v4 are not both medium, respectively, implying t(f3) = 0
and t(f4) = 0. Consequently, s 6 4 + 2 + 0 + 0 + 4 = 10. Hence, assume v6 and v7
are not both medium, and symmetrically, that v3 and v4 are not both medium.

If v4 is small, then since C7 and C16 do not appear in G, v3 and v5 are big and
t(f2) + t(f3) + t(f4) = 1 + 1 + 1 = 3. Otherwise, since v3 and v4 are not both
medium, we have t(f3) = 0 and t(f2) + t(f4) 6 3. Hence t(f2) + t(f3) + t(f4) 6 3,
and symmetrically t(f7) + t(f6) + t(f5) 6 3. It follows that s 6 4 + 3 + 3 = 10.

• small vertices are not consecutive in the cycle consisting of neighbors of v. Conse-
quently, t(f) 6 2 for each face incident with v and v is adjacent to at most three
small vertices.

Before we proceed, let us make a useful observation:

(?) For any b ∈ {1, . . . , 5}, if none of vb, vb+1 and vb+2 is small, then t(fb)+t(fb+1) 6
3.

This is clearly the case unless vb, vb+1, and vb+2 are all medium and t(fb) = t(fb+1) =
2. Then, let vb, v, vb+2, z3, z2, z1 be the neighbors of vb+1 in order. Since t(fb) =
t(fb+1) = 2, charge leaves v through fb and fb+1 twice by (R3), and thus either both
z1 and z3 are small, or none of z1, z2, and z3 is big and at least one of them is small.
But then either C5 or C4 appears in G, which is a contradiction.

Let us now continue with the case analysis.

– v is adjacent to three small vertices. By symmetry we can assume v1, v3, and
v5 are small. Since C12 does not appear in G, we can by symmetry assume v2
is big, and hence t(f1) = t(f2) = 1. If v4 is big, then t(f3) = t(f4) = 1 implying
s 6 4× 1 + 3× 2 = 10. Thus, since C1 does not appear in G, we can assume v4
is medium. Since C9 does not appear in G, v6 and v7 cannot both be medium,
and thus t(f6) = 0. Consequently, s 6 1 + 1 + 2 + 2 + 2 + 0 + 2 = 10.

– v is adjacent to two small vertices, at distance two in the cycle on neighbors
of v. By symmetry we can assume v1 and v3 are small. If v5 is big, then
t(f4) = t(f5) = 0 and s 6 5 × 2 = 10. Hence, we can assume v5 is medium,
and by symmetry v6 is medium. Since C11 does not appear in G, v4 and
v7 are not both medium; by symmetry, we can assume v7 is big, and thus
t(f6) = 0 and t(f7) = 1. Furthermore, t(f4) + t(f5) 6 3 by (?), and thus
s 6 2 + 2 + 2 + 3 + 0 + 1 = 10.

– v is adjacent to two small vertices, at distance three in the cycle on neighbors
of v. By symmetry we can assume v1 and v4 are small. If v6 is big or both v5
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and v7 are big, then t(f5) = t(f6) = 0 and s 6 5 × 2 = 10; hence, we can by
symmetry assume v5 and v6 are medium. Since C9 does not appear in G, v2
and v3 are not both medium, and thus t(f1) + t(f2) + t(f3) 6 2 + 0 + 1 = 3.
Furthermore, t(f5) + t(f6) 6 3 by (?), implying s 6 3 + 2 + 3 + 2 = 10.

– v is adjacent to at most one small vertex. By symmetry we can assume
no neighbor of v other than possibly v1 is small. If vi is big for some i ∈
{1, 3, 4, 5, 6}, then t(fi−1) = t(fi) = 0 (where f0 = f7) and s 6 5 × 2 = 10.
Hence, we can assume vi is medium for i ∈ {3, 4, 5, 6} and v1 is medium or small.
Since C15 does not appear in G, v2 and v7 are not both medium; by symmetry,
we can assume v2 is big, and thus t(f1) + t(f2) 6 1. By (?), t(f3) + t(f4) 6 3
and t(f5) + t(f6) 6 3, and thus s 6 1 + 2× 3 + 2 < 10.

We conclude that every vertex not incident with the outer face of G has non-negative
final charge.

Finally, let us consider a vertex v incident with the outer face of G. Since |V (G)| > 4
and G is a triangulation, we have deg(v) > 3. Furthermore, the outer face f of G is
incident only with big vertices by definition, and thus t(f) = 0. Since t(f ′) 6 4 for every
face f ′ 6= f incident with v, we have ch(v) > ch0(v)−(deg v−1)×4 = 6 deg v−56 > −38.
Therefore, (1) together with the fact that no charge is created or lost in the redistribution
process gives

−120 =
∑

v∈V (G)

ch0(v) =
∑

v∈V (G)

ch(v) > 3× (−38) = −114,

which is a contradiction.

Corollary 26. If G is a plane triangulation of minimum degree at least five, then one of
the graphs depicted in Figure 2 is an induced subgraph of G with prescribed vertex degrees.

Proof. If G contains a separating triangle, then let T be a separating triangle in G such
that the open disk in the plane bounded by T is minimal; otherwise, let T be the triangle
bounding the outer face of G. Let G′ be the induced subgraph of G drawn in the closed
disk bounded by T . By Lemma 25, one of the graphs C with prescribed degrees depicted
in Figure 2 appears in G, via a map f : V (C) → V (W ) for a wheel W in G′. By the
choice of G′, observe that G′ does not contain any separating triangle, and thus W is an
induced subgraph of G′, and thus also of G. Since C is an induced subgraph of W , it
follows that C is an induced subgraph of G. Furthermore, V (C) ∩ V (T ) = ∅ by the last
condition from the definition of appearance, and thus the vertices of f(V (C)) have the
same degree in G′ and in G.

The proof of the main result is now straightforward.

Proof of Theorem 5. Suppose for a contradiction that there exists a non-recolorable scene
(G,α). Choose such a scene with the smallest number of vertices, among those with the
largest number of edges, and among those with the largest number of vertices of color 10.
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Then (G,α) is a minimal counterexample, and thus G is a triangulation by Lemma 6, has
minimum degree at least five by Corollary 11, and does not contain any of the induced
subgraphs with prescribed vertex degrees depicted in Figure 2. However, this contradicts
Corollary 26.
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