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Abstract

In this paper we provide the first systematic treatment of Cartesian products
of graphs and their divisorial gonality, which is a tropical version of the gonality
of an algebraic curve defined in terms of chip-firing. We prove an upper bound on
the gonality of the Cartesian product of any two graphs, and determine instances
where this bound holds with equality, including for the m × n rook’s graph with
min{m,n} 6 5. We use our upper bound to prove that Baker’s gonality conjecture
holds for the Cartesian product of any two graphs with two or more vertices each,
and we determine precisely which nontrivial product graphs have gonality equal to
Baker’s conjectural upper bound. We also extend some of our results to metric
graphs.

Mathematics Subject Classifications: 14T05, 05C57, 05C76

1 Introduction

In [7], Baker and Norine introduced a theory of divisors on finite graphs in parallel to
divisor theory on algebraic curves. If G = (V,E) is a connected multigraph, one treats
G as a discrete analog of an algebraic curve of genus g(G), where g(G) = |E| − |V | + 1.
This program was extended to metric graphs in [15] and [21], and has been used to study
algebraic curves through combinatorial means.

A divisor on a graph can be thought of as a configuration of poker chips on the vertices
of the graph, where a negative number of chips indicates debt. Equivalence of divisors is
then defined in terms of chip-firing moves. Each divisor D has a degree, which is the total
number of chips; and a rank, which measures how much added debt can be cancelled out
by D via chip-firing moves.
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The gonality of G is the minimum degree of a rank 1 divisor on G. This is one graph-
theoretic analogue of the gonality of an algebraic curve [10]. In general, the gonality of
a graph is NP-hard to compute [16]. Nonetheless, we know the gonality of certain nice
families of graphs: the gonality of G is 1 if and only if G is a tree [8, Lemma 1.1]; the
complete graph Kn has gonality n− 1 for n > 2 [5, Example 3.3]; and the gonality of the
complete k-partite graph Kn1,···nk

is
∑k

i=1 nk −max{n1, · · · , nk} [25, Example 3.2]. One
of the biggest open problems regarding the gonality of graphs is the following.

Conjecture 1 (The gonality conjecture, [5]). The gonality of a graph G is at most⌊
g(G)+3

2

⌋
.

This conjecture has been confirmed for graphs with g(G) 6 5 in [3], with strong
additional evidence coming from [13].

In this paper, we study the gonality of the Cartesian product G � H of two graphs
G and H. This is the first such systematic treatment for these types of graphs, although
many conjectures have been posed on the gonality of particular products [2, 24, 25]. Our
main result is that if G and H have at least two vertices each, then G � H satisfies
Conjecture 1.

Theorem 2. Let G and H be connected graphs with at least two vertices each. Then

gon(G�H) 6

⌊
g(G�H) + 3

2

⌋
.

As a key step towards proving Theorem 2, we prove the following upper bound on the
gonality of G�H.

Proposition 3. For any two graphs G and H,

gon(G�H) 6 min{gon(G) · |V (H)|, gon(H) · |V (G)|}

For many naturally occurring examples of G and H where gon(G�H) is known, the
inequality is in fact an equality. This leads us to pose the following question.

Question 4. For which graphs G and H do we have

gon(G�H) = min{gon(G) · |V (H)| , gon(H) · |V (G)|}?

When a graph product G � H has gonality min{gon(G) · |V (H)| , gon(H) · |V (G)|},
we say that it has the expected gonality. Some product graphs have gonality smaller than
the expected gonality. Let G be a graph with three vertices v1, v2 and v3, with edge
multiset {v1v2, v1v2, v2v3}. Since g(G) = 1, we will see that gon(G) = 2 in Lemma 6. The
expected gonality of G � G is gon(G) · |V (G)| = 2 · 3 = 6. However, Figure 1 illustrates
three equivalent effective divisors of degree 5 on G�G. Since between the three divisors
there is a chip on each vertex, any −1 debt can be eliminated wherever it is placed, so
G�G has a degree 5 divisor of positive rank, and thus gon(G�G) 6 5. In Propositions
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Figure 1: A positive rank divisor on G�G with lower degree than expected

7 and 8 we will see that the gap between gonality and expected gonality can in fact be
arbitrarily large, both when considering simple and non-simple graphs.

Our paper is organized as follows. In Section 2 we establish background and conven-
tions and prove Proposition 3; we also present our proof that the gap between expected
and actual gonality can be arbitrarily large. In Section 3 we provide old and new in-
stances where the equation in Question 4 is satisfied. In Section 4 we prove Theorem 2.
In Section 5 we determine when the gonality of a nontrivial product is equal to b(g+3)/2c
in Theorem 21. It turns out that there are only finitely many such product graphs, 12
simple and 11 non-simple. We close in Section 6 by recovering several of our results in
the case of metric graphs.

2 Background and a proof of the upper bound

The main goal of this section is to prove the upper bound on gon(G�H) from Proposition
3. Before we do so we establish some definitions and notation.

Throughout this paper, a graph is a connected multigraph, where we allow multiple
edges between two vertices, but not edges from a vertex to itself. We write G = (V,E),
where V = V (G) is the set of vertices and E = E(G) is the multiset of edges. If every
pair of vertices has at most one edge connecting them, we call G simple. For any vertex
v ∈ V (G), the valence of v, denoted val(v), is the number of edges incident to v. The
genus of G, denoted g(G), is defined to be |E| − |V |+ 1. Given two graphs G = (V1, E1)
and H = (V2, E2), their Cartesian product G � H is the graph with vertex set V1 × V2,
and e edges connecting (v1, v2) and (w1, w2) if v1 = w1 and v2 is connected to w2 in H
by e edges, or if v2 = w2 and v1 is connected to w1 in G by e edges. A graph is called a
non-trivial product if it is of the form G � H, where G and H are graphs with at least
two vertices each. The graph G�H has |V1| · |V2| vertices and |E1| · |V2|+ |E2| · |V1| edges,
so g(G�H) = |E1| · |V2| + |E2| · |V1| − |V1| · |V2| + 1. An example of a product graph is
illustrated in Figure 2. This is the Cartesian product of the star tree T with four vertices
and the complete graph on 3 vertices K3. There are three natural copies of T , one for
each vertex of K3; and there are four natural copies of K3, one for each vertex of T .

A divisor on a graph G is a formal Z-linear sum of the vertices of G:∑
v∈V

av(v), av ∈ Z.
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Figure 2: The Cartesian product of a tree with K3

The set of all divisors on a graph forms an abelian group, namely the free abelian group
generated by the vertices of the graph. The degree of a divisor is the sum of the coefficients:

deg

(∑
v∈V

av(v)

)
=
∑
v∈V

av.

In the language of chip configurations, the degree is the total number of chips present on
the graph. We say that a divisor is effective if av > 0 for all v ∈ V , i.e. if no vertex is in
debt.

A chip-firing move changes one divisor to another by firing a vertex, causing it to
donate chips to each neighboring vertex, one for each edge connecting the two vertices.
We say that two divisors are equivalent to one another if they differ by a sequence of
chip-firing moves, and write D ∼ D′ if D and D′ are equivalent divisors.

Let D be a divisor on a graph G. The rank r(D) of D is the largest integer r > 0 such
that, for all effective divisors F of degree r, D − F is equivalent to an effective divisor.
(If such an r doesn’t exist, we set r(D) = −1.) Note that if D has non-negative rank,
then it is equivalent to an effective divisor. The theory of divisors on graphs mirrors the
theory of divisors on algebraic curves, as illustrated in the following result.

Theorem 5 (The Riemann-Roch Theorem for graphs, [7]). Let D be a divisor on a graph
G, and let K be the divisor with val(v)− 2 chips on each vertex v of G. Then

r(D)− r(K −D) = deg(D)− g(G) + 1.

The gonality gon(G) of a graph G is the smallest degree of a divisor of positive rank.
Note that there always exists an effective divisor D with r(D) = gon(G), since any divisor
of non-negative rank is equivalent to an effective divisor. We can also define gonality in
terms of a chip-firing game: Player 1 places k chips on the graph (for some k), and then
Player 2 places −1 chips on the graph. If Player 1 can perform chip-firing moves to
eliminate all debt from the graph, Player 1 wins; otherwise, Player 2 wins. The gonality
of the graph is then the minimum k such that Player 1 has a winning strategy. For this
reason, we refer to a divisor of positive rank as a winning divisor.
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As an application of the Riemann-Roch Theorem for graphs, we determine the gonality
of any genus 1 graph.

Lemma 6. If g(G) = 1, then gon(G) = 2.

Proof. Let G have genus 1, and let D be a divisor of degree 2 on G. Then

r(D)− r(K −D) = deg(D)− g(G) + 1 = 2− 1 + 1 = 2.

Since r(K −D) > −1, we have r(D) = 2 + r(K −D) > 1. Thus gon(G) 6 2. Since G is
not a tree, we have gon(G) > 1 by [8, Lemma 1.1], so gon(G) = 2.

To prove that the gonality of a graph is at most an integer k, it suffices to exhibit
a divisor on G of degree k such that no matter where an opponent places a −1, debt
may be eliminated from the graph via chip-firing. It is this strategy we will use to prove
Proposition 3. (Providing a lower bound on the gonality of a graph is much more difficult,
though some methods are available, as described in Section 3.)

Proof of Proposition 3. We will show that there is a winning divisor D on G � H with
deg(D) = gon(G) · |V (H)|, implying that gon(G�H) 6 gon(G) · |V (H)|. By symmetry,
we will also have gon(G�H) 6 gon(H) · |V (G)|.

Let F =
∑

v∈V (G) bv(v) be a divisor on G with r(F ) > 0 and deg(F ) = gon(G). Let

D =
∑

(v,w)∈V (G)×V (H)

a(v,w)(v, w)

be the divisor on G�H defined by a(v,w) = bv for all v ∈ V (G) and w ∈ V (H). Note that
the degree of D is

∑
(v,w)∈V (G)×V (H)

a(v,w) =
∑

w∈V (H)

( ∑
v∈V (G)

bv

)
=

∑
w∈V (H)

deg(F ) = |V (H)| · deg(F ).

In other words, deg(D) = gon(G) · |V (H)|.
To see that D is a winning divisor, suppose the −1 chip is placed on the vertex (v, w).

We may perform chip-firing moves on the copy G � {w} as if we were playing on G by
doing the following: each time we would fire a vertex v′ ∈ G, instead fire each vertex of
the form (v′, u) where u ∈ H. Since F is a winning divisor on G, there is some sequence
of chip-firing moves that removes all the debt from G, and so this substitution of chip-
firing moves furnishes a sequence of chip-firing moves on G � H that removes all the
debt from G � {w}, and hence from all of G � H. Thus, D is a winning divisor, and
gon(G�H) 6 gon(G) · |V (H)|. By symmetry we conclude that

gon(G�H) 6 min{gon(G) · |V (H)| , gon(H) · |V (G)|}.
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Figure 3: Positive rank divisors on T and K3, each of which yields a positive rank divisor
on T �K3

The construction of D from this proof is illustrated in Figure 3 for the product of a
tree T with the complete graph K3. The top left illustrates a positive rank divisor on T
with degree equal to the gonality of T ; we can build a positive rank divisor on T � K3

by placing the same chips on each copy of T , as illustrated on the bottom left. Since the
number of copies of T is equal to the number of vertices of K3, the divisor on T � K3

has degree gon(T ) · |V (K3)| = 1 · 3 = 3. Similarly on the right we have a positive rank
divisor on K3 with degree equal to gon(K3), yielding a positive rank divisor on T � K3

of degree gon(K3) · |V (T )| = 2 · 4 = 6. Both these divisors provide an upper bound on
gon(T �K3), so gon(T �K3) 6 min{3, 6} = 3. (It will follow from Proposition 12 that
in fact gon(T �K3) = 3.)

Some graph products have gonality strictly smaller than the upper bound in Proposi-
tion 3. Indeed, the gap between gonality and expected gonality can be arbitrarily large, as
shown in the following two results. The first shows this is possible for non-simple graphs;
the second shows that it is possible for simple graphs.

Proposition 7. For any ∆ > 1, there exists a non-simple product graph G�H with

min{gon(G) · |V (H)|, gon(H) · |V (G)|} − gon(G�H) > ∆.

Proof. Given ∆ > 1, let n = ∆ + 1, and construct a graph G as follows. Let G have
n + 1 vertices v1, · · · , vn, vn+1, where vi and vi+1 are connected by n edges for 1 6 i 6
n − 1, and where vn and vn+1 are connected by 1 edge. We claim that gon(G) = n.
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Certainly (v1) + · · ·+ (vn−1) + (vn) is a divisor of positive rank: the only vertex on which
−1 chips could be placed to introduce debt is vn+1, and since (vn) ∼ (vn+1) we have
(v1) + · · ·+ (vn−1) + (vn)− (vn+1) ∼ (v1) + · · ·+ (vn−1). On the other hand, there exists
no effective positive rank divisor of degree n−1, since with so few chips no chips could be
moved between any two vertices, save for vn and vn+1; and with n− 1 chips, at least one
of v1, · · · , vn−1 and the pair {vn, vn+1} would not have a chip, and so placing −1 chips
there creates debt that cannot be eliminated.

Since gon(G) = n and |V (G)| = n+ 1, the expected gonality of G�G is n(n+ 1). We
now present a divisor of degree n2 + 1, namely

D = (vn,n) +
∑

16i,j6n

(vi,j).

Thinking of G�G as an (n+ 1)× (n+ 1) grid, D places one chip on each vertex of the
upper left n×n corner, except on vn,n, where it places two chips. We claim that r(D) > 0.
To see this, consider firing all vertices vi,j where i, j 6 n. Most of these chip-firing moves
cancel, and the net effect is that for all i 6 n, a chip moves from the vertex vi,n to the
vertex vi,n+1, and a chip moves from the vertex vn,i to the vertex vn+1,i. Call this new
divisor D′. Then consider firing every vertex except for vn+1,n+1; this transforms D′ into
D′′, and moves chips from the vertices vn,n+1 and vn+1,n to vn+1,n+1. These three divisors
are illustrated for the case of n = 4 in Figure 4.

1 1 1 1

1

1

1

1 1

1 1

1 1

1

1

2

D

1 1 1
1

1

1

1

1 1

1 1

1 1

1

1

D′
1

1

1 1 1
1

1

1

1

1 1

1 1

1 1

1

1

D′′
2

∼ ∼

Figure 4: The divisors D, D′, and D′′ when n = 4

To see that r(D) > 1 note that for any vertex v ∈ G�G, we have that at least one of
D, D′, and D′′ places at least one chip on v, and that D, D′, and D′′ are all effective. Thus
at least one of D− (v), D′− (v), or D′′− (v) is effective. Since all of these are equivalent
to D− (v), we conclude that r(D) > 0. This means that gon(G�G) 6 deg(D) = n2 + 1.
We then have

min{gon(G) · |V (G)|, gon(G) · |V (G)|} − gon(G�G) > n2 + n− (n2 + 1) = n− 1 = ∆,

as desired.
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Proposition 8. For any ∆ > 1, there exist simple graphs G and H such that

min{gon(G) · |V (H)|, gon(H) · |V (G)|} − gon(G�H) > ∆.

Proof. Let F be any simple graph with gonality γ > 3, and let m = |V (F )|. Choose
n so that m(γ − m) + n(γ − 2) + 1 > ∆; this is possible since γ − 2 > 1. Letting
V (F ) = {v1, · · · , vm}, construct a new graph G by attaching n more vertices in a path
to vm. Label the vertices of G as v1, · · · , vm, vm+1, · · · , vm+n, where each vi with i 6 m
is the same as in F and the vertices vm, vm+1, · · · , vm+n form a path, in that order. Note
that gon(G) = γ; indeed, attaching any tree to a graph does not change its gonality.

Consider the product graph G�G. Since G has m+n vertices, the expected gonality
of G � G is (m + n)γ. We now construct a positive rank divisor with lower degree than
expected. Letting vi,j = (vi, vj), consider the divisor

D = (vm,m) +
∑

16i,j6m

(vi,j) +
∑

m+16i6m+n−1

2(vi,i).

Thinking of V (G�G) as an (m+n)× (m+n) grid with v1,1 in the upper left corner and
vm+n,m+n in the lower right, D places one chip on each vertex in the upper left m × m
square, except that it places two chips on vm,m; and it also places 2 chips along the
diagonal vi,i where i goes from m+ 1 to m+ n− 1.

Perform a chip-firing move by firing all vertices vi,j with 1 6 i, j 6 m; call this new
divisor D1. The net effect of this is to move a chip from each vm,i to vm+1,i, and from
each vi,m to vi,m+1, where 1 6 i 6 m. This does not introduce new debt, since each
vm,i and vi,m has one chip for i < m, and vm,m has two chips. Then perform a chip-
firing move by firing all vertices vi,j with 1 6 i, j 6 m + 1; call this new divisor D2.
Again, this moves chips one row lower and one column to the right. We may continue
performing such chip-firing moves on larger and larger squares until we fire all vertices vi,j
with 1 6 i, j 6 m + n− 1, yielding a divisor Dn with chips on all vertices of the bottom
row and the leftmost column besides vm+n,m+n. Chip-firing all vertices besides vm+n,m+n

moves two chips onto vm+n,m+n, giving a divisor Dn+1.
The divisors D,D1, . . . , Dn+1 are all effective, all equivalent, and between the n+ 2 of

them cover each vertex of the graph. It follows that r(D) > 0, so gon(G�G) 6 deg(D).
Note that the degree of D is m2 + 1 + 2(n− 1) = m2 + 2n− 1. Thus, we have

min{gon(G) · |V (G)|, gon(G) · |V (G)|} − gon(G�G) > (m+ n)γ − (m2 + 2n− 1)

=m(γ −m) + n(γ − 2) + 1

>∆,

as desired.

Example 9. This example illustrates the construction in Proposition 8 where we choose
F = K3 and ∆ = 1. Since gon(F ) = 3, we choose n so that 1 6 4(3− 4) + n(3− 2) + 1 =
−4 + n+ 1 = n− 3 ; it suffices to choose n = 4. The graph G is then K4 with 4 vertices
glued on in a path. This graph with labelled vertices, along with a rank one divisor of

the electronic journal of combinatorics 27(4) (2020), #P4.52 8



3
v1

v2

v3 v4 v5 v6 v7 v8

Figure 5: The graph G from Example 9 with a rank 1 divisor, along with G�G

degree 3, is pictured on the left in Figure 5. The product G�G is pictured on the right
in Figure 5, and its expected gonality is gon(G) · |V (G)| = 3 · 8 = 24.

As per our construction, the gonality of G�G is smaller than 24. The divisor D from
the previous proof is

D = (v4,4) +
∑

16i,j64

(vi,j) + 2(v5,5) + 2(v6,6) + 2(v7,7).

This divisor is illustrated in the upper left of Figure 6, where a dotted box indicates
1 chip on each enclosed vertex. Note that deg(D) = 23. Chip-firing the upper left
4 × 4 square of vertices, then the 5 × 5, then the 6 × 6, then the 7 × 7, and finally all
vertices but v8,8 transforms D iteratively into the other five divisors in Figure 6. All
six divisors are effective, and together cover each vertex. It follows that r(D) > 0, so
gon(G�G) 6 23 = 24− 1, as desired.

2

2

2

2

2

2

2

2

2

2

2

Figure 6: The divisor D, and five equivalent divisors; all vertices within a dotted box
receive one chip each
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3 Graph products with expected gonality

In most cases where the gonality of a graph product is known, the inequality from Propo-
sition 3 is in fact an equality. Let Pn denote the path on n vertices, and let Cn denote
the cycle on n vertices. Since Pn is a tree, gon(Pn) = 1; and by Lemma 6, we have
gon(Cn) = 2.

• The grid graph Gm,n is the product Pm�Pn of two path graphs. The grid graph has
gonality min{m,n} [24], which is equal to min{|V (Pm)| gon(Pn), |V (Pn)| gon(Pm)}.

• The stacked prism graph Ym,n is the product Cm � Pn. By [2] for m 6= 2n and in
general by [17], this graph is known to have gonality min{m, 2n} [2], which is equal
to

min{|V (Cm)| gon(Pn), |V (Pn)| gon(Cm)}.

• The toroidal grid graph Tm,n is the product Cm � Cn of two cycle graphs. By [2]
for |m− n| > 2 and in general by [17], the graph Tm,n has gonality 2 min{m,n} [2],
which is equal to min{|V (Cm)| gon(Cn), |V (Cn)| gon(Cm)}.

In this section we provide some additional instances of G�H that satisfy the equation
in Question 4 by proving that graphs of the form T � T ′ and Kn � T have the expected
gonality, where Kn is the complete graph on n vertices and T and T ′ are trees. We then
prove that the same holds for Km �Kn where min{m,n} 6 5, and for graphs of the form
G�K2 where g(G) = 1.

The first two arguments involve the treewidth of a graph. We refer the reader to [23]
for the definition of treewidth. In [25], it was shown that the treewidth of a graph G,
written tw(G), is a lower bound on its gonality:

Proposition 10 (Theorem 2.1 in [25]). For any graph G, gon(G) > tw(G).

One way to determine the treewidth of a graph is by use of brambles. A collection
B = {Bi} of connected subgraphs of a graph G is called a bramble if every pair of
subgraphs Bi and Bj in B either intersect in a vertex, or contain two vertices that share
an edge. If Bi ∩ Bj is nonempty for all i and j, then the bramble is called a strict
bramble. The order a bramble (or a strict bramble) B, denoted ||B||, is the cardinality
of the smallest collection of vertices S ⊂ V (G) such that S ∩ Bi is nonempty for all
Bi ∈ V (G). A famous theorem due to Seymour and Thomas says that the treewidth of a
graph is equal to one less than the largest order of any bramble of that graph [23]. By [2,
§2], treewidth is lower bounded by the maximum order of a strict bramble, meaning that
the order of any strict bramble is a lower bound on gonality; an earlier proof that strict
brambles provide a lower bound on gonality appears in [24].

Proposition 11. If T and T ′ are trees with m and n vertices, respectively, then gon(T �
T ′) = min{m,n}.
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Proof. By Proposition 3, we have gon(T �T ′) 6 min{m,n} since the gonality of any tree
is 1. For a lower bound, we construct a strict bramble on T �T ′ of order min{m,n}, thus
giving us a lower bound of min{m,n} on its gonality. For each v ∈ V (T ) and v′ ∈ V (T ′),
include the union ({v}�T ′)∪(T �{v′}) in the set B. Then B is a strict bramble: {v}�T ′

intersects T � {v′} at (v, v′), so every element of B is connected; and any two elements of
the bramble intersect, since(

({v}� T ′) ∪ (T � {v′})
)
∩
(
({w}� T ′) ∪ (T � {w′})

)
= {(v, w′), (w, v′)}.

Now, let S ⊆ V (T � T ′) be a set of size min{m,n} − 1. Since there are m pairwise
disjoint graphs of the form {v}� T ′ and n pairwise disjoint graphs of the form T � {v′},
at least one of each such graph fails to intersect S, meaning that their union, which
is an element of B, also fails to intersect S. It follows that ||B|| > min{m,n}. Thus,
gon(T � T ′) > tw(T � T ′) > ||B|| > min{m,n}. We conclude that gon(T � T ′) =
min{m,n}.

Proposition 12. If T is a tree with at least two vertices, then gon(Kn � T ) = n.

This is a generalization of [1, Corollary 5.2], which proved gon(K3 � T ) = 3 whenever
T is a tree with at least two vertices.

Proof. We know gon(Kn � T ) 6 min {(n− 1) · |V (T )| , 1 · n} = n by Proposition 3. By
Proposition 10, it’s enough to show that tw(Kn � T ) > n. Since T has at least two
vertices, we know that Kn �K2 is a minor (indeed, an induced subgraph) of Kn �T . The
graph Kn �K2 in turn has Kn+1 as a minor, obtained from collapsing one copy of Kn to
a single vertex. Since Kn+1 has treewidth n and treewidth is minor monotonic, we know
that tw(Kn � T ) > n. This completes the proof.

Figure 7: The 3× 4 rook’s graph

Our next results involve the m× n rook’s graph, which is the product Km �Kn. The
3 × 4 rook’s graph is pictured in Figure 7. If the equation in Question 4 is satisfied, the
graph Km �Kn will have gonality min{(m− 1)n,m(n− 1)}. Unfortunately, to prove this
it will not suffice to use treewidth as a lower bound, since for rook’s graphs there appears
to be a gap between treewidth and gonality. In the case of the n × n rook’s graph, we
have tw(Kn �Kn) = n2

2
+ n

2
− 1 for n > 3 [19]; for large n this is about half as large as
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the expected gonality of n(n − 1). More generally, it follows from work in [12] that for
n > m > 2, we have

tw(Km �Kn) 6

{
m
2
n+ m

2
− 1 if m is even

dm
2
en− 1 if m is odd;

in particular, those authors proved that the above formula computes a number called the
pathwidth of the rook’s graph, and pathwidth serves as an upper bound on treewidth. For
large m and n, this upper bound on treewidth is about half as large as (m− 1)n, which
is the expected gonality of the m× n rook’s graph with m 6 n.

One reason why the gonality of the rook’s graph is especially interesting comes from
algebraic geometry, in particular with respect to graph curves, as defined in [9]. Let C
be a complete intersection graph curve of two surfaces in P3 given by F1(x, y, z, w) =
F2(x, y, z, w) = 0, where F1 is a general product of m linear forms and F2 is a general
product of n linear forms. Then the dual graph of C is the rook’s graph Km � Kn.
More generally, the k-fold product Kd1 � · · · � Kdk is the dual graph of a complete
intersection graph curve C in Pk+1 of multidegree (d1, . . . , dk). It is shown in [18, §4] that
if d1 6 · · · 6 dk, then the algebraic gonality of such a curve C is bounded below by the
product (d1 − 1)d2 · · · dk, which is the expected gonality of Kn1 � · · ·�Knk

.
We will make frequent use of the following result, which is a weaker version of Dhar’s

burning algorithm [14].

Lemma 13. Let D be an effective divisor on a graph G, and let v ∈ V (G) with no chips
from D. Let a burning process propagate through G as follows: set v on fire, and let any
edge incident to a burning vertex burn. If at any point a vertex has more burning edges
incident to it than it has chips from D, let that vertex burn. If the whole graph burns,
then the debt in D − (v) cannot be eliminated through chip firing, so r(D) = 0.

In some cases this lemma can be used to provide a lower bound on gonality. We will use
it to show the following result, which implies the well-known fact that gon(Kn) > n− 1.

Lemma 14. Let Kn be a complete graph on n vertices, and let D be an effective divisor
of degree at most n− 2. Let v be any vertex on which D has no chips. Then running the
burning process from Lemma 13 burns the whole graph.

Proof. Suppose for the sake of contradiction that the burning process terminates before
the whole graph burns, say with u unburned vertices where 1 6 u 6 n−1. Each unburned
vertex has n−u burning edges incident to it, meaning that there must be at least u(n−u)
chips on the graph. As a function of u, the expression u(n−u) is concave down, meaning
that it achieves its minimum on the interval 1 6 u 6 n − 1 at a boundary point. (We
will frequently make use of such a concavity argument over the next several results.)
Plugging in the boundary points u = 1 and u = n − 1 yields 1 · (n − 1) = n − 1 and
(n− 1)(n− (n− 1)) = n− 1, so at minimum there are n− 1 chips on the graph. This is
a contradiction to deg(D) 6 n− 2, so we conclude that the whole graph burns.
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This lets us prove the following result, which is a step towards computing the gonality
of small rook’s graphs. We can describe a vertex of Km �Kn as (i, j), where 1 6 i 6 m
and 1 6 j 6 n. The set of all vertices in Km �Kn with a fixed i will be called a row, and
the set of all vertices in Km �Kn with a fixed j will be called a column. Note that each
row is a copy of Kn, and each column is a copy of Km.

Lemma 15. Let G = Km�Kn be a rook’s graph where 2 6 m 6 n, and let D be a divisor
on G with n(m − 1) − 1 chips. Then there exists a vertex v ∈ V (G) such that running
the burning process from Lemma 13 starting at v results in at least two whole rows and
at least whole two columns of G being on fire.

Proof. By the Pigeonhole principle, one of the n columns must have fewer than m − 1
chips. Choose v to be a vertex in this column that has no chips on it, and run the burning
process. Then this whole column burns by Lemma 14. Since n(m−1)−1 6 (n−1)m−1,
one of the m rows must have fewer than n − 1 chips. Since a whole column is burning,
some vertex in this row is on fire, which by another application of Lemma 14 means that
whole row must be on fire.

Suppose for the sake of contradiction that there are no more rows that burn entirely.
An unburned row has u unburned vertices, where 1 6 u 6 n− 1. Each unburned vertex
has at least n−u+1 burning edges coming into it ((n−u) from the same row, and 1 from
the burning row), meaning that the row has at least n − u + 1 chips on each unburned
vertex. This means the whole row has u(n− u+ 1) chips on it. As a function of u, this is
concave down, and so is minimized on the interval 1 6 u 6 n− 1 at the boundary points.
Plugging in u = 1 and u = n−1 yields 1·(n−1+1) = n and (n−1)(n−(n−1)+1) = 2n−2,
respectively; since n > 2 we have n 6 2n− 2, so each unburned row has at least n chips
on it. There are m − 1 unburned rows, meaning that there must be (m − 1)n chips on
the graph, a contradiction since we have only placed n(m− 1)− 1 chips. Thus a second
row must burn entirely.

An identical argument shows that if no second column burns entirely, then the graph
has at least (n − 1)m chips on it; since (n − 1)m > (m − 1)n, this yields the same
contradiction, so a second column must burn entirely.

We will also use a result from [4]. A sourceless partial orientation on a graph G =
(V,E) is a choice of orientations on some subset of the edges E, such that every vertex
has at least one incoming edge. Given a sourceless partial orientation O, the divisor DO
is the chip configuration with indegO(v)− 1 chips on the vertex v, where indegO(v) is the
number of edges oriented towards v in O.

Lemma 16. Let D be a divisor on G with deg(D) 6 g − 1. Then r(D) > 0 if and only
if D ∼ DO where O is a sourceless partial orientation.

It follows that given a divisor D of nonnegative rank and degree at most g−1, we can
find an equivalent divisor D′ such that every vertex v has at most deg(v)− 1 chips, and
such that no two adjacent vertices v and v′ have exactly deg(v)− 1 and deg(v′)− 1 chips,
respectively. We are now ready to prove our main theorem regarding rook’s graphs.
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Theorem 17. Let 2 6 m 6 n and m 6 5. Then gon(Km �Kn) = (m− 1)n.

Proof. By Proposition 3 we have gon(Km �Kn) 6 min{(m− 1)n,m(n− 1)} = (m− 1)n.
Thus we must show gon(Km � Kn) > (m − 1)n. This is equivalent to showing that no
effective divisor of degree n(m − 1) − 1 has positive rank. Choose D to be an arbitrary
effective divisor of this degree. If m = 2, choose v according to Lemma 15. Starting
the burning process at v burns both rows, and thus the entire graph, so the debt cannot
be eliminated in D − (v). It follows that r(D) < 1, and since D was arbitrary we have
gon(K2 �Kn) > (2−1)n = n. (Since K2 is a tree, this result also follow from Proposition
12.)

For m > 3, we will use the same proof idea, although we will be slightly more careful
with our divisor D. Using the fact that n > m > 3, we have

g(Km �Kn) =m

(
n

2

)
+ n

(
m

2

)
−mn+ 1

>mn+mn−mn+ 1

=mn+ 1 > n(m− 1)− 1.

Thus we have that deg(D) 6 g(Km �Kn)− 1, meaning we may apply Lemma 16 to find
a sourceless partial orientation O with D ∼ DO. Replace D with this new divisor. Since
the degree of every vertex in the graph is n+m− 2, we now have that D places no more
than n+m−3 chips on any vertex, and that no two adjacent vertices both have n+m−3
chips.

Our strategy for m > 3 is as follows: we will show that there exists a vertex v such
that, running the burning process from Lemma 13 starting at v, the entire graph burns.
By that lemma this will imply that the debt in D−(v) cannot be eliminated, so r(D) < 1.
When m = 5 we may need to further modify our divisor via chip-firing before we can find
this v, but we will still obtain the desired result.

For m = 3 and m = 4, choose v according to Lemma 15 based on our divisor D.
Starting the burning process at v, we know by Lemma 14 that at least two rows and two
columns will burn.

Let m = 3, so we have 2n − 1 chips on the graph, and no vertex has more than n
chips. We know the whole graph burns except possibly for some vertices in a single row.
Suppose for the sake of contradiction that there are u > 0 unburned vertices. Then we
have u 6 n − 2 since two columns are burning; and we have 2 6 u since if u = 1 we
would need n + 1 chips on the sole unburned vertex. Every unburned vertex must have
n − u + 2 chips on it, which means there must be at least u(n − u + 2) chips on this
row, where 2 6 u 6 n − 2; note that these bounds imply that n > 4. This number of
chips is concave down in u, and so obtains its minimum on the interval 2 6 u 6 n − 2
at a boundary point. Thus its minimum on this interval is either 2(n − 2 + 2) = 2n or
(n− 2)(n− (n− 2) + 2) = 4n− 8, and 4n− 8 > 2n since n > 4. This means we must have
more than 2n− 1 chips, a contradiction. Thus the whole graph burns, and r(D) < 1.

Let m = 4. We have the following: there are 3n− 1 chips on the graph; no vertex has
more than n + 1 chips; and no two adjacent vertices have n + 1 chips each. The whole
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graph burns except possibly for vertices in at most two rows. Suppose for the sake of
contradiction that the whole graph does not burn. We will split into two cases: where
the unburned vertices are all in one row, and where they are spaced out over two rows.

• Case 4.1: Suppose there are u > 0 unburned vertices, all in the same row. Note
that we cannot have u = 1, since a sole unburned vertex would need n+2 chips. We
also cannot have u = 2, since the two unburned vertices would each need n+1 chips,
but they are adjacent since they are in the same row. Thus 3 6 u 6 n−2. It follows
that n − 2 > 3, so n > 5. Each unburned vertex is incident to n − u + 3 burning
edges, so there must be at least u(n− u+ 3) chips on the graph. For 3 6 u 6 n− 2
this is minimized either when u = 3 or when u = n− 2, which yield 3n and 5n− 10.
For n > 5 these are both strictly larger than 3n− 1, a contradiction.

• Case 4.2: Suppose there are unburned vertices in two rows, without loss of gener-
ality the first and second rows. Let u1 and u2 be the number of unburned vertices
in these rows, respectively; we have 1 6 ui 6 n − 2. Since there are 3n − 1 chips
on the graph, one of these two rows has at most

⌊
3n−1

2

⌋
chips; assume without loss

of generality that it is the first row. Each of the u1 unburned vertices in this row
has at least n− u1 + 2 burning edges incident to it, so this row must have at least
u1 · (n − u1 + 2) chips. The same argument as in the m = 3 case shows that for
2 6 u1 6 n − 2, the minimum value of this function is either 2n or 4n − 8. Both
of these exceed

⌊
3n−1

2

⌋
since n > 4. Thus it must be the case that u1 = 1, so

there is a single unburned vertex v1 in this row. Since it did not burn, it must have
n− 1 + 2 = n+ 1 chips on it, the maximum number allowed.

Consider the second row, which has u2 unburned vertices. Since there are n + 1
chips on v1, there are at most 2n − 2 chips on this row. Each unburned vertex
has n − u2 + 3 burning edges incident to it, except possibly for one in the same
column as v1, which would have n− u2 + 2 burning edges. This means there are at
least (u2 − 1)(n− u2 + 3) + (n− u2 + 2) = −u2

2 + (n + 3)u2 − 1 chips on this row.
Plugging in u2 = 2 yields 2n + 1, and plugging in u2 = n− 2 yields 5n− 11. Both
of these are larger than 2n− 2 for n > 4, and one of them is the minimum value of
−u2

2 + (n+ 3)u2−1 for 2 6 u 6 n−2; it follows that u2 = 1. Call the one unburned
vertex in the second row v2. It must have n + 1 chips on it, and it must be in the
same column as v1; otherwise v1 and v2 would each require n + 2 chips. But this
means we have two adjacent vertices with n+ 1 chips each, which is not allowed in
D, giving us a contradiction.

In both cases, we have reached a contradiction, so the entire graph K4 � Kn burns. It
follows that r(D) < 1.

Finally, let m = 5. We have the following: there are 4n − 1 chips on the graph; no
vertex has more than n + 2 chips; and no two adjacent vertices have n + 2 chips each.
Before choosing v and running the burning process, we will modify our divisor D slightly
so that we may make an additional assumption on it: we would like to be able to assume
that no three mutually adjacent vertices have n + 1 chips each. Suppose D does place
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n + 1 chips on three vertices v1, v2, and v3, all mutually adjacent (so either all three are
in the same row, or all three are in the same column). Since there are 4n− 1 chips on the
graph, there are n−4 chips off of the vertices v1, v2, and v3; in particular, no other vertex
has more than n− 4 chips on it. Perform three chip-firing moves by firing v1, v2, and v3.
These vertices each end up with 0 chips; the vertices in the same row or column as all
three vertices each gain three chips; and the vertices that share a row or column with a
single vi each gain 1 chip. This new divisor has no more than n − 4 + 3 = n − 1 chips
on each vertex, and so satisfies three conditions: no vertex has more than n + 2 chips;
no two adjacent vertices have n + 2 chips each; and no three mutually adjacent vertices
have n + 1 chips each. Either our starting divisor D satisfied these three conditions, or
it failed in the third one and we may replace it with this new divisor. In any case, we
may assume that our divisor D satisfies all three conditions. We may also assume that at
least one of the following two conditions holds: either D = DO for some sourceless partial
orientation; or D has at most n− 1 chips on each vertex.

As usual, pick v according to Lemma 15. The whole graph burns except possibly for
vertices in at most three rows. Suppose for the sake of contradiction not the whole graph
burns. We will consider three cases, namely when unburned vertices are spread out over
one, two, or three rows.

• Case 5.1: Suppose the unburned vertices are all contained in the same row, and
let u be the number of unburned vertices. Each unburned vertex has n − u + 4
burning edges incident to it, meaning that the row has at least u(n− u+ 4) chips.
First consider 4 6 u 6 n− 2, so n > 6. The function u(n− u + 4) on this interval
is minimized at an endpoint, and so has minimum min{6n − 12, 4n}; this is larger
than 4n − 1 for n > 6, so we know that u 6 3. If u = 1, then the one unburned
vertex must have n+ 3 chips, which is not allowed. If u = 2, then the two unburned
vertices (which are adjacent) must each have n + 2 chips, which is not allowed. If
u = 3, then the three unburned vertices (which are mutually adjacent) must each
have n+ 1 chips, which is not allowed. Thus we have reached a contradiction.

• Case 5.2: Suppose the unburned vertices are spread out over the first two rows.
Let u1 and u2 denote the number of unburned vertices in these rows, and assume
without loss of generality that the first row has no more chips than the second row.

The first row has at most
⌊

4n−1
2

⌋
= 2n− 1 chips. Each unburned vertex in the first

row has at least n − u1 + 3 incident burning edges, so the first row has at least
u1(n− u1 + 3) chips. For 2 6 u1 6 n− 2, this has minimum min{2n+ 2, 5n− 10},
which is greater than 2n − 1 for n > 5. Thus u1 = 1. The one unburned vertex v1

must have n − 1 + 3 = n + 2 chips on it (at least n + 2 so as not to burn, and at
most n+ 2 since this is the maximum allowed).

The second row then has at most 4n− 1− (n + 2) = 3n− 3 chips. The number of
burning edges incident to unburned vertices in this row is at least u2(n−u2 +4)−1,
meaning the row has at least that many chips. For 3 6 u2 6 n−2, this has minimum
min{3n + 2, 6n− 13}, which is larger than 3n− 3 for n > 5. Thus we have u2 = 1
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or u2 = 2. In either case, v1 shares a column with an unburned vertex in the second
row; otherwise v1 would need n− 1 + 4 = n+ 3 chips, which is not allowed.

If u1 = 1, call the unburned vertex in the second row v2. Then v1 and v2 need n+ 2
chips each so as not to burn, but this is not allowed since they are adjacent to each
other. If u2 = 2, call the unburned vertices in the second row v2 and v3, where
v2 shares a column with v1. The vertices v1, v2, and v3 must have at least n + 2,
n+ 1, and n+ 2 chips, respectively. Either D is of the form DO for some sourceless
partial orientation O; or it is a divisor with at most n − 1 vertices on each vertex.
The second clearly does not hold, and so D = DO. We know that O must have
every neighbor of v1 and v3 oriented towards them; but this means that at most
n + 3 − 2 = n + 1 of v2’s neighbors can be oriented to it, meaning it can have at
most n chips, a contradiction.

• Case 5.3: Suppose the unburned vertices are spread out over the first three rows.
Let u1, u2, and u3 denote the number of unburned vertices in these rows, and assume
without loss of generality that the first row has no more chips than the second row,
and the second no more than the third. Nearly identical arguments to those from
Case 4.2 show that each row has exactly one unburned vertex, call them v1, v2, and
v3. Each has at least (n−1) + 2 = n+ 1 incident burning edges, so each has at least
n+ 1 chips. If any of v1, v2, or v3 is in its own column, it would need to have n+ 3
chips not to burn, which is more than is allowed on a single vertex. Thus all three
must be in a single column. But we cannot have three mutually adjacent vertices
each with n+ 1 chips, a contradiction.

In every one of our three cases, we have reached a contradiction. Thus the entire graph
K5 �Kn burns, and so r(D) < 1. This completes the proof.

In the course of this proof, we have showed that given a divisor D of degree n(m−1)−1
coming from a sourceless partial orientation on Km �Kn (where m 6 n and m 6 4), we
can choose a vertex v such that running the burning process from Lemma 13 starting
at v makes the whole graph burn. However, as hinted at by our careful pre-processing
of D when m = 5, this is not true for all rook’s graphs. Consider the divisor of degree
(5 − 1) · 5 − 1 = 19 pictured on the rook’s graph K5 � K5 on the left in Figure 8 (only
the vertices of the graph are illustrated). This divisor does arise from a sourceless partial
orientation, namely the partial orientation with the directed edges pictured in the middle
and right images in Figure 8; the oriented edges are spread out over two copies of the
graph for visibility. However, no matter our choice of vertex v, not the whole graph
burns when we start the burning process from v, since the three vertices with 6 chips
each remain unburned. Although our proof manages to fill in this gap for K5 �Kn, the
combinatorics becomes more complicated as we increase m, and so new techniques will
need to be developed to push our results for rook’s graphs further.

The final result of this section determines the gonality of products of the form G�K2,
where G is a graph of genus 1.

Theorem 18. If G is a graph of genus 1, then gon(G�K2) = min{|V (G)|, 4}.
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1

Figure 8: A divisor D on K5 � K5, and a sourceless partial orientation O such that
D = DO

We remark that in some instances this result follows from a treewidth argument, such
as with C5 �K2; but not in others, such as with C4 �K2. Our proof will work in all cases.

Proof. Any genus 1 graph has gonality 2 by Lemma 6, so by Proposition 3 we have
gon(G�K2) 6 min{|V (G)| · 1, 2 · 2} = min{|V (G)|, 4}. It remains to show that gon(G�
K2) > min{|V (G)|, 4}.

First assume that |V (G)| 6 3. There are three possibilities for G: either G = K3;
or G has two vertices, joined by two edges; or G is the previous graph with a third
vertex attached by a single edge to one of the other two vertices. If G = K3, then
gon(K3 � K2) = 3 by Proposition 12. If G has two vertices joined by two edges, then
gon(G � K2) > 2, since G � K2 is not a tree; thus gon(G � K2) = 2. Finally, if G is
the third possible graph, suppose for the sake of contradiction that gon(G � K2) = 2.
We illustrate all effective divisors of degree 2 on G � K2 in Figure 9, up to the natural
symmetry of switching the two copies of G. For one member D of each equivalence class
we label a vertex v such that the debt in D − (v) cannot be eliminated according to
Lemma 13, a contradiction to gon(G�K2) = 2. Thus gon(G�K2) = 3 = |V (G)|.

1
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v v v

1

1

1 1

v

v

1 1 2

v vv

21 1

v

1

1v

2

∼

Figure 9: Divisors on G�K2 of degree 2, none of which have positive rank

Having dealt with the case of |V (G)| 6 3, we now assume that |V (G)| > 4. We
may view G �K2 as the union of two copies of G, with matching vertices connected by
edges; we will refer to these two copies of G as G′ and G′′, and any vertices v′ and v′′

corresponding to the same vertex v of G as parallel vertices. Let C denote the unique
cycle of G, and let C ′ and C ′′ denote the corresponding cycles in G′ and G′′, respectively.

Suppose for the sake of contradiction that there exists an effective divisor D on G�K2

of degree 3 with positive rank. Since D has positive rank, we may assume that D places
at least one chip on C ′ ∪C ′′ (indeed, on any vertex of C ′ ∪C ′′ we choose). Then, if D has
two chips on any 2-valent vertex, fire that vertex; this will not result in another 2-valent
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vertex having two chips, since the two chips go to different vertices and the third chip is on
a vertex of C ′ ∪C ′′, all of whose vertices have valence greater than 2. After this, suppose
that D puts at least one chip on both of two parallel vertices v′ and v′′ corresponding to a
vertex v not on the cycle C of G. Then we may chip-fire those two vertices, together with
all vertices not in the same component of (G � K2) − {v′, v′′} as the cycles C ′ and C ′′.
Applying this process enough times, we will move the two chips to C ′ ∪C ′′. This process
is illustrated in Figure 10. Finally, if at this point any vertex of C ′ ∪ C ′′ with valence 3
has exactly 3 chips, we will fire that vertex; this does not interfere with any of our other
assumed properties, since any 3-valent vertex on C ′∪C ′′ is incident only to other vertices
on C ′ and C ′′. Thus we may assume that D places at least one chip on C ′ ∪ C ′′; that D
does not place 2 chips on a vertex of valence 2; that no two parallel vertices away from
C ′ ∪ C ′′ both have a chip; and that no vertex of C ′ ∪ C ′′ of valence 3 has 3 chips.

−→

1

1

C ′

C ′′

−→

1

1

C ′

C ′′

1

1

C ′

C ′′

Figure 10: Moving chips on parallel vertices towards C ′ and C ′′; chip-firing the circled
vertices yields the next configuration

Since deg(D) = 3, one of G′ and G′′ has at most one chip on it; say it is G′. Choose
any vertex on C ′ that does not have a chip on it, and run the burning process from Lemma
13 starting from that vertex. Since C ′ has at most one chip on it, the whole cycle C ′ will
burn. We now deal with two cases: where C ′′ burns solely based on C ′ burning, and when
it does not. For the moment, assume that G is a simple graph.

• Assume C ′′ burns. Let v′ and v′′ be parallel vertices not on C ′ ∪ C ′′. They cannot
both have a chip, so once both of them receive a burning edge (besides v′v′′), then
one burns and the second will burn unless it has 2 chips on it. Thus fire will spread
through the whole graph, unless some vertex off of C ′ and C ′′ has 2 chips on it. If
such a vertex exists, call it v′′, and note that v′′ cannot be 2-valent since it has two
chips. There is one chip on C ′ ∪ C ′′, say on the vertex w. Since deg(D) = 3, there
are no chips off of v′′ and w. Note that (G�K2)− {v′′} is connected, and since w
burns, so does all of (G�K2)− {v′′}. Then we know v′′ will burn as well: it has 2
chips, and at least 3 incident burning edges, as illustrated in Figure 11. Thus the
whole graph burns.

• Assume C ′′ does not immediately burn based on C ′ burning. We claim that then
all 3 chips must be on C ′′, and that G is not simply a cycle. If every vertex of C ′′

has a chip, then indeed C ′′ has all three chips (and we know that C is a triangle,
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v′

v′′

2

v′

v′′

−→
u′ u′

Figure 11: Even with 2 chips on v′′, the whole graph eventually burns. It is important
we’ve assumed a chip is on C ′ ∪ C ′′: otherwise u′ could have a chip and the fire could be
blocked.

meaning G ) C since G has at least 4 vertices). If on the other hand at least one
vertex of C ′′ lacks a chip, then that vertex burns due to an edge from C ′, and the
fire will spread both ways around C ′′, starting from that vertex. Any configuration
short of having 3 chips on a single vertex result in all of C ′′ burning. Thus since C ′′

does not burn, we know there must be 3 chips on a vertex v′′ in C ′′. Since D does
not place 3 chips on any 3-valent vertex of C ′ ∪ C ′′, we know that v′′ has valence
at least 4, so it corresponds to a vertex v in G of valence at least 3; it follows that
G ) C.

Note that (G � K2) − C ′′ is connected. Since C ′ is on fire, and since there are no
chips off of C ′′, all of (G�K2)−C ′′ burns. If each vertex in C ′′ has a chip, then some
vertex has an additional burning edge coming from a vertex in G′′ − C ′′, so that
vertex in C ′′ will burn, and from there all C ′′ burns. If a single vertex v′′ in C ′′ has
3 chips, then at this point the whole graph except for v′′ is burning; as deg(v′′) > 4,
this vertex burns as well.

In both cases, the entire graph burns, which by Lemma 13 contradicts r(D) > 0.
Now assume that G is not a simple graph. It follows that C must be a cycle of length

2 connecting two vertices. The argument from the first case carries through when G is
not simple. The second case falls through when G is not simple precisely when the three
chips are placed as follows: if there is one chip on each vertex u′′ and w′′ of the cycle
C ′′, and one chip on a vertex vertex v′ on G′ that is not on C ′, but is instead incident
to a vertex of C ′. Indeed, the whole graph may not burn based on this divisor D. If
we have this divisor D on G �K2, choose a vertex v of G �K2 in the following way: if
(G�K2)−{v′, v′′} has vertices off of C ′′ incident to v′′, choose v to be such a vertex; if no
such vertex exists, then since |V (G)| > 4 we may choose v off of C ′ ∪C ′′ on a component
of (G � K2) − (C ′ ∪ C ′′) not containing v′′. The first case leads to v′ and then all of
C ′′ burning, and the second case leads to all of C ′ ∪ C ′′ and then v′ burning. These two
cases are illustrated in Figure 12. Thus we have reached our desired contradiction for
non-simple graphs as well.

We close this section by remarking that there are several open conjectures that would

the electronic journal of combinatorics 27(4) (2020), #P4.52 20



C ′

C ′′

v′

v′′1 1

1

v

C ′

C ′′

v′

v′′1 1

1

v

Figure 12: Two special cases for choosing v when G is not simple

follow if the products in question have the expected gonality from Question 4: that the
gonality of the m×n× l grid Pm�Pn�Pl is mnl/max{m,n, l} [24]; and that the gonality
of the n-dimensional cube Qn = (K2)�n is 2n−1 [25]. Both of these feature graphs of the
form G�H where one of G and H is a path, suggesting that this would be a particularly
interesting setting in which to study Question 4.

4 The gonality conjecture for products of graphs

Using our upper bound from Proposition 3, we will show in this section that G � H
satisfies the inequality in Conjecture 1 for any graphs G and H with two or more vertices
each. We first state the following useful lemma.

Lemma 19. Let G be a graph of genus g. Then gon(G) 6 g + 1. Moreover, if g > 2,
then gon(G) 6 g.

Proof. For the first claim we use the following standard Riemann-Roch argument. Let D
be any effective divisor of degree g + 1 on G. Since r(K −D) > −1, Theorem 5 tells us
that r(D) + 1 > r(D) − r(K −D) = deg(D) + 1 − g = g + 1 + 1 − g = 2, so r(D) > 1.
This means gon(G) 6 deg(D) = g + 1.

Now assume g > 2. By [7], the divisor K has degree 2g − 2 and rank g − 1. By [5,
Lemma 2.7], given a divisor D of rank r > 0, for any vertex v the divisor D− (v) has rank
at least r − 1. Since g > 2, we can iteratively subtract g − 2 vertices from K to obtain a
divisor of degree 2g− 2− (g− 2) = g that has rank at least g− 1− (g− 2) = 1. It follows
that gon(G) 6 g.

It will also be helpful to have some notation for non-simple graphs with 2 or 3 vertices.
Any such graph must have K2, P3, or K3 as its underlying simple graph. For n > 2, the
banana graph Bn is the graph with two vertices and n edges between them. For m,n > 1
with max{m,n} > 2, the double banana graph Bm,n is the graph with three vertices,
the first two connected by m edges and the second two connected by n edges. For For
`,m, n > 1 with max{`,m, n} > 2, the banana loop graph L`,m,n is a graph with three
vertices, where the numbers of edges between the three pairs of vertices are `, m, and n.
Several examples of these graphs are illustrated in Figure 13, along with divisors of rank
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1. One can verify that gon(Bn) = 2; that gon(Bm,n) = 2 if min{m,n} = 1 or m = n = 2,
and gon(Bm,n) = 3 otherwise; and that gon(L`,m,n) = 2 if two of `,m, and n are equal to
1, and gon(L`,m,n) = 3 otherwise. We have already seen B2,1 � B2,1 in Figure 1, which
illustrated that gon(B2,1 �B2,1) 6 5.

B2

B5

B2,2

B4,1

B3,2

L1,1,3

L2,4,3

1 1

1 1

2

1 1

1 1 1

1

1
1

11

Figure 13: Several multigraphs with at most 3 vertices, each with a divisor of rank 1

We are now ready to prove that any nontrivial graph product G�H satisfies gon(G�
H) 6

⌊
g(G�H)+3

2

⌋
.

Proof of Theorem 2. Let G and H be graphs, where G has v1 vertices and e1 edges, and
H has v2 vertices and e2 edges, where v1, v2 > 2. The product graph G � H then has
genus e1v2 + e2v1 − v1v2 + 1. Without loss of generality we will assume that e2v1 6 e1v2,
which implies that e2v1 6

e1v2+e2v1
2

.
Assume for the moment that either v2 > 4, or g(H) > 2. By Proposition 3 we

have gon(G � H) 6 v1 gon(H). By Lemma 19 we have v1 gon(H) 6 v1 (g(H) + 1) =
v1(e2 − v2 + 2) = e2v1 − v1v2 + 2v1. If v2 > 4, then we have

g(G�H) + 3

2
− gon(G�H) >

g(G�H) + 3

2
− (e2v1 − v1v2 + 2v1)

=
e1v2 + e2v1 − v1v2 + 4

2
− e2v1 + v1v2 − 2v1

=

(
e1v2 + e2v1

2
− e2v1

)
+
v1v2

2
− 2v1 + 2

>
v1v2

2
− 2v1 + 2

= v1

(v2

2
− 2
)

+ 2

> v1

(
4

2
− 2

)
+ 2 = 2.

On the other hand, if g(H) > 2, then by Lemma 19 we have gon(H) 6 g(H). It follows
that gon(G�H) 6 v1 gon(H) 6 v1g(H) = e2v1 − v1v2 + v1. Thus we have

g(G�H) + 3

2
− gon(G�H) >

e1v2 + e2v1 − v1v2 + 4

2
− e2v1 + v1v2 − v1
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=

(
e1v2 + e2v1

2
− e2v1

)
+
v1v2

2
− v1 + 2

>
v1v2

2
− v1 + 2

= v1

(v2

2
− 1
)

+ 2

> v1

(
2

2
− 1

)
+ 2 = 2.

In both of these cases, we have that gon(G�H) < g(G�H)+3
2

, and in fact that gon(G�H) <

bg(G�H)+3
2

c, since the gap between gon(G�H) and g(G�H)+3
2

is at least 2.
We may now assume v2 < 4, and that g(H) 6 1. We might be tempted to say that

by symmetry, v1 < 4 as well; however, we already used the symmetry of switching G
and H when we assumed e2v1 6 e1v2, so we have no control on v1 at the moment. Since
v2 6 3, we know that H is K2, P3, K3, Bn, Bm,n, or L`,m,n for some integers `, m and
n. Note that g(Bn) = n − 1, g(Bm,n) = m + n − 2, and L`,m,n = ` + m + n − 2. Since
we’ve assumed g(H) 6 1, the only non-simple possibilities for H are B2 and B2,1. Thus
we have H ∈ {K2, P3, K3, B2, B2,1}. We will handle K3 and B2,1 together, and the other
three cases separately.

Let H = K2. Then v2 = 2 and e2 = 1. We have g(G�K2) = e1v2 + e2v1 − v1v2 + 1 =

2e1 + v1 − 2v1 + 1 = 2e1 − v1 + 1, so g(G�K2)+3
2

= e1 − v1
2

+ 2. By Proposition 3 we have
gon(G�K2) 6 min{v1, 2 gon(G)}. From the bound gon(G�K2) 6 v1, we deduce

g(G�K2) + 3

2
− gon(G�K2) > e1 −

v1

2
+ 2− v1

= e1 −
3v1

2
+ 2.

From the bound gon(G�K2) 6 2 gon(G) 6 2(g(G) + 1) = 2e1 − 2v1 + 4, we deduce

g(G�K2) + 3

2
− gon(G�K2) > e1 −

v1

2
+ 2− 2e1 + 2v1 − 4

= − e1 +
3v1

2
− 2.

At least one of e− 3v1
2

+2 and −e+ 3v1
2
−2 is nonnegative, so we have g(G�K2)+3

2
−gon(G�

K2) > 0. Since b0c = 0 and since
⌊
g(G�K2)+3

2
− gon(G�K2)

⌋
=
⌊
g(G�K2)+3

2

⌋
− gon(G�

K2), we have gon(G�K2) 6
⌊
g(G�K2)+3

2

⌋
.

Let H = P3, so that v2 = 3 and e2 = 2. If G is a tree, then since P3 is a tree we know
by Proposition 11 that gon(G � P3) = min{3, v1}. Since any tree has one more vertex

than it has edges, we then have
⌊
g(G�P3)+3

2

⌋
=
⌊
e1v2+e2v1−v1v2+4

2

⌋
=
⌊

3(v1−1)+2v1−3v1+4
2

⌋
=⌊

2v1+1
2

⌋
= v1 > min{3, v1}, so the gonality conjecture holds. Thus we may assume that G

is not a tree. We have g(G�P3) = e1v2+e2v1−v1v2+1 = 3e1+2v1−3v1+1 = 3e1−v1+1, so
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g(G�P3)+3
2

= 3e1
2
− v1

2
+2. By Proposition 3 we have gon(G�P3) 6 min{v1, 3 gon(G)} 6 v1.

Then we have

g(G� P3) + 3

2
− gon(G� P3) >

3e1

2
− v1

2
+ 2− v1

>
3

2
(e1 − v1) + 2.

Since G is not a tree, we know e1 − v1 > 0, so we have g(G�P3)+3
2

− gon(G � P3) > 2; it

follows that gon(G� P3) <
⌊
g(G�P3)+3

2

⌋
.

Let H = K3, so that v2 = 3 and e2 = 3. We have g(G�K3) = e1v2 + e2v1−v1v2 + 1 =

3e1 + 3v1 − 3v1 + 1 = 3e1 + 1, so g(G�K3)+3
2

= 3e1
2

+ 2. By Proposition 3 we have
gon(G�K3) 6 min{2v1, 3 gon(G)}. The bound gon(G�K3) 6 2v1 implies

g(G�K3) + 3

2
− gon(G�K3) >

3e1

2
+ 2− 2v1.

The bound gon(G�K3) 6 3 gon(G) 6 3(g(G) + 1) = 3e1 − 3v1 + 6 implies

g(G�K3) + 3

2
− gon(G�K3) >

3e1

2
+ 2− 3e1 + 3v1 − 6.

=− 3e1

2
− 4 + 3v1

> − 3e1

2
− 2 + 2v1,

where we use the fact that v1 > 2. At least one of 3e1
2

+ 2 − 2v1 and −3e1
2
− 2 + 2v1 is

nonnegative, so we have g(G�K3)+3
2

− gon(G�K3) > 0. As when H = K2, it follows that

gon(G � K3) 6
⌊
g(G�K3)+3

2

⌋
. Note that the exact same arguments suffice to show that

gon(G� B2,1) 6
⌊
g(G�B2,1)+3

2

⌋
, since B2,1 also has 3 vertices, 3 edges, and gonality equal

to 2.
Finally, let H = B2. We have v2 = 2 and e2 = 2, so g(G�H) = e1v2 +e2v1−v1v2 +1 =

2e1 + 2v1 − 2v1 + 1 = 2e1 + 1, meaning g(G�H)+3
2

= e1 + 2. We have gon(G � B2) 6
min{2 gon(G), 2v1}, so gon(G�B2) 6 2v1, and thus

g(G�B2) + 3

2
− gon(G�B2) > e1 + 2− 2v1.

The bound gon(G�B2) 6 2 gon(G) 6 2(g(G) + 1) = 2e1 − 2v1 + 4 gives us

g(G�B2) + 3

2
− gon(G�B2) > e1 + 2− (2e1 − 2v1 + 4) = −e1 − 2 + 2v1.

At least one of e1 +2−2v1 and −e1−2+2v1 is nonnegative. It follows that gon(G�B2) 6⌊
g(G�B2)+3

2

⌋
.
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5 Products with maximum gonality

We now determine which nontrivial graph products satisfy gon(G�H) = bg(G�H)+3
2

c. We
start with the following lemma, which determines the gonality of several graph products
not yet dealt with.

Lemma 20. We have gon(B2 �B2) = 4, and gon(B2,1 �K3) = 6.

These graphs are the rightmost pair of graphs in the bottom row of Figure 17.

Proof. As usual, Proposition 3 furnishes the desired upper bound on these gonalities. We
will argue lower bounds using Lemma 13.

Suppose for the sake of contradiction that there exists an effective divisor D of degree
3 and positive rank on B2 � B2. Since B2 � B2 has four vertices, we can choose v with
no chips on it, and run the burning process from Lemma 13. Since two edges connect
each vertex to each of its neighbor, a vertex could only be safe from a burning neighbor
if it had 2 or more chips. Thus as the fire spreads around the underlying cycle C4 of the
graph, at most one vertex is not burned; but then there are 4 incident burning edges for
that vertex, and at most 3 chips on the graph, so the whole graph burns. This contradicts
r(D) > 0, so gon(B2 �B2) > 4.

Suppose for the sake of contradiction that there exists an effective divisor D of degree 5
and positive rank on B2,1�K3. Label the vertices of B2,1 as u, v, and w, where val(u) = 2,
val(v) = 3, and val(w) = 1; and let C be the cycle connecting u and v. Refer to the three
copies of B2,1 as G1, G2, and G3; and to their vertices as ui, vi, and wi and cycle as Ci in
accordance with our labelling on G. We will refer to the three copies of K3 as u-K3, v-K3,
and w-K3, depending on which vertices they are composed of. This notation is illustrated
in Figure 14.

u

v

w

u1

v1

w1

u3

v3

w3

u2

v2

w2

u-K3

v-K3

w-K3

C C1 C2 C3

Figure 14: Our labels on B2,1 and B2,1 �K3

First we rule out several possible cases for D, namely if D is of the form (ui) + (vi) +
(uj) + (vj) + (wk) where i, j, and k are all distinct; and if D is of the form 2(ui) + 3(vi).
It turns out a divisor of the first form is equivalent to a divisor of the second form by
firing all vertices besides u1 and v1, as illustrated in Figure 15. These equivalent divisors
do not have positive rank: if D = (ui) + (vi) + (uj) + (vj) + (wk), we can run the burning
process from wi or wj, and the whole graph burns. Thus we may assume that D does not
have either of those forms.
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1

1

1

1

1

∼

2

3

Figure 15: Two types of divisors, equivalent to one another, that do not have positive
rank

Since g(B2,1 � K3) = 10 > 5, we may assume by Lemma 16 that D = DO for some
sourceless partial orientation O, implying that D places at most val(x)− 1 chips on every
vertex x. If D places a chip on each of w1, w2, and w3, then fire these three vertices to
move one chip each to v1, v2, and v3; and if D places at least two chips on two of w1, w2,
and w3 (but no chip on the third), fire those two vertices to move chips away. Replacing
our D with this new divisor, we still have that it places at least val(x)−1 chips on a vertex
x, since there were at most 1 or 2 chips off of w-K3, depending on which w-configuration
we were handling.

Since there are three copies of C, at least one of them, say C1, has at most one chip.
Choose a vertex on C1 without a chip and run the burning process. Certainly all of C1

burns. Let b be the number of vertices of C2 ∪ C3 that burn. We now deal with several
cases.

• Suppose b = 0. Then each of the four vertices of C2∪C3 have at least one chip. Since
there are only five chips at least one of v2 or v3 must only have one chip, meaning
that we cannot have the w-K3 burn. With at most one chip not on C2 ∪ C3, the
only way to prevent the w-K3 from burning is to place 1 chip on w1. But then D
is of the form (ui) + (vi) + (uj) + (vj) + (wk) where i, j, and k are all distinct, a
contradiction.

• Suppose b = 1; say it is u2 that burns. Counting up burning edges and noting that
no other vertex of C2 ∪C3 burns, we know v2 has three chips, u3 has two chips, and
v3 has one chip. This exceeds our five chips, a contradiction. The same argument
works for any other vertex of C2 ∪ C3.

• Suppose b = 2. If ui and vj burn for i 6= j, then vi and uj each need 3 chips, which is
impossible. If ui and uj burn, then vi and vj each need 3 chips, which is impossible;
a similar contradiction occurs if vi and vj burn. If ui and vi burn, then each of uj
and vj needs at least 2 chips. In order to prevent vj from burning, it must have a
third chip: there is no way to use 1 chip to prevent vj from burning. But then D is
of the form 2(uj) + 3(vj), a contradiction.

• Suppose b = 3. If ui does not burn, then since all vertices incident to it are burning,
it must have 4 chips, a contradiction since it can have at most val(ui)− 1 = 3 chips.
If vi does not burn, then it must have 4 chips, which is not yet a contradiction since
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val(vi) − 1 = 4. However, since Cj and Ck are burning for j 6= k, 1 chip is not
enough to prevent w-K3 from burning. This means wi is burning, so vi needs 5
chips, a contradiction.

• Suppose b = 4, so all of C1 ∪C2 ∪C3 burns. We know at least one wi has no chips,
so that vertex burns; and the other wj and wk now have 2 incoming burning edges
each. By our construction of D we know they can’t both have 2 chips, so one burns;
and then the other burns as well, since it can’t have more than 2 chips. Thus the
whole graph burns, contradicting r(D) > 0.

We conclude that gon(B1,2 �K3) > 6.

We are now ready to state the main theorem of this section.

Theorem 21. Let G and H be graphs with at least two vertices each. Then gon(G�H) =⌊
g(G�H)+3

2

⌋
if and only if G � H is K2 � K2, K2 � P3, P3 � P3, K3 � K3, B1,2 � K3,

B2 �B2, or O �K2 where O is a genus 1 graph with 3 6 |V (O)| 6 5.

Before we prove this theorem, we enumerate the possible graphs O of genus 1 with
between 3 and 5 vertices. Such an O consists of a single cycle with c > 2 vertices, with up
to 5−c other vertices connected to this cycle without forming a new cycle; note that c = 2
if and only if G is not simple. There end up being 8 such simple graphs, all illustrated
in the top row of Figure 16: the cycles C3, C4, and C5; the so-called tadpole graphs T3,1,
T3,2, and T4,1; the so-called bull graph B; and the so-called cricket graph K. Note that
the cycle graph C3 is equal to the complete graph K3. There are 9 non-simple graphs,
pictured on the second row of Figure 16.

C3 = K3 C4 C5
T3,1 T3,2 T4,1

B K

Figure 16: The graphs of genus 1 with between 3 and 5 vertices, simple and non-simple

We illustrate the content of Theorem 21 with Table 1 and with Figure 17, which
respectively show all simple and non-simple nontrivial graph products G � H satisfying

gon(G�H) =
⌊
g(G�H)+3

2

⌋
. We include references in the table to results from this paper

that imply the claimed gonality, although many of these gonalities were previously known.
In particular, the gonality of the m× n grid was proved to be min{m,n} in [24]; and the
gonality of Cm � Pn was proved to be min{m, 2n} for m 6= 2n in [2], giving the gonality
of the 2× 3 rook’s graph and the 5-prism.
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Product Name or description Graph Gonality Source for gonality

K2 �K2 2× 2 grid graph 2 Proposition 11

K2 � P3 2× 3 grid graph 2 Proposition 11

P3 � P3 3× 3 grid graph 3 Proposition 11

K3 �K3 3× 3 rook’s graph 6 Theorem 17

K3 �K2 2× 3 rook’s graph 3 Proposition 12

C4 �K2 4-prism, or 3-cube 4 Theorem 18

C5 �K2 5-prism 4 Theorem 18

T3,1 �K2 3-prism w/flap 4 Theorem 18

T3,2 �K2 3-prism w/long flap 4 Theorem 18

T4,1 �K2 4-prism w/flap 4 Theorem 18

B �K2 3-prism w/two flaps 4 Theorem 18

K �K2 3-prism w/two flaps 4 Theorem 18

Table 1: All nontrivial simple graph products G�H with gonality equal to
⌊
g(G�H)+3

2

⌋
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Figure 17: All nontrivial products G�H with gon(G�H) =
⌊
g(G�H)+3

2

⌋
, where G and

H are not both simple

Proof of Theorem 21. As before, we may assume without loss of generality that e2v1 6
e1v2. By the proof of Theorem 2, if v2 > 4 or g(H) > 2 there is a gap between gon(G�H)
and bg+3

2
c. Thus to have equality we must have v2 < 4 and g(H) 6 1, so H must be

one of the graphs K2, P3, K3, B2,1, and B2. For some of these cases, we will consider

∆(G � H) := g(G�H)+3
2

− gon(G � H). In any case where ∆(G � H) > 1, we will have

gon(G�H) < bg(G�H)+3
2

c.
Let H = K2. We will deal with three cases sorted by the genus g of G: g = 0, g = 1,

and g > 2.

• If g = 0, then G is a tree, so gon(G�K2) = min{2, v1} = 2 by Proposition 11. We

then have v1 = e1 − 1, so
⌊
g(G�K2)+3

2

⌋
=
⌊
e1v2+e2v1−v1v2+4

2

⌋
=
⌊

2(v1−1)+v1−2v1+4
2

⌋
=⌊

v1+2
2

⌋
. This is equal to 2 if and only if v1 = 2 or v1 = 3, so we must have G = K2

or G = P3. This gives us the graphs K2 �K2 and K2 � P3.

• Next assume that G has genus 1. We know that gon(G � K2) = min{v1, 4} by

Theorem 18. Note that
⌊
g(G�K2)+3

2

⌋
=
⌊
e1 − v1

2

⌋
+ 2 =

⌊
v1
2

⌋
+ 2. If v1 = 3, then this

equals 3; and if v1 = 4 or v1 = 5, then this equals 4. In both cases, we do have that⌊
g(G�K2)+3

2

⌋
= min{v1, 4}. If v1 = 2, then

⌊
v1
2

⌋
+ 2 = 3 > 2 = gon(G � K2); and

if v1 > 6, then
⌊
g(G�K2)+3

2

⌋
> 4 = gon(G � K2). Thus if G has genus 1, we have

gon(G�K2) =
⌊
g(G�K2)+3

2

⌋
if and only if 3 6 v1 6 5. This gives us 17 products of

the form O �K2, where O is any of the graphs in Figure 16.

• Assume now that G has genus g > 2. We will show that in this case ∆(G�K2) > 1.
We know from the proof of Theorem 2 that ∆(G�K2) > e1− 3v1

2
+ 2. Since g > 2,

we know by Lemma 19 that gon(G) 6 g, so gon(G � K2) 6 2 gon(G) 6 2g =
2e1 − 2v1 + 2. It follows that

∆(G�K2) >e1 −
v1

2
+ 2− (2e1 − 2v1 + 2)

=− e1 +
3v1

2
.
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If e1− 3v1
2

+ 2 > 1, then we have our desired lower bound on ∆(G�K2). Otherwise,
we have e1 − 3v1

2
+ 2 6 1

2
, implying −e1 + 3v1

2
− 2 > −1

2
, and so −e1 + 3v1

2
> 3

2
.

Since ∆(G � K2) > −e1 + 3v1
2

, we still have ∆(G � K2) > 1. We conclude that

∆(G�K2) > 1, meaning that gon(G�K2) <
⌊
g(G�K2)

2

⌋
.

Now let H = P3. A careful reading of the proof of Theorem 2 shows that if G is not a

tree, then gon(G� P3) < bg(G�P3)+3
2

c; and that if G is a tree, then
⌊
g(G�P3)+3

2

⌋
= v1 and

gon(G � P3) = min{3, v1}, so gon(G � P3) =
⌊
g(G�P3)+3

2

⌋
if and only if v1 = min{v1, 3}.

It follows that v1 must be either 2 or 3, and thus G must be either K2 or P3.
Now let H = K3. From the proof of Theorem 2, we have

∆(G�K3) > max

{
3e1

2
+ 2− 2v1,−

3e1

2
− 4 + 3v1

}
.

If we have 3e1
2

+ 2 − 2v1 >
1
2
, then ∆(G � K3) > 3e1

2
+ 2 − 2v1 > 1 and we’re done. If

not, then 3e1
2

+ 2 − v1 6 1
2
. We then have −3e1

2
− 2 + 2v1 > −1

2
, and from there that

−3e1
2
− 4 + 3v1 > −5

2
+ v1. We thus have ∆(G�K3) > −5

2
+ v1. If v1 > 7

2
, then we have

∆(G�K3) > 1, so the only way we could have gon(G�K3) = bg(G�K3)+3
2

c is if v1 <
7
2
,

which implies that v1 = 2 or v1 = 3. If v1 = 2, the bound ∆(G � K3) > 3e1
2

+ 2 − 2v1

becomes ∆(G � K3) > 3e1
2
− 2; and if v1 = 3, it becomes ∆(G � K3) > 3e1

2
− 4. If

v1 = 2 and e1 > 2, then ∆(G � K3) > 3·2
2
− 2 = 1; and if v1 = 3 and e1 > 4, then

3e1
2
− 4 > 3·4

2
− 4 = 2. In both these cases we have ∆(G � K3) > 1, implying a gap.

Thus the only possible cases for equality are when v1 = 2 and e1 = 1; and when v1 = 3
and e1 6 3. The only graphs satisfying these properties are K2, P3, K3, and B2,1. We
can rule P3 by the previous case, since K3 is not a tree. By Proposition 12, Theorem 17,
and Lemma 20, we have gon(K2 �K3) = 3, gon(K3 �K3) = 6, and gon(B2,1 �K3) = 6.

On the other hand, we have
⌊
g(K2�K3)+3

2

⌋
= 3,

⌊
g(K3�K3)+3

2

⌋
= 6, and

⌊
g(B2,1�K3)+3

2

⌋
= 6.

Thus we do have equality for the three products K2 �K3, K3 �K3, and B2,1 �K3 (the
first of which we already knew from our analysis of K2).

Since B2,1 and K3 both have 3 edges, 3 vertices, genus 1, and gonality 2, an identical
argument shows that if H = B2,1, then we need G ∈ {K2, K3, B2,1} in order to have

equality. We do have gon(G � B2,1) =
⌊
g(G�B2,1)+3

2

⌋
for G = K2 and G = K3, as

already determined earlier in this proof. However, gon(B2,1 � B2,1) 6 5 by Figure 1, and⌊
g(B2,1�B2,1)+3

2

⌋
=
⌊

10+3
2

⌋
= 6, so we do not have equality in this case.

Finally, if H = B2, recall that we have the lower bounds ∆(G � B2) > e1 − 2v1 + 2
and ∆(G�B2) > −e1 + 2v1−2. One of these lower bounds implies ∆(G�B2) > 1 unless
e1 − 2v1 + 2 = −e1 + 2v1 − 2 = 0. Suppose we are in this latter case, which implies that
g(G) = e1 − v1 + 1 = v1 − 1. We deal with two cases: when G has genus at most 1, and
when g(G) > 2.

• If g(G) = 0, then v1 − 1 = 0 and v1 = 1, a contradiction. If g(G) = 1, then
v1 = 2. The only graph of genus 1 with 2 vertices is B2; we do indeed have that
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gon(B2 �B2) = 4 =
⌊
g(B2�B2)+3

2

⌋
by Lemma 20. This graph is the rightmost graph

on the bottom row in Figure 17.

• If g(G) > 2, we can improve the bound ∆(G�B2) > −e1 + 2v1− 2 to ∆(G�B2) >
−e1 + 2v1, since we have gon(G) 6 g(G). Since −e1 + 2v1 − 2 = 0, we have
−e1 + 2v1 = 2. This lower bound of 2 on ∆(G � B2) implies we cannot have
equality.

6 Cartesian products of metric graphs

We close our paper with a brief discussion of extending our results to metric graphs. Given
a graph G, we can assign lengths to its edges via a length-function ` : E(G)→ R>0. The
pair (G, `) can then be thought of as a topological space Γ, consisting of an interval of
length `(e) for each e ∈ E, glued together according to the data of G. We remark that
different pairs (G, `) and (G′, `′) can yield the same topological space Γ. For example, if
G = K2 with an edge of length 1 and G′ = P3 with two edges, each of length 1/2, then
both pairs (G, `) and (G′, `′) yield the same topological space Γ, namely an interval of
length 1. We call the space Γ a metric graph, and (G, `) a model for Γ.

The theory of divisors on combinatorial graphs was extended to metric graphs in [15]
and [21], where divisors are still finite formal sums, but now of points that can be placed
anywhere on the graph, including in the interior of edges. We briefly recall the details here.
Many definitions, such as degree and effectiveness, carry through from the combinatorial
case. Equivalence of divisors is now defined in terms of tropical rational function. A
tropical rational function f : Γ→ R is a continuous piecewise-linear function with integer
slopes and only finitely many pieces. The order of f at a point p ∈ Γ, written ordp(f), is
the sum of the outgoing slopes of the graph of f at p. The divisor associated to f is∑

p∈Γ

ordp(f) · (p).

We say two divisors D and E are equivalent if D−E = div(f) for some tropical rational
function f . The rank of a divisor D is the maximum r such that for any effective divisor
E of degree r, the divisor D − E is equivalent to an effective divisor (if no such r exists,
we define the rank of D to be −1). We define the gonality of a metric graph to be the
minimum degree of a rank 1 divisor on that metric graph. It is not immediately obvious
whether or not the rank of a divisor is even calculable; after all, there are infinitely many
possible points in Γ where E could be supported. Fortunately, Luo’s work on rank-
determining sets makes the problem much more tractible [20]. A finite set A ⊂ Γ is said
to be rank-determining if for any divisor D ∈ Div(G), we can compute r(D) while only
considering E with supp(E) ⊂ A.

To extend our discussion of gonality on Cartesian products of graphs to the world of
metric graphs, we have to specify what we mean by the product of two metric graphs.
Certainly we will not take the topological product of two metric graphs Γ1 and Γ2: this
would be a 2-dimensional manifold with singularities, rather than a metric graph. Instead,
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we can choose models (G1, `1) and (G2, `2) of Γ1 and Γ2, and define the product of the
models to be (G1 �G2, `1 �`2), where `1 �`2(e1 �v2) = `1(e1) and `1 �`2(v1 �e2) = `2(e2).
Unfortunately, the associated metric graph of (G1 � G2, `1 � `2) depends on our choice
of models of Γ1 and Γ2, since the underlying graph G1 �G2 can change in ways that are
topologically relevant. Thus we will not refer to “the” product Γ1 � Γ2 of Γ1 and Γ2,
merely “a” product Γ1 � Γ2. Thus in all cases, the notation Γ1 � Γ2 implies a choice of
models for Γ1 and Γ2. (One could choose to always use the canonical loopless models of
Γ1 and Γ2, as in [11]; our results hold in more generality, so we will maintain freedom of
model.)

We can still interpret Γ1 � Γ2 as |V (G2)| copies of Γ1, with edges connecting those
copies according to the combinatorics of G2; and vice versa. Thus every point in Γ1 � Γ2

can be thought as either (a, w) with a ∈ Γ1 and w ∈ V (G2), or as (v, b) with v ∈ V (G1)
and b ∈ Γ2, or possibly as both, if it is a point (v, w) where v corresponds to a vertex of
G1 and w corresponds to a vertex of G2.

It turns out that the upper bound from Proposition 3 on the gonality of Cartesian
products still holds in the metric setting. In the proof of this, we will use the following
notation: if D =

∑k
i=1 ni · (ai) ∈ Div(Γ1) and b ∈ V (G2), we set

(D, b) :=
k∑

i=1

ni · (ai, b).

Note that if D > 0, then (D, b) > 0.

Proposition 22. For any two metric graphs Γ1 and Γ2 with models (G1, `1) and (G2, `2),
we have

gon(Γ1 � Γ2) 6 min{gon(Γ1) · |V (G2)|, gon(Γ2) · |V (G1)|}.

Proof. By symmetry, it is enough to show that gon(Γ1 � Γ2) 6 gon(Γ1) · |V (G2)|. Let F
be an effective divisor on Γ1 with r(F ) > 1 and deg(F ) = gon(Γ1). Set

D =
∑

w∈V (G2)

(F,w).

This divisor has degree gon(Γ1)·|V (G2)|. We wish to argue it has positive rank. The points
of Γ1 � Γ2 corresponding to V (G1 �G2) form a rank-determining set by [20, Proposition
3.1], so r(D) > 1 if and only r(D − (v, w)) > 0 for any v ∈ V (G1), w ∈ V (G2).

Let (v0, w0) ∈ V (G1) × V (G2). Since F has rank 1 on Γ1, we know there exists a
tropical rational function f on Γ1 such that F − (v0) + div(f) > 0. Define a tropical
rational function d on Γ1 � Γ2 by d(a, b) = f(a). We have that d is indeed a tropical
rational function: its graph essentially looks like the graph of f along each copy of Γ1,
with slope zero edges connecting (v, w) to (v, w′) whenever ww′ ∈ E(G2).

Note that
div(d) =

∑
w∈V (G2)

(div(f), w),
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since the slope along edge of Γ2 is zero. Thus we have

D − (v0, w0) + div(d) =
∑

w∈V (G2)

(F,w)− (v0, w0) +
∑

w∈V (G2)

(div(f), w)

>
∑

w∈V (G2)

(F,w)−
∑

w∈V (G2)

(v0, w) +
∑

w∈V (G2)

(div(f), w)

=
∑

w∈V (G2)

[(F,w)− (v0, w) + (div(f), w)]

=
∑

w∈V (G2)

(F − v0 + div(f), w) > 0,

as desired.

We remark that in order for this result to hold, it is very important that the lengths
of the metric graphs Γ1 and Γ2 are taken into account; the bound no longer holds if
we merely take the product of the underlying combinatorial graphs and then assign an
arbitrary length function, as illustrated in the following example.

Example 23. Let G1 = K2 and let G2 be the tree on 6 vertices with 4 leaves and 2
trivalent vertices, pictured along with G1 � G2 in Figure 18. If we assign lengths to
the edges to obtain metric graphs Γ1 and Γ2, then by Proposition 22 gon(Γ1 � Γ2) 6
gon(Γ2) · |V (G1)| = 1 · 2 = 2; since Γ1 � Γ2 is not a tree, we in fact have gon(Γ1 � Γ2) = 2.
However, not all assignments of lengths to G1 � G2 yield a graph of gonality at most 2.
By [6, Lemma 4.2], a metric graph (G1 � G2, `) has gonality 2 only if the edges e and f
labelled in the Figure 18 have the same length. Thus by choosing `(e) 6= `(f), we can
find a length function ` on G1 �G2 such that the metric graph associated to (G1 �G2, `)
has gonality larger than the bound from Proposition 22.

=

e

f

Figure 18: A graph product whose gonality is more than 2 if `(e) > `(f)

By [25, Corollary 4.2], if Γ is a metric graph with model (G, `), we have tw(G) 6
gon(Γ). This allows us to recover some of our results for combinatorial graphs in the
metric setting.

Proposition 24. If (G1, `1) and (G2, `2) are models for metric trees Γ1 and Γ2, then
gon(Γ1 � Γ2) = min{|V (G1)|, |V (G2)|}. If instead we have G2 = Kn and |V (G1)| > 2,
then gon(Γ1 � Γ2) = n.
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Proof. The lower bound comes from the same treewidth computations from Propositions
11 and 12. For the upper bound, we note that we still have gon(Γ) = 1 if and only if Γ is
a metric tree, as an easy corollary of the tropical Riemann-Roch theorem. We also have
that gon(Γ) = n− 1 if Γ is any metric Kn [22, Example 14]. Combined with Proposition
22, this completes the proof.
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