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Abstract
A 2-distance-primitive graph is a vertex-transitive graph whose vertex stabilizer

is primitive on both the first step and the second step neighborhoods. Let Γ be
such a graph. This paper shows that either Γ is a cyclic graph, or Γ is a complete
bipartite graph, or Γ has girth at most 4 and the vertex stabilizer acts faithfully on
both the first step and the second step neighborhoods. Also a complete classification
is given of such graphs satisfying that the vertex stabilizer acts 2-transitively on the
second step neighborhood. Finally, we determine the unique 2-distance-primitive
graph which is locally cyclic.

Mathematics Subject Classifications: 05E18, 20B25

1 Introduction

In this paper, all graphs are finite, simple, connected and undirected. For a graph Γ,
we use V (Γ) and Aut(Γ) to denote its vertex set and automorphism group, respectively.
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For the group theoretic terminology not defined here we refer the reader to [9, 14]. The
diameter of a graph Γ is the maximum distance occurring over all pairs of vertices. Let
u ∈ V (Γ) and i be a positive integer at most the diameter of Γ. We use Γi(u) to denote
the set of vertices at distance i with vertex u in Γ. Sometimes, Γ1(u) is also denoted by
Γ(u).

A transitive permutation group G is said to be acting primitively on a set Ω if it has
only trivial blocks in Ω. If G acts primitively on Ω, then every nontrivial normal subgroup
of G is transitive on Ω. There is a remarkable classification of finite primitive permuta-
tion groups mainly due to M. O’Nan and L. Scott, called the O’Nan-Scott Theorem for
primitive permutation groups, see [26, 35]. They independently gave a classification of
finite primitive groups, and proposed their result at the “Santa Cruz Conference in finite
groups” in 1979. For more work on primitive groups, see [5, 21, 25, 32].

A graph Γ is said to be 2-distance-transitive if, for each i 6 2, the automorphism
group of Γ is transitive on the ordered pairs of vertices at distance i. The study of finite
2-distance-transitive graphs goes back to Higman’s paper [18] in which “groups of maximal
diameter” were introduced. These are permutation groups which act distance-transitively
on some graph. Then 2-distance-transitive graphs have been studied extensively, see
[11, 12, 15, 20, 33, 34].

In this paper, we investigate a family of graphs which has stronger transitivity than
the family of 2-distance-transitive graphs, namely 2-distance-primitive graphs. A non-
complete vertex-transitive graph Γ is said to be 2-distance-primitive if, for i = 1, 2 and
for any vertex u, Au is primitive on both Γ(u) and Γ2(u) where A := Aut(Γ). Clearly, every
2-distance-primitive graph is 2-distance-transitive. The converse is not true, for instance,
the complete multipartite graph Km[n] with m > 3, n > 2 is 2-distance-transitive but not
2-distance-primitive. (Its vertex set consists of m parts of size n, and it has edges between
all pairs of vertices from distinct parts.) Hence the family of 2-distance-primitive graphs is
properly contained in the family of 2-distance-transitive graphs. Many well-known graphs
have the 2-distance-primitive property. For instance, the cyclic graph Cn is 2-distance-
primitive whenever n > 4; the icosahedron (the graph in Figure 1) is 2-distance-primitive
of valency 5; the family of 2-geodesic-transitive but not 2-arc-transitive graphs of prime
valency provides an infinite family of such examples, refer to [13]. This family of graphs
is also related to the class of well-known ‘locally primitive graphs’, see [19, 22, 23, 24, 30].

Our first theorem is a structural result and it shows that if a 2-distance-primitive
graph is neither a cycle nor a complete bipartite graph, then its girth is 3 or 4.

Theorem 1. Let Γ be a 2-distance-primitive graph. Then either Γ ∼= Cn for some n > 4,
or Γ is a complete bipartite graph, or Γ has girth at most 4 and the vertex stabilizer acts
faithfully on both the first step and the second step neighborhoods.

The complement graph Γ of a graph Γ, is the graph with vertex V (Γ), and two vertices
are adjacent in Γ if and only if they are not adjacent in Γ. Recall that a permutation
group G acting on Ω is said to be 2-transitive if it is transitive on the set of ordered pairs
of distinct points in Ω.

A d-cube is a graph with vertex set ∆d = {(x1, x2, . . . , xd)|xi ∈ ∆}, where ∆ = {0, 1},
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Figure 1: Icosahedron

and two vertices v and v′ are adjacent if and only if they differ in exactly one coordinate.
Let Yd denote the graph with vertex set the same as a d-cube Γ, and two vertices are
adjacent in Yd if and only if they are at distance two in Γ. While Yd is not connected, it
has two isomorphic components on 2n−1 vertices, each of which is called a halved d-cube.

For a 2-distance-primitive graph, if its vertex stabilizer acts 2-transitively on the first
step neighborhood, then it is well-known that this graph is 2-arc-transitive, and those
graphs have been studied extensively, see [1, 10, 16, 29, 36, 37]. Our second theorem clas-
sifies the family of 2-distance-primitive graphs whose vertex stabilizer acts 2-transitively
on the second step neighborhood.

Theorem 2. Let Γ be a 2-distance-primitive graph of valency r > 2. Suppose that the
vertex stabilizer of a vertex is 2-transitive on the second step neighborhood. Then Γ is one
of the following graphs: Cn with n > 4, Kr,r, Kr+1,r+1 − (r + 1)K2 with r > 3, the halved
5-cube, the complement graph of the Higman-Sims graph and the complement graph of the
Gewirtz graph.

A subgraph X of a graph Γ is an induced subgraph if two vertices of X are adjacent in
X if and only if they are adjacent in Γ. When U ⊆ V (Γ), we denote by [U ] the subgraph
of Γ induced by U . A graph Γ is said to be locally cyclic if [Γ(u)] is a cycle for every vertex
u. In particular, the girth of a locally cyclic graph is 3. The following theorem determines
the class of 2-distance-primitive graphs which are locally cyclic, and surprisingly, there is
a unique such example.

Theorem 3. Let Γ be a connected, non-complete, locally cyclic graph. Then Γ is 2-
distance-primitive if and only if Γ is the icosahedron.

2 Proof of Theorem 1

In the characterization of 2-distance-primitive graphs, the following constants are useful.
Our definition is inspired by the concept of intersection arrays defined for the distance-
regular graphs (see [4]).
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Definition 4. Let Γ be an s-distance-transitive graph, u ∈ V (Γ), and let v ∈ Γi(u), i 6 s.
Then the number of edges from v to Γi−1(u), Γi(u), and Γi+1(u) does not depend on the
choice of v and these numbers are denoted, respectively, by ci, ai and bi.

Clearly we have that ai + bi + ci is equal to the valency of Γ whenever the constants
are well-defined. Note that for 2-distance-primitive graphs, the constants are always well-
defined for i = 1, 2.

For a connected graph Γ of diameter d > 2, we denote by Γd the graph whose vertices
are those of Γ and whose edges are the 2-subsets of points at mutual distance d in Γ.
Then, Γ is said to be antipodal if Γd is a disjoint union of complete graphs.

We prove our first theorem.

Proof of Theorem 1. If Γ has valency 2, then Γ ∼= Cn for some n > 4. In the remainder,
we suppose that Γ has valency at least 3. Let u ∈ V (Γ). Assume that Γ has girth at
least 5. Then c2 = 1, so every vertex of Γ2(u) is adjacent to exactly one vertex of Γ(u), it
follows that for each v ∈ Γ(u), Γ2(u)∩ Γ(v) is a block of the Au-action on Γ2(u). Since Γ
has valency at least 3, b1 > 2, and so Γ2(u)∩ Γ(v) is a nontrivial block, contradicting the
fact that Au is primitive on Γ2(u). Thus Γ has girth at most 4, that is, Γ has girth 3 or 4.

Suppose that Γ is not a complete bipartite graph. We denote by A∗u and B∗u the
kernels of the Au-action on Γ(u) and Γ2(u), respectively. Then both A∗u and B∗u are
normal subgroups of Au. By the assumption, Au is primitive on both Γ(u) and Γ2(u), so
A∗u acts either transitively or trivially on Γ2(u), and B∗u acts either transitively or trivially
on Γ(u).

(i) Suppose A∗u is transitive on Γ2(u). Note that for each v ∈ Γ(u), A∗u fixes Γ2(u)∩Γ(v)
setwise, so v is adjacent to all vertices of Γ2(u). Hence every vertex of Γ(u) is adjacent to
all vertices of Γ2(u), and so every vertex of Γ2(u) is also adjacent to all vertices of Γ(u).
Thus Γ has diameter 2 and [Γ2(u)] is an empty graph.

Suppose first that Γ has girth 3. Then Γ is antipodal. In particular, Γ2(u)∪ {u} is an
antipodal block of A acting on V (Γ), hence |Γ2(u)|+1 divides |V (Γ)| = 1+|Γ(u)|+|Γ2(u)|.
Thus Γ ∼= Km[b] with m > 3 and b = 1+ |Γ2(u)|, contradicting the fact that Au is primitive
on Γ(u). Suppose next that Γ has girth 4. By the previous argument, every vertex of Γ(u)
is adjacent to all vertices of Γ2(u), and every vertex of Γ2(u) is also adjacent to all vertices
of Γ(u). Hence |Γ2(u)| = |Γ(u)|−1, and the induced subgraph [Γ(u)∪Γ2(u)] is a complete
bipartite graph. Thus Γ is a complete bipartite graph, contradicts our assumption that Γ
is not a complete bipartite graph.

Thus A∗u is not transitive on Γ2(u), so A∗u is trivial on Γ2(u). Then for any v ∈ Γ(u),
A∗u fixes each vertex of Γ(v), hence A∗u 6 A∗v. As Γ is connected, and by induction, A∗u
fixes all vertices of Γ, so A∗u = 1. Thus Au is faithful on Γ(u).

(ii) Now we prove that Au is faithful on Γ2(u). Suppose B∗u is transitive Γ(u). Note
that for each w ∈ Γ2(u), B∗u fixes Γ(u) ∩ Γ(w) setwise. So w is adjacent to all vertices of
Γ(u). Hence every vertex of Γ2(u) is adjacent to all vertices of Γ(u). Thus Γ has diameter
2 and [Γ2(u)] is an empty graph.

If Γ has girth 4, then Γ is complete bipartite, contradicting the assumption that Γ is
not a complete bipartite graph. If Γ has girth 3, then Γ is antipodal and Γ2(u) ∪ {u} is
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an antipodal block, so |Γ2(u)| + 1 divides |V (Γ)| = 1 + |Γ(u)| + |Γ2(u)|. Thus Γ ∼= Km[b]

with m > 3 and b = 1 + |Γ2(u)|, so Au is imprimitive on Γ(u), a contradiction. Thus B∗u
is trivial on Γ(u). Hence B∗u 6 A∗u = 1. Therefore Au acts faithfully on Γ2(u).

3 Proof of Theorem 2

We prove Theorem 2 by a series of lemmas. The first lemma shows that a 2-distance-
transitive graph of girth 4 is unique, if its first step neighbor and second step neighbor
have the same number of vertices.

Lemma 5. Let Γ be a 2-distance-transitive graph of girth 4 and valency r > 3. If |Γ2(u)| =
r for some u ∈ V (Γ), then Γ ∼= Kr+1,r+1 − (r + 1)K2.

Proof. Assume that |Γ2(u)| = r for some u ∈ V (Γ). Let (u, v, w, z) be a 3-geodesic. Since
Γ is 2-distance-transitive with girth 4 and valency r, there are r(r − 1) edges between
Γ(u) and Γ2(u), and so r(r − 1) = c2 · |Γ2(u)|. By the assumption, |Γ2(u)| = r, so we
get c2 = r − 1. Hence |Γ(v) ∩ Γ(z)| = c2 = r − 1, as (v, w, z) is a 2-geodesic. Note that
|Γ2(u) ∩ Γ(v)| = r − 1 and Γ(v) ∩ Γ(z) ⊆ Γ2(u) ∩ Γ(v). It follows that Γ2(u) ∩ Γ(v) =
Γ(v) ∩ Γ(z).

Since r > 3, c2 = r − 1 > 2. Hence there exists a vertex v2 ∈ Γ(u) \ {v} such that
(v2, w, z) is a 2-geodesic. So |Γ(v2) ∩ Γ(z)| = r − 1, this indicates that Γ2(u) ∩ Γ(v2) =
Γ(v2) ∩ Γ(z).

Suppose that Γ2(u) ∩ Γ(v) = Γ2(u) ∩ Γ(v2). Since Γ has girth 4, it follows that
(Γ2(u) ∩ Γ(v)) ∪ {u} = Γ(v) ∩ Γ(v2), hence |Γ(v) ∩ Γ(v2)| = r, contradicting the fact
that |Γ(v) ∩ Γ(v2)| = c2 = r − 1, as (v, u, v2) is a 2-geodesic. Thus Γ2(u) ∩ Γ(v) 6=
Γ2(u) ∩ Γ(v2), so (Γ2(u) ∩ Γ(v)) ∪ (Γ2(u) ∩ Γ(v2)) = Γ2(u). By the previous argument,
Γ2(u) ∩ Γ(v) = Γ(v) ∩ Γ(z) and Γ2(u) ∩ Γ(v2) = Γ(v2) ∩ Γ(z). Thus Γ2(u) ⊆ Γ(z). Since
r = |Γ2(u)| ⊆ |Γ(z)| = r, it follows that Γ2(u) = Γ(z). Therefore, Γ3(u) = {z} and Γ has
diameter 3. Precisely, this graph is Kr+1,r+1 − (r + 1)K2.

Lemma 6. Let Γ be a 2-arc-transitive graph of diameter 2 and girth 5. Then Γ is one of
the following graphs: C5, the Petersen graph, or the Hoffman-Singleton graph.

Proof. Since Γ has diameter 2 and girth 5, Γ is a Moore graph. Then it follows from [4,
Theorem 6.7.1] that Γ has valency 2, 3, 7 or 57. By [2] or [4, p.207, Remark (i)], the
valency 57 case does not occur, and so Γ has valency 2, 3 or 7. Further, by [4, p.207,
Remark (i)] or [17, p.206], if Γ has valency 2, then Γ is C5; if Γ has valency 3, then Γ is
the Petersen graph; and if Γ has valency 7, then Γ is the Hoffman-Singleton graph.

The socle of a 2-transitive group is either elementary abelian or non-regular non-
abelian simple, see [14, Theorem 4.1B], and in the latter case, the socle is primitive, see
[14, p.244].

Lemma 7. Let Γ be a 2-distance-primitive graph of diameter 2 and girth 4. If Γ is 2-arc-
transitive, then Γ is one of the following graphs: Km,m with m > 2, Higman-Sims graph,
2-cube, the Gewirtz graph or the folded 5-cube.
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Proof. Suppose that Γ is 2-arc-transitive. Let A := Aut(Γ) and let u ∈ V (Γ). Assume
that A is not primitive on V (Γ). Then A has some nontrivial blocks on V (Γ), and say ∆i.
Since the graph Γ is arc-transitive, each ∆i does not contain edges of Γ. Let u, u′ ∈ ∆1.
Then u′ ∈ Γ2(u) and ∆1 ⊆ {u} ∪ Γ2(u), as Γ has diameter 2. Since Au fixes the block ∆1

and it is also transitive on Γ2(u), it follows that {u} ∪ Γ2(u) ⊆ ∆1, so {u} ∪ Γ2(u) = ∆1.
Thus {u} ∪ Γ2(u) is a block of Γ. By the vertex-transitivity of Γ, we know that Γ(u)
is a union of some blocks. If Γ(u) contains more than one block, then Γ has girth 3,
contradicting the fact that Γ has girth 4. Thus Γ(u) is a block of cardinality |∆1|. Since
Γ has diameter 2, it follows that Γ ∼= Km,m where m = |∆1| > 2. In the remainder, we
suppose that A acts primitively on V (Γ).

Since Γ is 2-arc-transitive, the stabilizer Au is 2-transitive on Γ(u), and it is well-
known that this 2-transitive action is of type either affine or almost simple. Suppose
that Au is an affine group. Since Au is primitive on both Γ(u) and Γ2(u), it follows
that its socle is regular on both Γ(u) and Γ2(u), and so |Γ(u)| = |Γ2(u)|. Then by
Lemma 5, Γ ∼= Kr+1,r+1 − (r + 1)K2 with diameter 3, contradicting the assumption that
Γ has diameter 2. Thus Au acts 2-transitively on Γ(u) of almost simple type, and either
Au
∼= PΓL(2, 8) or the socle of Au is 2-transitive. Again as Γ is 2-arc-transitive of diameter

2, Au is transitive on both Γ(u) and Γ2(u), so A is a primitive rank 3 group. Since Au

is 2-transitive on Γ(u), A has a 2-transitive suborbit, it follows from [31, Theorem A]
that A is primitive of type either affine or almost simple. In particular, the socle of Au is
2-transitive.

Suppose that A is an affine group. Then A is completely listed in [27]. The stabilizer
Au and subdegrees are given in Tables 12, 13 and 14 of [27]. The groups in Tables 12
and 14 are not 2-transitive. Hence Au is in Table 13. Then by Theorem (B) of [27],
R 6 Au 6 NGL(d,p)(R) where R is an r-group, Au is not almost simple, a contradiction.
Hence A is not an affine group.

Thus A is an almost simple primitive group. If A = Sn or An, then by [7, Theorem
4.5] or [10, p.4], Γ has parameter c2 = 2, and Γ is one of the following graphs: a cube,
a folded d-cube, or the incidence graph of the Paley design on 11 points. Since A is
primitive on V (Γ), Γ is not a bipartite graph, so Γ is a cube or a folded d-cube. Note that
Γ has diameter 2. Hence Γ is the 2-cube or the folded 5-cube (folded d-cube has diameter
[d/2]).

The primitive rank 3 groups in which the socle is either an exceptional group of Lie
type or a sporadic group are listed in [28]. Let A be a primitive rank 3 group in [28]
with socle L, and let H be the stabilizer in L of a vertex u. If L is an exceptional simple
group of Lie type, then L,H and the subdegrees k, l are listed in Table 1 of [28]. Since
L is the socle of A and H = Lu, H is a normal subgroup of Au. Since Au is almost
simple, if H 6= 1, then H is the socle of Au and it is an non-abelian simple 2-transitive
group. Thus A is not in Table 1 of [28]. We inspect the groups in Table 2 of [28]. Then
(L,H) = (HS,M22) is the unique candidate, and it provides the example Higman-Sims
graph.

Finally, suppose that A is an almost simple group of classical type. Then A is in-
vestigated in [6]. Since A is primitive and Au acts primitively on both Γ(u) and Γ2(u),

the electronic journal of combinatorics 27(4) (2020), #P4.53 6



A is completely determined in [6, Theorem 1.1]. As Au is almost simple, we can easily
conclude that the two possible cases are that (soc(A), soc(Au)) = (PSL(3, 4), A6) and
(soc(A), soc(Au)) = (PSU(4, 3), PSL(3, 4)). For the former case, by Magma [3], the two
nontrivial subdegrees of A are 10 and 45. This produces the Gewirtz graph. For the
latter case, again by Magma [3], the two nontrivial subdegrees of A are 56 and 105, and
hence Au does not provide any 2-transitive representation on each suborbit, which is not
possible.

Lemma 8. Let Γ be a 2-distance-primitive graph. If a2 = 0, then either Γ ∼= Cn with
n > 6 or Γ has girth 4.

Proof. Let u ∈ V (Γ), i ∈ {1, 2} and let A := Aut(Γ). Assume that the induced subgraph
[Γi(u)] is disconnected. Then each disconnected component ∆ of [Γi(u)] is a block of the
Au-action on Γi(u). Since Au is primitive on Γi(u), it follows that ∆ is a trivial block, that
is, ∆ has size 1. Thus [Γi(u)] is an empty graph. Therefore, [Γi(u)] is either connected or
empty.

Suppose that a2 = 0. Let (u, v) be an arc. Then the two induced subgraphs [Γ2(u)] and
[Γ2(v)] are empty graphs. Hence [Γ(u)∩Γ2(v)] is an empty graph. Assume that Γ has girth
3. Then [Γ(u)] is not an empty graph, and by the previous argument [Γ(u)] is connected.
Set |Γ(u) ∩ Γ(v)| = x > 1. Note that Γ(u) = {v} ∪ (Γ(u) ∩ Γ(v)) ∪ (Γ(u) ∩ Γ2(v)). Hence
every vertex v′ of Γ(u) ∩ Γ2(v) is adjacent to x vertices of Γ(u) ∩ Γ(v), so Γ(u) ∩ Γ(v) =
Γ(u) ∩ Γ(v′). Since [Γ(u)] is vertex-transitive, it follows that {v} ∪ (Γ(u) ∩ Γ2(v)) is a
nontrivial block of the Au-action on Γ(u), which is a contradiction, as Au is primitive on
Γ(u). Thus Γ has girth at least 4, and by Theorem 1, either Γ ∼= Cn with n > 6 or Γ has
girth exactly 4.

Lemma 9. Let Γ be a 2-distance-primitive graph of girth 3. Let A := Aut(Γ) and let
u ∈ V (Γ). Suppose that Au is 2-transitive on Γ2(u). Then Γ is one of the following
graphs: the halved 5-cube, the complement of the Gewirtz graph or the complement of the
Higman-Sims graph.

Proof. Since Au is 2-transitive on Γ2(u), it follows that the induced subgraph [Γ2(u)] is
either a complete graph or an empty graph. If [Γ2(u)] is an empty graph, then a2 = 0.
Since Γ has girth 3, Γ � Cn for any n > 6, and by Lemma 8, Γ has girth 4, a contradiction.
Hence [Γ2(u)] is a complete graph.

Let (u, v, w) be a 2-geodesic. Assume that Γ has diameter at least 3. Let z ∈
Γ3(u) ∩ Γ(w). Then z ∈ Γ2(v). However, z is not adjacent to any vertex of Γ(u) ∩ Γ2(v),
contradicting the fact that [Γ2(v)] is a complete graph. Thus Γ has diameter 2.

Suppose that A is not primitive on V (Γ). Then A has some nontrivial blocks on V (Γ),
and say ∆i. Since Γ is arc-transitive, each ∆i does not contain edges of Γ. Let u, u′ ∈ ∆1.
Note that Γ has diameter 2. Then u′ ∈ Γ2(u). Since Au fixes the block ∆1 and also it
acts transitively on Γ2(u), it follows that {u} ∪ Γ2(u) ⊆ ∆1. As ∆1 does not contain any
edge, it follows that {u} ∪ Γ2(u) = ∆1. Thus {u} ∪ Γ2(u) is a block of the A-action on
V (Γ) and |Γ2(u)| = 1, as [Γ2(u)] is a complete graph. Since Γ is 2-distance-transitive of
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diameter 2, it follows that Γ ∼= Km[2] for some m > 3, contradicting that Au is primitive
on Γ(u). Thus A is primitive on V (Γ).

Assume that Γ2(u) ⊆ Γ(v). Then as Au is transitive on Γ(u), each vertex of Γ(u)
is adjacent to all vertices of Γ2(u), and so each wi ∈ Γ2(u) is adjacent to all vertices
of Γ(u). Hence |Γ(wi)| > |Γ(u)| + |Γ2(u)| − 1, as [Γ2(u)] is a complete graph. Since
|Γ(wi)| = |Γ(u)|, it follows that |Γ2(u)| = 1. Thus {u} ∪ Γ2(u) is a block of the A-action
on V (Γ), contradicting that A is primitive on V (Γ). Hence Γ2(u) * Γ(v), and there exists
a vertex of Γ2(u) that is not adjacent to v. Therefore, Γ also has diameter 2.

Since Au is 2-transitive on Γ2(u) and Γ(u) = Γ2(u), it follows that Γ is a 2-arc-transitive
graph. By the previous argument, Γ has diameter 2, so Γ has girth 4 or 5. If Γ has girth 5,
then by Lemma 6, Γ is one of: C5, Petersen graph or Hoffman-Singleton graph. If Γ is C5,
then Γ is C5, contradicting that Γ has girth 3. Assume that Γ is the Petersen graph or the
Hoffman-Singleton graph. Then |Γ2(u)∩Γ(v)| = k−1 where |Γ(u)| = k, and so Γ2(u)∩Γ(v)
is a block of the Au action on Γ2(u), Au is not primitive on Γ2(u). Since Γ(u) = Γ2(u),
Au is not primitive on Γ(u), a contradiction. Thus Γ has girth 4. Then it follows from
Lemma 7 that Γ is one of the following graphs: Km,m with m > 2, Higman-Sims graph,
the Gewirtz graph, 2-cube or the folded 5-cube. Since the complement graphs of both the
2-cube and Km,m with m > 2 are disconnected, Γ is neither of those two graphs, and so Γ
is the Higman-Sims graph, the Gewirtz graph or the folded 5-cube. Thus Γ is the halved
5-cube, the complement of the Gewirtz graph or the complement of the Higman-Sims
graph.

We cite two lemmas which will be used in the remaining.

Lemma 10. ([8, p.9, Notes (1)]) Let G be a non-abelian simple group. Suppose that G
has more than one 2-transitive permutation representation. Then G and its degree n are
in one line of Table 1.

Table 1: Nonsolvable 2-transitive groups with two representations

T n
A5
∼= PSL(2, 4) ∼= PSL(2, 5) 5, 6

A6
∼= PSL(2, 9) 6, 10

PSL(2, 7) ∼= PSL(3, 2) 7, 8
A7 7, 15

A8
∼= PSL(4, 2) 8, 15
PSL(2, 8) 9, 28
PSL(2, 11) 11, 12

M11 11, 12
PSp(2d, 2), d > 2 22d−1 + 2d−1, 22d−1 − 2d−1

The following well-known result is mainly due to Burnside.
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Lemma 11. ([14, Theorem 3.5B]) A primitive permutation group G of prime degree p is
either 2-transitive, or solvable and G 6 AGL(1, p).

Lemma 12. Let Γ be a 2-distance-transitive graph of prime valency p. Let u ∈ V (Γ) and
A := Aut(Γ). Suppose that Au is 2-transitive on Γ2(u). Then Γ ∼= Kp+1,p+1 − (p + 1)K2,
Kp,p with p > 3 or Cn with n > 4.

Proof. If p = 2, then Γ ∼= Cn for some n > 4. In the remainder, we suppose that p > 3.
Since Γ has prime valency, Au is primitive on Γ(u). Since Au is 2-transitive on Γ2(u), Au

is also primitive on Γ2(u). It follows from Theorem 1 that either Γ ∼= Kp,p or Au is faithful

on both Γ(u) and Γ2(u). Suppose that Γ � Kp,p. Then Au
∼= A

Γ(u)
u
∼= A

Γ2(u)
u .

Assume that Au is not 2-transitive on Γ(u). Then by Lemma 11, Au
∼= Zp : Zr where

r|p−1 and r < p−1. Since Au is 2-transitive on Γ2(u), it follows that the normal subgroup
Zp is transitive on Γ2(u), and so Zp is regular on Γ2(u). Hence |Γ2(u)| = p. However,
as r < p − 1, Zp : Zr does not have a 2-transitive representation on p letters, which is a
contradiction.

Thus Au is 2-transitive on Γ(u), and so Γ has girth 4. Assume first that Au is solvable.
Then the socle of Au is regular on both Γ(u) and Γ2(u), and so |Γ(u)| = |Γ2(u)| = p. It
follows from Lemma 5 that Γ ∼= Kp+1,p+1 − (p + 1)K2.

Now assume that Au is non-solvable. Suppose Au has more than one 2-transitive
representation. Then by Lemma 10, the socle T of Au and its degree n are listed in Table
1. Note that neither 22d−1 + 2d−1 = 2d−1(2d + 1) nor 22d−1−2d−1 = 2d−1(2d−1) is a prime
whenever d > 2. Hence T and its degree n are listed in Table 2.

Table 2:

T n
A5
∼= PSL(2, 4) ∼= PSL(2, 5) 5, 6
PSL(2, 7) ∼= PSL(3, 2) 7, 8

A7 7, 15
PSL(2, 11) 11, 12

M11 11, 12

Since Au is transitive on both Γ(u) and Γ2(u), it follows that p(p − 1) = c2 · |Γ2(u)|.
Hence |Γ2(u)| is a divisor of p(p − 1). Since p is a prime, by Table 2, (p, |Γ2(u)|) ∈
{(5, 6), (7, 8), (11, 12), (7, 15)}. However, for any such a pair (p, |Γ2(u)|), the integer |Γ2(u)|
is not a divisor of p(p − 1), which is a contradiction. Therefore, Au has exactly one 2-
transitive representation, so |Γ(u)| = |Γ2(u)| = p. Again, by Lemma 5, Γ ∼= Kp+1,p+1 −
(p + 1)K2.

Lemma 13. Let Γ be a 2-arc-transitive graph of valency 6. Then (a1, c2) 6= (0, 3).

Proof. Suppose that (a1, c2) = (0, 3). Then b1 = 5, and |Γ2(u)| = 10. Set Γ(u) =
{v1, v2, v3, v4, v5, v6} and Γ2(u) ∩ Γ(v1) = {w1, w2, w3, w4, w5}. We suppose that Γ(u) ∩
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Γ(w1) = {v1, v2, v3}, as c2 = 3. Since (v1, u, v2) is a 2-arc, |Γ(v1) ∩ Γ(v2)| = 3, set
Γ(v1) ∩ Γ(v2) = {u,w1, w2}. Then |∆1| = 3 where ∆1 = (Γ2(u) ∩ Γ(v2)) \ Γ(v1).

Assume that v3 and w2 are adjacent. Then Γ(v1)∩Γ(v3) = {u,w1, w2} = Γ(v2)∩Γ(v3).
Thus |∆2| = 3 where ∆2 = (Γ2(u) ∩ Γ(v3)) \ (Γ(v1) ∪ Γ(v2)). Note that Γ2(u) ∩ Γ(v1),∆1

and ∆2 pair-wise have empty intersection and (Γ2(u) ∩ Γ(v1)) ∪ ∆1 ∪ ∆2 ⊆ Γ2(u), so
|Γ2(u)| > |Γ2(u) ∩ Γ(v1)| + |∆1| + |∆2| = 11, contradicting the fact that |Γ2(u)| = 10.
Hence v3 and w2 are non-adjacent.

Therefore Γ(u) ∩ Γ(w2) = {v1, v2, x} for some x ∈ {v4, v5, v6}, and Γ(u) ∩ (Γ(w1) ∪
Γ(w2)) = {v1, v2, v3, x}. In particular, each y ∈ {v4, v5, v6} \ {x} is adjacent to neither w1

nor w2. As Γ2(u)∩Γ(v1)∩Γ(v2) = {w1, w2}, it follows that |Γ2(u)∩Γ(v1)∩Γ(v2)∩Γ(y)| = 0.
Let A := Aut(Γ). As |Γ(u)| = 6, it is well-known that there are only four 2-transitive
permutation groups of degree 6, namely A5, S5, A6 and S6, see for instance [14, p.59-

60]. Further, all these four permutation groups are 3-transitive on Γ(u). Thus A
Γ(u)
u,v1 is

transitive between sets {v2, v3} and {v2, y}. Recall that |Γ2(u)∩Γ(v1)∩Γ(v2)∩Γ(y)| = 0.
It follows that |Γ2(u)∩Γ(v1)∩Γ(v2)∩Γ(v3)| = 0. However, Γ2(u)∩Γ(v1)∩Γ(v2)∩Γ(v3) =
{w1}, a contradiction. Therefore, (a1, c2) 6= (0, 3).

Lemma 14. Let Γ be a 2-distance-primitive graph of valency r and girth at least 4. Let
A := Aut(Γ) and let u ∈ V (Γ). Suppose that Au is 2-transitive on Γ2(u). Then Γ ∼= Cn

with n > 4, Kr,r, or Kr+1,r+1 − (r + 1)K2 with r > 3.

Proof. If r = 2, then Γ ∼= Cn with n > 4. In the remainder, we assume that r > 3. Let
(u, v, w) be a 2-geodesic. Since Γ has girth at least 4, the induced subgraph [Γ(u)] is an
empty graph. By the assumption, Au is 2-transitive on Γ2(u), so [Γ2(u)] is either complete
or empty. Assume that [Γ2(u)] is a complete graph. Then [Γ2(u) ∩ Γ(v)] is a complete
graph. Since Γ has valency at least 3 and girth at least 4, b1 = |Γ2(u) ∩ Γ(v)| > 2, so
(v, x, y) is a triangle for any two distinct vertices x, y ∈ Γ2(u) ∩ Γ(v), contradicting the
fact that Γ has girth at least 4.

Thus [Γ2(u)] is an empty graph. Since b1 > 2, there exists a vertex w1 ∈ Γ2(u) ∩ Γ(v)
such that w1 6= w. Then (w, v, w1) is a 2-geodesic. Since Au,w is transitive on Γ2(u)\{w},
it follows that for any w′ ∈ Γ2(u) \ {w}, Au,w is transitive between w′ and w1, and so
w′ ∈ Γ2(w). Hence Γ2(u) \ {w} ⊆ Γ2(w). As |Γ2(u) \ {w}| = |Γ2(w)| − 1, it follows that

{w} ∪ Γ2(w) = {u} ∪ Γ2(u). (∗)

If Γ has diameter at least 4, then there exists a vertex z ∈ Γ4(u) ∩ Γ2(w), contradicting
(∗). Thus Γ has diameter at most 3.

Assume that Γ has diameter 2. Recall that both [Γ(u)] and [Γ2(u)] are empty graphs.
Hence every vertex of Γ2(u) is adjacent to all vertices of Γ(u), and so Γ ∼= Kr,r.

Now suppose that Γ has diameter 3. Let z ∈ Γ3(u) ∩ Γ(w). Then (u, v, w, z) is a
3-geodesic. Assume b2 = 1. Then |Γ3(u) ∩ Γ(w)| = 1. Since [Γ2(u)] is an empty graph, it
follows that |Γ(u) ∩ Γ(w)| = r − 1. Note that there are r(r − 1) edges between Γ(u) and
Γ2(u). Thus |Γ2(u)| = r. It follows from Lemma 5 that Γ ∼= Kr+1,r+1 − (r + 1)K2.

Now assume that b2 > 2. Then |Γ3(u)| > 2. If z is adjacent to some z′ ∈ Γ3(u),
then z′ ∈ Γ2(w) ∪ Γ(w). By (∗), z′ /∈ Γ2(w), so z′ ∈ Γ(w), hence (z, w, z′) is a triangle,
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contradicting the fact that Γ has girth at least 4. Thus Γ3(u) ∩ Γ(z) = ∅. Since Γ has
diameter 3, it follows that Γ(z) ⊆ Γ2(u). As w is any vertex of Γ2(u) and z is any vertex
of Γ3(u) ∩ Γ(w), it follows that [Γ3(u)] is an empty graph. Therefore,

Γ is a diameter 3 bipartite graph. (∗∗)
Setting the two biparts of Γ are ∆1 = {u}∪Γ2(u) and ∆2 = Γ(u)∪Γ3(u). Since Au is

2-transitive on Γ2(u), A∆1
∆1

is 3-transitive on ∆1. Since Γ is vertex-transitive, also A∆2
∆2

is
3-transitive on ∆2. It is well-known that a 2-transitive permutation group is type either
affine or almost simple. Assume first that the A∆i

∆i
-action on ∆i is the affine type. Suppose

A∆i
∆i

is solvable. Then (A∆i
∆i

)u is solvable. As Au is primitive on both Γ(u) and Γ2(u), it
follows that the socle of Au is regular on both Γ(u) and Γ2(u), hence |Γ(u)| = |Γ2(u)|.
By Lemma 5, Γ ∼= Kr+1,r+1 − (r + 1)K2, contradicting that b2 > 2. Suppose A∆i

∆i
is

non-solvable. Then as A∆i
∆i

is 3-transitive on ∆i of affine type, it follows that |∆i| and

(A∆i
∆i

)u are listed in [9, p.195], and inspecting the candidates, |∆i| and (A∆i
∆i

)u are one of

the following cases: 1) |∆i| = qd and SL(d, q) C (A∆i
∆i

)u 6 ΓL(d, q); 2) |∆i| = q2d and

Sp(d, q) C (A∆i
∆i

)u, d > 2; 3) |∆i| = q6 and G2(q) C (A∆i
∆i

)u 6 ΓL(d, q), q is even. In those

cases, the socle of (A∆i
∆i

)u is non-solvable. Since (A∆i
∆i

)u is a 2-transitive group, we know

that (A∆i
∆i

)u is 2-transitive of almost simple type. Thus |∆i| − 1 and the socle of (A∆i
∆i

)u
are listed in [9, p.197], by inspecting the candidates, they do not occur.

Table 3: Non-solvable k-transitive groups with k > 3

M degree t
At, t > 5 t

PSL(2, q), q is a prime power, q 6= 2, 3 q + 1
M11 11
M11 12
M12 12
M22 22
M23 23
M24 24

Thus the 2-transitive action of A∆i
∆i

on ∆i is the almost simple type. By [9, p.196-197],

the socle M of A∆i
∆i

and |∆i| = t are in one of the lines of Table 3. Since Au is transitive
on both Γ(u) and Γ2(u), there are r(r − 1) edges between Γ(u) and Γ2(u), and so

r(r − 1) = c2 · |Γ2(u)| = c2(t− 1). (1)

Recall that 3 6 r 6 t − 2. Suppose t − 1 is a prime integer. Then by equation (1),
t− 1|r(r − 1), a contradiction. Thus t− 1 is not a prime. Hence t 6= 12, 24.

Suppose that Au is 2-transitive on Γ(u). If Au has exactly one 2-transitive permuta-
tion representation, then |Γ(u)| = |Γ2(u)|, and by Lemma 5, Γ ∼= Kr+1,r+1 − (r + 1)K2,
contradicts that b2 > 2. Thus Au has more than one 2-transitive permutation represen-
tation. Then by Lemma 10, the socle of Au and its degree n are in one line of Table 1. If
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r is a prime, then by Lemma 12, Γ ∼= Kr+1,r+1 − (r + 1)K2 with r > 3, a contradiction.
Thus r is not a prime. By equation (1), r(r − 1) = c2|Γ2(u)|. Since Γ � Kr,r, c2 6= r, so
c2 6 r − 1. If c2 = r − 1, then |Γ2(u)| = r, and by Lemma 5, Γ ∼= Kr+1,r+1 − (r + 1)K2,
contradicts that b2 > 2. Assume c2 < r − 1. Then t − 1 = |Γ2(u)| > r. By checking
Tables 1 and 3, the pair (r, |Γ2(u)|) ∈ {(6, 10), (8, 15), (9, 28)}. It follows from Lemma 13
that (a1, c2) 6= (0, 3), so (r, |Γ2(u)|) 6= (6, 10). However, if (r, |Γ2(u)|) = (8, 15) or (9, 28),
then |Γ2(u)| is not a divisor of r(r− 1), a contradiction. Therefore, Au is not 2-transitive
on Γ(u).

Suppose (M, t) = (M11, 11). Then t− 1 = 10 = r(r−1)
c2

, where 3 6 r 6 9. Hence r = 5
or 6. If r = 5, then c2 = 2; if r = 6, then c2 = 3. Recall that Au is primitive but not
2-transitive on Γ(u). Then r 6= 6. If r = 5, then Au

∼= Z5 : Zk where k < 5 and k|4, this
contradicts that Au is 2-transitive on Γ2(u), as |Γ2(u)| = 10.

Suppose (M, t) = (M22, 22). Then t − 1 = 21 = r(r−1)
c2

. The stabilizer of M22 is
PSL(3, 4). Since 21|r(r − 1), it follows that r = 7 or 15. Since Au is primitive on Γ(u),
Mu is transitive on Γ(u). However, PSL(3, 4) does not have a transitive representation
on 7 or 15 vertices, a contradiction.

Suppose (M, t) = (PSL(2, q), q + 1). Then t− 1 = q = r(r−1)
c2

. However, in this case,
the stabilizer Au does not have a 2-transitive representation of degree q where q is a prime
power, except q = 5. Assume q = 5. Then |Γ2(u)| = 5 = r(r−1)

c2
. Recall that 3 6 r 6 t−2.

So r = 3, which is impossible.
Suppose (M, t) = (M23, 23). Then t−1 = 22 = r(r−1)

c2
and Mu

∼= M22. Since 11|r(r−1),
it follows that r = 11 or 12. However, M22 does not have a transitive representation on
11 or 12 vertices, a contradiction.

Finally, suppose (M, t) = (An, n). Then |Γ2(u)| = n− 1 = r(r−1)
c2

where 3 6 r 6 n− 2.
Since Mu = An−1 is transitive on Γ(u), but |Γ(u)| = r 6 n− 2, which is impossible.

We are ready to prove our second theorem.

Proof of Theorem 2. If Γ has girth at least 4, then by Lemma 14, Γ ∼= Cn for some n > 4,
Kr,r, or Kr+1,r+1− (r+1)K2 with r > 3. If Γ has girth 3, then by Lemma 9, Γ is either the
halved 5-cube or the complement of the Higman-Sims graph. We complete the proof.

4 Locally cyclic graphs

In this section, we prove Theorem 3, that is, determine the unique 2-distance-primitive
graph which is locally cyclic.

Proof of Theorem 3. Suppose first that Γ is a non-complete, connected, locally cyclic 2-
distance-primitive graph of valency n > 3. Then [Γ(u)] ∼= Cn for each u ∈ V (Γ). If n = 3,
then [Γ(u)] ∼= C3, so Γ ∼= K4, contradicting that Γ is non-complete. Hence n > 4. Since
Γ is 2-distance-primitive, the stabilizer Au is primitive on Γ(u) where A := Aut(Γ), and
so the Au-action on Γ(u) does not have nontrivial blocks. As [Γ(u)] ∼= Cn, it follows that
n is an odd integer, and so n > 5.
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By Theorem 1, Au acts faithfully on Γ(u). As [Γ(u)] ∼= Cn, Au = A
Γ(u)
u 6 Aut(Cn) =

D2n = Zn : Z2. In particular, Zn 6 Au as n is an odd integer and Au is transitive on
Γ(u). Further, since Au is primitive on Γ2(u), the normal subgroup Zn is transitive and
so regular on Γ2(u), so |Γ2(u)| = n.

Let (u, v, w) be a 2-geodesic. Since Γ is non-complete, [Γ(u)] is a non-complete graph,
and so |Γ(u)∩Γ2(v)| > 1. If |Γ(u)∩Γ2(v)| = 1, then n = 4, as [Γ(u)] ∼= Cn, contradicting
that n > 5. Hence |Γ(u)∩Γ2(v)| > 2. Since [Γ(u)] ∼= Cn and Γ(u) = {v}∪(Γ(u)∩Γ(v)))∪
(Γ(u)∩ Γ2(v)), it follows that the induced subgraph [Γ(u)∩ Γ2(v)] contains edges, and so
[Γ2(v)] contains edges. Hence [Γ2(u)] contains edges. Recall that n is odd, so [Γ2(u)] has
even valency. Since c2 = n− 3, a2 6 3, so a2 = 2, that is, [Γ2(u)] has valency 2. As Au is
primitive on Γ2(u), it follows that

[Γ2(u)] ∼= Cn.

Let z ∈ Γ3(u)∩Γ(w). Then (u, v, w, z) is a 3-geodesic. Recall that c2 = n−3 and a2 =
2, it follows that b2 = 1, so |Γ3(u)∩Γ(w)| = 1, hence Γ3(u)∩Γ(w) = {z}. Since (v, w, z) is
a 2-geodesic, |Γ(v)∩Γ(z)| = n− 3. Note that Γ(v) = {u}∪ (Γ(u)∩Γ(v))∪ (Γ2(u)∩Γ(v)),
|Γ2(u)∩Γ(v)| = n−3 and ({u}∪ (Γ(u)∩Γ(v)))∩Γ(z) = ∅. It follows that Γ2(u)∩Γ(v) =
Γ(v) ∩ Γ(z). Hence n− 3 = |Γ2(u) ∩ Γ(v)| = |Γ(v) ∩ Γ(z)| 6 |Γ2(u) ∩ Γ(z)| 6 n.

Since Γ is 2-distance-transitive and |Γ3(u)∩ Γ(w)| = 1, it follows that Γ is 3-distance-
transitive. Thus |Γ2(u) ∩ Γ(z)| = c3, so n − 3 6 c3 6 n. Counting the number of edges
between Γ2(u) and Γ3(u), we get n = c3|Γ3(u)|. Hence c3 divides n. Since n−3 6 c3 6 n,
it follows that c3 = n − 3, n − 2, n − 1 or n. Since n − 1 and n are coprime and c3 is a
divisor of n, c3 6= n− 1. If c3 = n− 2, then as c3

∣∣n, n = 3 or 4, contradicting that n > 5.
If c3 = n − 3, then as c3

∣∣n, n = 4 or 6, which is impossible, as n > 5 is odd. Therefore,
c3 = n, and so

|Γ3(u)| = 1.

Thus Γ3(u) = {z}.
Let ∆1 = Γ(v) ∩ Γ2(u) and ∆2 = Γ2(u) \ ∆1. Then |∆1| = n − 3 and |∆2| = 3. Set

Γ(u) = {v1 = v, v2, . . . , vn} and Γ2(u) = {w1 = w,w2, . . . , wn}. Assume (v1, v3, v4, . . . , vn,
v2, v1) ∼= Cn. Then |Γ(v1)∩Γ(v2)| = 2. Suppose Γ(v1)∩Γ(v2) = {u,w1}. Then Γ(v2)∩∆1 =
{w1}. Since |Γ2(u)∩Γ(v2)| = n−3, it follows that |Γ(v2)∩∆2| = n−4 6 3, and so n 6 7.
Thus n = 5 or 7, as n > 5 is odd.

Suppose n = 7. Then |∆1| = 4, |∆2| = 3, and ∆2 ⊂ Γ(v2). Similarly, ∆2 ⊂ Γ(v3),
as (v1, v3) is also an arc. Thus ∆2 ⊂ Γ(v2) ∩ Γ(v3). Assume ∆1 = {w1, w2, w3, w4} and
∆2 = {w5, w6, w7}. Then Γ(v1) = {u, v2, v3} ∪ ∆1. Suppose (u, v2, w1, w2, w3, w4, v3) ∼=
C7
∼= (w1, w2, w3, w4, w5, w6, w7). Then Γ(v3) = {u, v1, v4, w4}∪∆2. Since [Γ(v3)] ∼= C7 and

(v4, u, v1, w4, w5, w6, w7) is a 6-arc, it follows that v4 is adjacent to w7. Since v4 ∈ Γ2(v1),
|Γ(v1)∩Γ(v4)| = 4, so |Γ(v4)∩∆1| = 2, hence |Γ(v4)∩∆2| = 2, say Γ(v4)∩∆2 = {w7, wj}.
Note that (v5, u, v3, w7) is a 4-arc and ∆2 ⊆ Γ(v3). Hence v3 is adjacent to both w7 and
wj, contradicting that [Γ(v4)] ∼= C7. Thus n 6= 7, and so n = 5, and Γ is the icosahedron.

Conversely, assume that Γ is the icosahedron. Then [Γ(u)] ∼= [Γ2(u)] ∼= C5 for each
u ∈ V (Γ). By Theorem 1.2 of [13], Γ is 2-geodesic-transitive, and so it is 2-distance-
primitive.
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