Two-distance-primitive graphs

Wei Jin* ${ }^{\dagger}$
School of Mathematics and Statistics
Central South University Changsha, Hunan, 410075, P.R.China
School of Statistics
Jiangxi University of Finance and Economics
Nanchang, Jiangxi, 330013, P.R.China
jinweipei82@163.com
Ci Xuan Wu^{\ddagger}
School of Statistics and Mathematics
Yunnan University of Finance and Economics Kunming, 650221, P.R.China
wucixuan@gmail.com
\section*{Jin Xin Zhou}
Department of Mathematics Beijing Jiaotong University Beijing, 100044, P.R.China
jxzhou@bjtu.edu.cn

Submitted: Jul 21, 2019; Accepted: Nov 18, 2020; Published: Dec 24, 2020
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A 2-distance-primitive graph is a vertex-transitive graph whose vertex stabilizer is primitive on both the first step and the second step neighborhoods. Let Γ be such a graph. This paper shows that either Γ is a cyclic graph, or Γ is a complete bipartite graph, or Γ has girth at most 4 and the vertex stabilizer acts faithfully on both the first step and the second step neighborhoods. Also a complete classification is given of such graphs satisfying that the vertex stabilizer acts 2 -transitively on the second step neighborhood. Finally, we determine the unique 2-distance-primitive graph which is locally cyclic.

Mathematics Subject Classifications: 05E18, 20B25

1 Introduction

In this paper, all graphs are finite, simple, connected and undirected. For a graph Γ, we use $V(\Gamma)$ and $\operatorname{Aut}(\Gamma)$ to denote its vertex set and automorphism group, respectively.

[^0]For the group theoretic terminology not defined here we refer the reader to [9, 14]. The diameter of a graph Γ is the maximum distance occurring over all pairs of vertices. Let $u \in V(\Gamma)$ and i be a positive integer at most the diameter of Γ. We use $\Gamma_{i}(u)$ to denote the set of vertices at distance i with vertex u in Γ. Sometimes, $\Gamma_{1}(u)$ is also denoted by $\Gamma(u)$.

A transitive permutation group G is said to be acting primitively on a set Ω if it has only trivial blocks in Ω. If G acts primitively on Ω, then every nontrivial normal subgroup of G is transitive on Ω. There is a remarkable classification of finite primitive permutation groups mainly due to M. O'Nan and L. Scott, called the O'Nan-Scott Theorem for primitive permutation groups, see [26, 35]. They independently gave a classification of finite primitive groups, and proposed their result at the "Santa Cruz Conference in finite groups" in 1979. For more work on primitive groups, see [5, 21, 25, 32].

A graph Γ is said to be 2 -distance-transitive if, for each $i \leqslant 2$, the automorphism group of Γ is transitive on the ordered pairs of vertices at distance i. The study of finite 2-distance-transitive graphs goes back to Higman's paper [18] in which "groups of maximal diameter" were introduced. These are permutation groups which act distance-transitively on some graph. Then 2-distance-transitive graphs have been studied extensively, see [11, 12, 15, 20, 33, 34].

In this paper, we investigate a family of graphs which has stronger transitivity than the family of 2-distance-transitive graphs, namely 2-distance-primitive graphs. A noncomplete vertex-transitive graph Γ is said to be 2-distance-primitive if, for $i=1,2$ and for any vertex u, A_{u} is primitive on both $\Gamma(u)$ and $\Gamma_{2}(u)$ where $A:=\operatorname{Aut}(\Gamma)$. Clearly, every 2-distance-primitive graph is 2-distance-transitive. The converse is not true, for instance, the complete multipartite graph $\mathrm{K}_{m[n]}$ with $m \geqslant 3, n \geqslant 2$ is 2-distance-transitive but not 2-distance-primitive. (Its vertex set consists of m parts of size n, and it has edges between all pairs of vertices from distinct parts.) Hence the family of 2-distance-primitive graphs is properly contained in the family of 2-distance-transitive graphs. Many well-known graphs have the 2-distance-primitive property. For instance, the cyclic graph C_{n} is 2-distanceprimitive whenever $n \geqslant 4$; the icosahedron (the graph in Figure 1) is 2-distance-primitive of valency 5 ; the family of 2-geodesic-transitive but not 2 -arc-transitive graphs of prime valency provides an infinite family of such examples, refer to [13]. This family of graphs is also related to the class of well-known 'locally primitive graphs', see [19, 22, 23, 24, 30].

Our first theorem is a structural result and it shows that if a 2-distance-primitive graph is neither a cycle nor a complete bipartite graph, then its girth is 3 or 4 .

Theorem 1. Let Γ be a 2-distance-primitive graph. Then either $\Gamma \cong C_{n}$ for some $n \geqslant 4$, or Γ is a complete bipartite graph, or Γ has girth at most 4 and the vertex stabilizer acts faithfully on both the first step and the second step neighborhoods.

The complement graph $\bar{\Gamma}$ of a graph Γ, is the graph with vertex $V(\Gamma)$, and two vertices are adjacent in $\bar{\Gamma}$ if and only if they are not adjacent in Γ. Recall that a permutation group G acting on Ω is said to be 2 -transitive if it is transitive on the set of ordered pairs of distinct points in Ω.

A d-cube is a graph with vertex set $\Delta^{d}=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \mid x_{i} \in \Delta\right\}$, where $\Delta=\{0,1\}$,

Figure 1: Icosahedron
and two vertices v and v^{\prime} are adjacent if and only if they differ in exactly one coordinate. Let Y_{d} denote the graph with vertex set the same as a d-cube Γ, and two vertices are adjacent in Y_{d} if and only if they are at distance two in Γ. While Y_{d} is not connected, it has two isomorphic components on 2^{n-1} vertices, each of which is called a halved d-cube.

For a 2-distance-primitive graph, if its vertex stabilizer acts 2-transitively on the first step neighborhood, then it is well-known that this graph is 2 -arc-transitive, and those graphs have been studied extensively, see $[1,10,16,29,36,37]$. Our second theorem classifies the family of 2-distance-primitive graphs whose vertex stabilizer acts 2 -transitively on the second step neighborhood.

Theorem 2. Let Γ be a 2-distance-primitive graph of valency $r \geqslant 2$. Suppose that the vertex stabilizer of a vertex is 2 -transitive on the second step neighborhood. Then Γ is one of the following graphs: C_{n} with $n \geqslant 4, \mathrm{~K}_{r, r}, \mathrm{~K}_{r+1, r+1}-(r+1) \mathrm{K}_{2}$ with $r \geqslant 3$, the halved 5 -cube, the complement graph of the Higman-Sims graph and the complement graph of the Gewirtz graph.

A subgraph X of a graph Γ is an induced subgraph if two vertices of X are adjacent in X if and only if they are adjacent in Γ. When $U \subseteq V(\Gamma)$, we denote by $[U]$ the subgraph of Γ induced by U. A graph Γ is said to be locally cyclic if $[\Gamma(u)]$ is a cycle for every vertex u. In particular, the girth of a locally cyclic graph is 3 . The following theorem determines the class of 2-distance-primitive graphs which are locally cyclic, and surprisingly, there is a unique such example.

Theorem 3. Let Γ be a connected, non-complete, locally cyclic graph. Then Γ is 2-distance-primitive if and only if Γ is the icosahedron.

2 Proof of Theorem 1

In the characterization of 2-distance-primitive graphs, the following constants are useful. Our definition is inspired by the concept of intersection arrays defined for the distanceregular graphs (see [4]).

Definition 4. Let Γ be an s-distance-transitive graph, $u \in V(\Gamma)$, and let $v \in \Gamma_{i}(u), i \leqslant s$. Then the number of edges from v to $\Gamma_{i-1}(u), \Gamma_{i}(u)$, and $\Gamma_{i+1}(u)$ does not depend on the choice of v and these numbers are denoted, respectively, by c_{i}, a_{i} and b_{i}.

Clearly we have that $a_{i}+b_{i}+c_{i}$ is equal to the valency of Γ whenever the constants are well-defined. Note that for 2 -distance-primitive graphs, the constants are always welldefined for $i=1,2$.

For a connected graph Γ of diameter $d \geqslant 2$, we denote by Γ_{d} the graph whose vertices are those of Γ and whose edges are the 2-subsets of points at mutual distance d in Γ. Then, Γ is said to be antipodal if Γ_{d} is a disjoint union of complete graphs.

We prove our first theorem.
Proof of Theorem 1. If Γ has valency 2 , then $\Gamma \cong C_{n}$ for some $n \geqslant 4$. In the remainder, we suppose that Γ has valency at least 3 . Let $u \in V(\Gamma)$. Assume that Γ has girth at least 5 . Then $c_{2}=1$, so every vertex of $\Gamma_{2}(u)$ is adjacent to exactly one vertex of $\Gamma(u)$, it follows that for each $v \in \Gamma(u), \Gamma_{2}(u) \cap \Gamma(v)$ is a block of the A_{u}-action on $\Gamma_{2}(u)$. Since Γ has valency at least $3, b_{1} \geqslant 2$, and so $\Gamma_{2}(u) \cap \Gamma(v)$ is a nontrivial block, contradicting the fact that A_{u} is primitive on $\Gamma_{2}(u)$. Thus Γ has girth at most 4 , that is, Γ has girth 3 or 4 .

Suppose that Γ is not a complete bipartite graph. We denote by A_{u}^{*} and B_{u}^{*} the kernels of the A_{u}-action on $\Gamma(u)$ and $\Gamma_{2}(u)$, respectively. Then both A_{u}^{*} and B_{u}^{*} are normal subgroups of A_{u}. By the assumption, A_{u} is primitive on both $\Gamma(u)$ and $\Gamma_{2}(u)$, so A_{u}^{*} acts either transitively or trivially on $\Gamma_{2}(u)$, and B_{u}^{*} acts either transitively or trivially on $\Gamma(u)$.
(i) Suppose A_{u}^{*} is transitive on $\Gamma_{2}(u)$. Note that for each $v \in \Gamma(u), A_{u}^{*}$ fixes $\Gamma_{2}(u) \cap \Gamma(v)$ setwise, so v is adjacent to all vertices of $\Gamma_{2}(u)$. Hence every vertex of $\Gamma(u)$ is adjacent to all vertices of $\Gamma_{2}(u)$, and so every vertex of $\Gamma_{2}(u)$ is also adjacent to all vertices of $\Gamma(u)$. Thus Γ has diameter 2 and $\left[\Gamma_{2}(u)\right]$ is an empty graph.

Suppose first that Γ has girth 3. Then Γ is antipodal. In particular, $\Gamma_{2}(u) \cup\{u\}$ is an antipodal block of A acting on $V(\Gamma)$, hence $\left|\Gamma_{2}(u)\right|+1$ divides $|V(\Gamma)|=1+|\Gamma(u)|+\left|\Gamma_{2}(u)\right|$. Thus $\Gamma \cong \mathrm{K}_{m[b]}$ with $m \geqslant 3$ and $b=1+\left|\Gamma_{2}(u)\right|$, contradicting the fact that A_{u} is primitive on $\Gamma(u)$. Suppose next that Γ has girth 4 . By the previous argument, every vertex of $\Gamma(u)$ is adjacent to all vertices of $\Gamma_{2}(u)$, and every vertex of $\Gamma_{2}(u)$ is also adjacent to all vertices of $\Gamma(u)$. Hence $\left|\Gamma_{2}(u)\right|=|\Gamma(u)|-1$, and the induced subgraph $\left[\Gamma(u) \cup \Gamma_{2}(u)\right]$ is a complete bipartite graph. Thus Γ is a complete bipartite graph, contradicts our assumption that Γ is not a complete bipartite graph.

Thus A_{u}^{*} is not transitive on $\Gamma_{2}(u)$, so A_{u}^{*} is trivial on $\Gamma_{2}(u)$. Then for any $v \in \Gamma(u)$, A_{u}^{*} fixes each vertex of $\Gamma(v)$, hence $A_{u}^{*} \leqslant A_{v}^{*}$. As Γ is connected, and by induction, A_{u}^{*} fixes all vertices of Γ, so $A_{u}^{*}=1$. Thus A_{u} is faithful on $\Gamma(u)$.
(ii) Now we prove that A_{u} is faithful on $\Gamma_{2}(u)$. Suppose B_{u}^{*} is transitive $\Gamma(u)$. Note that for each $w \in \Gamma_{2}(u)$, B_{u}^{*} fixes $\Gamma(u) \cap \Gamma(w)$ setwise. So w is adjacent to all vertices of $\Gamma(u)$. Hence every vertex of $\Gamma_{2}(u)$ is adjacent to all vertices of $\Gamma(u)$. Thus Γ has diameter 2 and $\left[\Gamma_{2}(u)\right]$ is an empty graph.

If Γ has girth 4 , then Γ is complete bipartite, contradicting the assumption that Γ is not a complete bipartite graph. If Γ has girth 3 , then Γ is antipodal and $\Gamma_{2}(u) \cup\{u\}$ is
an antipodal block, so $\left|\Gamma_{2}(u)\right|+1$ divides $|V(\Gamma)|=1+|\Gamma(u)|+\left|\Gamma_{2}(u)\right|$. Thus $\Gamma \cong \mathrm{K}_{m[b]}$ with $m \geqslant 3$ and $b=1+\left|\Gamma_{2}(u)\right|$, so A_{u} is imprimitive on $\Gamma(u)$, a contradiction. Thus B_{u}^{*} is trivial on $\Gamma(u)$. Hence $B_{u}^{*} \leqslant A_{u}^{*}=1$. Therefore A_{u} acts faithfully on $\Gamma_{2}(u)$.

3 Proof of Theorem 2

We prove Theorem 2 by a series of lemmas. The first lemma shows that a 2 -distancetransitive graph of girth 4 is unique, if its first step neighbor and second step neighbor have the same number of vertices.

Lemma 5. Let Γ be a 2-distance-transitive graph of girth 4 and valency $r \geqslant 3$. If $\left|\Gamma_{2}(u)\right|=$ r for some $u \in V(\Gamma)$, then $\Gamma \cong \mathrm{K}_{r+1, r+1}-(r+1) \mathrm{K}_{2}$.

Proof. Assume that $\left|\Gamma_{2}(u)\right|=r$ for some $u \in V(\Gamma)$. Let (u, v, w, z) be a 3 -geodesic. Since Γ is 2-distance-transitive with girth 4 and valency r, there are $r(r-1)$ edges between $\Gamma(u)$ and $\Gamma_{2}(u)$, and so $r(r-1)=c_{2} \cdot\left|\Gamma_{2}(u)\right|$. By the assumption, $\left|\Gamma_{2}(u)\right|=r$, so we get $c_{2}=r-1$. Hence $|\Gamma(v) \cap \Gamma(z)|=c_{2}=r-1$, as (v, w, z) is a 2-geodesic. Note that $\left|\Gamma_{2}(u) \cap \Gamma(v)\right|=r-1$ and $\Gamma(v) \cap \Gamma(z) \subseteq \Gamma_{2}(u) \cap \Gamma(v)$. It follows that $\Gamma_{2}(u) \cap \Gamma(v)=$ $\Gamma(v) \cap \Gamma(z)$.

Since $r \geqslant 3, c_{2}=r-1 \geqslant 2$. Hence there exists a vertex $v_{2} \in \Gamma(u) \backslash\{v\}$ such that $\left(v_{2}, w, z\right)$ is a 2-geodesic. So $\left|\Gamma\left(v_{2}\right) \cap \Gamma(z)\right|=r-1$, this indicates that $\Gamma_{2}(u) \cap \Gamma\left(v_{2}\right)=$ $\Gamma\left(v_{2}\right) \cap \Gamma(z)$.

Suppose that $\Gamma_{2}(u) \cap \Gamma(v)=\Gamma_{2}(u) \cap \Gamma\left(v_{2}\right)$. Since Γ has girth 4, it follows that $\left(\Gamma_{2}(u) \cap \Gamma(v)\right) \cup\{u\}=\Gamma(v) \cap \Gamma\left(v_{2}\right)$, hence $\left|\Gamma(v) \cap \Gamma\left(v_{2}\right)\right|=r$, contradicting the fact that $\left|\Gamma(v) \cap \Gamma\left(v_{2}\right)\right|=c_{2}=r-1$, as $\left(v, u, v_{2}\right)$ is a 2 -geodesic. Thus $\Gamma_{2}(u) \cap \Gamma(v) \neq$ $\Gamma_{2}(u) \cap \Gamma\left(v_{2}\right)$, so $\left(\Gamma_{2}(u) \cap \Gamma(v)\right) \cup\left(\Gamma_{2}(u) \cap \Gamma\left(v_{2}\right)\right)=\Gamma_{2}(u)$. By the previous argument, $\Gamma_{2}(u) \cap \Gamma(v)=\Gamma(v) \cap \Gamma(z)$ and $\Gamma_{2}(u) \cap \Gamma\left(v_{2}\right)=\Gamma\left(v_{2}\right) \cap \Gamma(z)$. Thus $\Gamma_{2}(u) \subseteq \Gamma(z)$. Since $r=\left|\Gamma_{2}(u)\right| \subseteq|\Gamma(z)|=r$, it follows that $\Gamma_{2}(u)=\Gamma(z)$. Therefore, $\Gamma_{3}(u)=\{z\}$ and Γ has diameter 3. Precisely, this graph is $\mathrm{K}_{r+1, r+1}-(r+1) \mathrm{K}_{2}$.

Lemma 6. Let Γ be a 2 -arc-transitive graph of diameter 2 and girth 5 . Then Γ is one of the following graphs: C_{5}, the Petersen graph, or the Hoffman-Singleton graph.

Proof. Since Γ has diameter 2 and girth $5, \Gamma$ is a Moore graph. Then it follows from [4, Theorem 6.7.1] that Γ has valency 2, 3, 7 or 57. By [2] or [4, p.207, Remark (i)], the valency 57 case does not occur, and so Γ has valency 2,3 or 7 . Further, by [4, p.207, Remark (i)] or [17, p.206], if Γ has valency 2 , then Γ is C_{5}; if Γ has valency 3 , then Γ is the Petersen graph; and if Γ has valency 7 , then Γ is the Hoffman-Singleton graph.

The socle of a 2-transitive group is either elementary abelian or non-regular nonabelian simple, see [14, Theorem 4.1B], and in the latter case, the socle is primitive, see [14, p.244].

Lemma 7. Let Γ be a 2 -distance-primitive graph of diameter 2 and girth 4. If Γ is 2 -arctransitive, then Γ is one of the following graphs: $\mathrm{K}_{m, m}$ with $m \geqslant 2$, Higman-Sims graph, 2-cube, the Gewirtz graph or the folded 5-cube.

Proof. Suppose that Γ is 2-arc-transitive. Let $A:=\operatorname{Aut}(\Gamma)$ and let $u \in V(\Gamma)$. Assume that A is not primitive on $V(\Gamma)$. Then A has some nontrivial blocks on $V(\Gamma)$, and say Δ_{i}. Since the graph Γ is arc-transitive, each Δ_{i} does not contain edges of Γ. Let $u, u^{\prime} \in \Delta_{1}$. Then $u^{\prime} \in \Gamma_{2}(u)$ and $\Delta_{1} \subseteq\{u\} \cup \Gamma_{2}(u)$, as Γ has diameter 2 . Since A_{u} fixes the block Δ_{1} and it is also transitive on $\Gamma_{2}(u)$, it follows that $\{u\} \cup \Gamma_{2}(u) \subseteq \Delta_{1}$, so $\{u\} \cup \Gamma_{2}(u)=\Delta_{1}$. Thus $\{u\} \cup \Gamma_{2}(u)$ is a block of Γ. By the vertex-transitivity of Γ, we know that $\Gamma(u)$ is a union of some blocks. If $\Gamma(u)$ contains more than one block, then Γ has girth 3, contradicting the fact that Γ has girth 4 . Thus $\Gamma(u)$ is a block of cardinality $\left|\Delta_{1}\right|$. Since Γ has diameter 2, it follows that $\Gamma \cong \mathrm{K}_{m, m}$ where $m=\left|\Delta_{1}\right| \geqslant 2$. In the remainder, we suppose that A acts primitively on $V(\Gamma)$.

Since Γ is 2-arc-transitive, the stabilizer A_{u} is 2-transitive on $\Gamma(u)$, and it is wellknown that this 2-transitive action is of type either affine or almost simple. Suppose that A_{u} is an affine group. Since A_{u} is primitive on both $\Gamma(u)$ and $\Gamma_{2}(u)$, it follows that its socle is regular on both $\Gamma(u)$ and $\Gamma_{2}(u)$, and so $|\Gamma(u)|=\left|\Gamma_{2}(u)\right|$. Then by Lemma $5, \Gamma \cong \mathrm{~K}_{r+1, r+1}-(r+1) \mathrm{K}_{2}$ with diameter 3, contradicting the assumption that Γ has diameter 2. Thus A_{u} acts 2-transitively on $\Gamma(u)$ of almost simple type, and either $A_{u} \cong P \Gamma L(2,8)$ or the socle of A_{u} is 2-transitive. Again as Γ is 2 -arc-transitive of diameter $2, A_{u}$ is transitive on both $\Gamma(u)$ and $\Gamma_{2}(u)$, so A is a primitive rank 3 group. Since A_{u} is 2-transitive on $\Gamma(u), A$ has a 2 -transitive suborbit, it follows from [31, Theorem A] that A is primitive of type either affine or almost simple. In particular, the socle of A_{u} is 2-transitive.

Suppose that A is an affine group. Then A is completely listed in [27]. The stabilizer A_{u} and subdegrees are given in Tables 12, 13 and 14 of [27]. The groups in Tables 12 and 14 are not 2-transitive. Hence A_{u} is in Table 13. Then by Theorem (B) of [27], $R \leqslant A_{u} \leqslant N_{G L(d, p)}(R)$ where R is an r-group, A_{u} is not almost simple, a contradiction. Hence A is not an affine group.

Thus A is an almost simple primitive group. If $A=S_{n}$ or A_{n}, then by [7, Theorem 4.5] or [10, p.4], Γ has parameter $c_{2}=2$, and Γ is one of the following graphs: a cube, a folded d-cube, or the incidence graph of the Paley design on 11 points. Since A is primitive on $V(\Gamma), \Gamma$ is not a bipartite graph, so Γ is a cube or a folded d-cube. Note that Γ has diameter 2 . Hence Γ is the 2 -cube or the folded 5 -cube (folded d-cube has diameter [d/2]).

The primitive rank 3 groups in which the socle is either an exceptional group of Lie type or a sporadic group are listed in [28]. Let A be a primitive rank 3 group in [28] with socle L, and let H be the stabilizer in L of a vertex u. If L is an exceptional simple group of Lie type, then L, H and the subdegrees k, l are listed in Table 1 of [28]. Since L is the socle of A and $H=L_{u}, H$ is a normal subgroup of A_{u}. Since A_{u} is almost simple, if $H \neq 1$, then H is the socle of A_{u} and it is an non-abelian simple 2-transitive group. Thus A is not in Table 1 of [28]. We inspect the groups in Table 2 of [28]. Then $(L, H)=\left(H S, M_{22}\right)$ is the unique candidate, and it provides the example Higman-Sims graph.

Finally, suppose that A is an almost simple group of classical type. Then A is investigated in [6]. Since A is primitive and A_{u} acts primitively on both $\Gamma(u)$ and $\Gamma_{2}(u)$,
A is completely determined in [6, Theorem 1.1]. As A_{u} is almost simple, we can easily conclude that the two possible cases are that $\left(\operatorname{soc}(A), \operatorname{soc}\left(A_{u}\right)\right)=\left(\operatorname{PSL}(3,4), A_{6}\right)$ and $\left(\operatorname{soc}(A), \operatorname{soc}\left(A_{u}\right)\right)=(\operatorname{PSU}(4,3), \operatorname{PSL}(3,4))$. For the former case, by Magma [3], the two nontrivial subdegrees of A are 10 and 45 . This produces the Gewirtz graph. For the latter case, again by Magma [3], the two nontrivial subdegrees of A are 56 and 105, and hence A_{u} does not provide any 2 -transitive representation on each suborbit, which is not possible.

Lemma 8. Let Γ be a 2-distance-primitive graph. If $a_{2}=0$, then either $\Gamma \cong C_{n}$ with $n \geqslant 6$ or Γ has girth 4 .

Proof. Let $u \in V(\Gamma), i \in\{1,2\}$ and let $A:=\operatorname{Aut}(\Gamma)$. Assume that the induced subgraph $\left[\Gamma_{i}(u)\right]$ is disconnected. Then each disconnected component Δ of $\left[\Gamma_{i}(u)\right]$ is a block of the A_{u}-action on $\Gamma_{i}(u)$. Since A_{u} is primitive on $\Gamma_{i}(u)$, it follows that Δ is a trivial block, that is, Δ has size 1. Thus $\left[\Gamma_{i}(u)\right]$ is an empty graph. Therefore, $\left[\Gamma_{i}(u)\right]$ is either connected or empty.

Suppose that $a_{2}=0$. Let (u, v) be an arc. Then the two induced subgraphs $\left[\Gamma_{2}(u)\right]$ and $\left[\Gamma_{2}(v)\right]$ are empty graphs. Hence $\left[\Gamma(u) \cap \Gamma_{2}(v)\right]$ is an empty graph. Assume that Γ has girth 3. Then $[\Gamma(u)]$ is not an empty graph, and by the previous argument $[\Gamma(u)]$ is connected. Set $|\Gamma(u) \cap \Gamma(v)|=x \geqslant 1$. Note that $\Gamma(u)=\{v\} \cup(\Gamma(u) \cap \Gamma(v)) \cup\left(\Gamma(u) \cap \Gamma_{2}(v)\right)$. Hence every vertex v^{\prime} of $\Gamma(u) \cap \Gamma_{2}(v)$ is adjacent to x vertices of $\Gamma(u) \cap \Gamma(v)$, so $\Gamma(u) \cap \Gamma(v)=$ $\Gamma(u) \cap \Gamma\left(v^{\prime}\right)$. Since $[\Gamma(u)]$ is vertex-transitive, it follows that $\{v\} \cup\left(\Gamma(u) \cap \Gamma_{2}(v)\right)$ is a nontrivial block of the A_{u}-action on $\Gamma(u)$, which is a contradiction, as A_{u} is primitive on $\Gamma(u)$. Thus Γ has girth at least 4, and by Theorem 1, either $\Gamma \cong C_{n}$ with $n \geqslant 6$ or Γ has girth exactly 4.

Lemma 9. Let Γ be a 2-distance-primitive graph of girth 3. Let $A:=\operatorname{Aut}(\Gamma)$ and let $u \in V(\Gamma)$. Suppose that A_{u} is 2-transitive on $\Gamma_{2}(u)$. Then Γ is one of the following graphs: the halved 5-cube, the complement of the Gewirtz graph or the complement of the Higman-Sims graph.

Proof. Since A_{u} is 2-transitive on $\Gamma_{2}(u)$, it follows that the induced subgraph $\left[\Gamma_{2}(u)\right]$ is either a complete graph or an empty graph. If $\left[\Gamma_{2}(u)\right]$ is an empty graph, then $a_{2}=0$. Since Γ has girth $3, \Gamma \not \equiv C_{n}$ for any $n \geqslant 6$, and by Lemma 8 , Γ has girth 4 , a contradiction. Hence $\left[\Gamma_{2}(u)\right]$ is a complete graph.

Let (u, v, w) be a 2 -geodesic. Assume that Γ has diameter at least 3. Let $z \in$ $\Gamma_{3}(u) \cap \Gamma(w)$. Then $z \in \Gamma_{2}(v)$. However, z is not adjacent to any vertex of $\Gamma(u) \cap \Gamma_{2}(v)$, contradicting the fact that $\left[\Gamma_{2}(v)\right]$ is a complete graph. Thus Γ has diameter 2.

Suppose that A is not primitive on $V(\Gamma)$. Then A has some nontrivial blocks on $V(\Gamma)$, and say Δ_{i}. Since Γ is arc-transitive, each Δ_{i} does not contain edges of Γ. Let $u, u^{\prime} \in \Delta_{1}$. Note that Γ has diameter 2 . Then $u^{\prime} \in \Gamma_{2}(u)$. Since A_{u} fixes the block Δ_{1} and also it acts transitively on $\Gamma_{2}(u)$, it follows that $\{u\} \cup \Gamma_{2}(u) \subseteq \Delta_{1}$. As Δ_{1} does not contain any edge, it follows that $\{u\} \cup \Gamma_{2}(u)=\Delta_{1}$. Thus $\{u\} \cup \Gamma_{2}(u)$ is a block of the A-action on $V(\Gamma)$ and $\left|\Gamma_{2}(u)\right|=1$, as $\left[\Gamma_{2}(u)\right]$ is a complete graph. Since Γ is 2-distance-transitive of
diameter 2, it follows that $\Gamma \cong \mathrm{K}_{m[2]}$ for some $m \geqslant 3$, contradicting that A_{u} is primitive on $\Gamma(u)$. Thus A is primitive on $V(\Gamma)$.

Assume that $\Gamma_{2}(u) \subseteq \Gamma(v)$. Then as A_{u} is transitive on $\Gamma(u)$, each vertex of $\Gamma(u)$ is adjacent to all vertices of $\Gamma_{2}(u)$, and so each $w_{i} \in \Gamma_{2}(u)$ is adjacent to all vertices of $\Gamma(u)$. Hence $\left|\Gamma\left(w_{i}\right)\right| \geqslant|\Gamma(u)|+\left|\Gamma_{2}(u)\right|-1$, as $\left[\Gamma_{2}(u)\right]$ is a complete graph. Since $\left|\Gamma\left(w_{i}\right)\right|=|\Gamma(u)|$, it follows that $\left|\Gamma_{2}(u)\right|=1$. Thus $\{u\} \cup \Gamma_{2}(u)$ is a block of the A-action on $V(\Gamma)$, contradicting that A is primitive on $V(\Gamma)$. Hence $\Gamma_{2}(u) \nsubseteq \Gamma(v)$, and there exists a vertex of $\Gamma_{2}(u)$ that is not adjacent to v. Therefore, $\bar{\Gamma}$ also has diameter 2 .

Since A_{u} is 2-transitive on $\Gamma_{2}(u)$ and $\bar{\Gamma}(u)=\Gamma_{2}(u)$, it follows that $\bar{\Gamma}$ is a 2-arc-transitive graph. By the previous argument, $\bar{\Gamma}$ has diameter 2 , so $\bar{\Gamma}$ has girth 4 or 5 . If $\bar{\Gamma}$ has girth 5 , then by Lemma $6, \bar{\Gamma}$ is one of: C_{5}, Petersen graph or Hoffman-Singleton graph. If $\bar{\Gamma}$ is C_{5}, then Γ is C_{5}, contradicting that Γ has girth 3. Assume that $\bar{\Gamma}$ is the Petersen graph or the Hoffman-Singleton graph. Then $\left|\bar{\Gamma}_{2}(u) \cap \bar{\Gamma}(v)\right|=k-1$ where $|\bar{\Gamma}(u)|=k$, and so $\bar{\Gamma}_{2}(u) \cap \bar{\Gamma}(v)$ is a block of the A_{u} action on $\bar{\Gamma}_{2}(u), A_{u}$ is not primitive on $\bar{\Gamma}_{2}(u)$. Since $\Gamma(u)=\bar{\Gamma}_{2}(u)$, A_{u} is not primitive on $\Gamma(u)$, a contradiction. Thus $\bar{\Gamma}$ has girth 4 . Then it follows from Lemma 7 that $\bar{\Gamma}$ is one of the following graphs: $\mathrm{K}_{m, m}$ with $m \geqslant 2$, Higman-Sims graph, the Gewirtz graph, 2-cube or the folded 5 -cube. Since the complement graphs of both the 2-cube and $\mathrm{K}_{m, m}$ with $m \geqslant 2$ are disconnected, $\bar{\Gamma}$ is neither of those two graphs, and so $\bar{\Gamma}$ is the Higman-Sims graph, the Gewirtz graph or the folded 5 -cube. Thus Γ is the halved 5 -cube, the complement of the Gewirtz graph or the complement of the Higman-Sims graph.

We cite two lemmas which will be used in the remaining.
Lemma 10. ([8, p.9, Notes (1)]) Let G be a non-abelian simple group. Suppose that G has more than one 2 -transitive permutation representation. Then G and its degree n are in one line of Table 1.

Table 1: Nonsolvable 2-transitive groups with two representations

T	n
$A_{5} \cong P S L(2,4) \cong P S L(2,5)$	5,6
$A_{6} \cong P S L(2,9)$	6,10
$P S L(2,7) \cong P S L(3,2)$	7,8
A_{7}	7,15
$A_{8} \cong P S L(4,2)$	8,15
$P S L(2,8)$	9,28
$P S L(2,11)$	11,12
M_{11}	11,12
$P S p(2 d, 2), d>2$	$2^{2 d-1}+2^{d-1}, 2^{2 d-1}-2^{d-1}$

The following well-known result is mainly due to Burnside.

Lemma 11. ([14, Theorem 3.5B]) A primitive permutation group G of prime degree p is either 2 -transitive, or solvable and $G \leqslant A G L(1, p)$.

Lemma 12. Let Γ be a 2-distance-transitive graph of prime valency p. Let $u \in V(\Gamma)$ and $A:=\operatorname{Aut}(\Gamma)$. Suppose that A_{u} is 2-transitive on $\Gamma_{2}(u)$. Then $\Gamma \cong \mathrm{K}_{p+1, p+1}-(p+1) \mathrm{K}_{2}$, $\mathrm{K}_{p, p}$ with $p \geqslant 3$ or C_{n} with $n \geqslant 4$.

Proof. If $p=2$, then $\Gamma \cong C_{n}$ for some $n \geqslant 4$. In the remainder, we suppose that $p \geqslant 3$. Since Γ has prime valency, A_{u} is primitive on $\Gamma(u)$. Since A_{u} is 2-transitive on $\Gamma_{2}(u), A_{u}$ is also primitive on $\Gamma_{2}(u)$. It follows from Theorem 1 that either $\Gamma \cong \mathrm{K}_{p, p}$ or A_{u} is faithful on both $\Gamma(u)$ and $\Gamma_{2}(u)$. Suppose that $\Gamma \nsubseteq \mathrm{K}_{p, p}$. Then $A_{u} \cong A_{u}^{\Gamma(u)} \cong A_{u}^{\Gamma_{2}(u)}$.

Assume that A_{u} is not 2-transitive on $\Gamma(u)$. Then by Lemma $11, A_{u} \cong \mathbb{Z}_{p}: \mathbb{Z}_{r}$ where $r \mid p-1$ and $r<p-1$. Since A_{u} is 2-transitive on $\Gamma_{2}(u)$, it follows that the normal subgroup \mathbb{Z}_{p} is transitive on $\Gamma_{2}(u)$, and so \mathbb{Z}_{p} is regular on $\Gamma_{2}(u)$. Hence $\left|\Gamma_{2}(u)\right|=p$. However, as $r<p-1, \mathbb{Z}_{p}: \mathbb{Z}_{r}$ does not have a 2 -transitive representation on p letters, which is a contradiction.

Thus A_{u} is 2-transitive on $\Gamma(u)$, and so Γ has girth 4. Assume first that A_{u} is solvable. Then the socle of A_{u} is regular on both $\Gamma(u)$ and $\Gamma_{2}(u)$, and so $|\Gamma(u)|=\left|\Gamma_{2}(u)\right|=p$. It follows from Lemma 5 that $\Gamma \cong \mathrm{K}_{p+1, p+1}-(p+1) \mathrm{K}_{2}$.

Now assume that A_{u} is non-solvable. Suppose A_{u} has more than one 2-transitive representation. Then by Lemma 10, the socle T of A_{u} and its degree n are listed in Table 1. Note that neither $2^{2 d-1}+2^{d-1}=2^{d-1}\left(2^{d}+1\right)$ nor $2^{2 d-1}-2^{d-1}=2^{d-1}\left(2^{d}-1\right)$ is a prime whenever $d>2$. Hence T and its degree n are listed in Table 2 .

Table 2:

T	n
$A_{5} \cong P S L(2,4) \cong P S L(2,5)$	5,6
$P S L(2,7) \cong P S L(3,2)$	7,8
A_{7}	7,15
$P S L(2,11)$	11,12
M_{11}	11,12

Since A_{u} is transitive on both $\Gamma(u)$ and $\Gamma_{2}(u)$, it follows that $p(p-1)=c_{2} \cdot\left|\Gamma_{2}(u)\right|$. Hence $\left|\Gamma_{2}(u)\right|$ is a divisor of $p(p-1)$. Since p is a prime, by Table $2,\left(p,\left|\Gamma_{2}(u)\right|\right) \in$ $\{(5,6),(7,8),(11,12),(7,15)\}$. However, for any such a pair $\left(p,\left|\Gamma_{2}(u)\right|\right)$, the integer $\left|\Gamma_{2}(u)\right|$ is not a divisor of $p(p-1)$, which is a contradiction. Therefore, A_{u} has exactly one 2 transitive representation, so $|\Gamma(u)|=\left|\Gamma_{2}(u)\right|=p$. Again, by Lemma $5, \Gamma \cong \mathrm{~K}_{p+1, p+1}-$ $(p+1) \mathrm{K}_{2}$.

Lemma 13. Let Γ be a 2-arc-transitive graph of valency 6 . Then $\left(a_{1}, c_{2}\right) \neq(0,3)$.
Proof. Suppose that $\left(a_{1}, c_{2}\right)=(0,3)$. Then $b_{1}=5$, and $\left|\Gamma_{2}(u)\right|=10$. Set $\Gamma(u)=$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $\Gamma_{2}(u) \cap \Gamma\left(v_{1}\right)=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}$. We suppose that $\Gamma(u) \cap$
$\Gamma\left(w_{1}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$, as $c_{2}=3$. Since $\left(v_{1}, u, v_{2}\right)$ is a 2 -arc, $\left|\Gamma\left(v_{1}\right) \cap \Gamma\left(v_{2}\right)\right|=3$, set $\Gamma\left(v_{1}\right) \cap \Gamma\left(v_{2}\right)=\left\{u, w_{1}, w_{2}\right\}$. Then $\left|\Delta_{1}\right|=3$ where $\Delta_{1}=\left(\Gamma_{2}(u) \cap \Gamma\left(v_{2}\right)\right) \backslash \Gamma\left(v_{1}\right)$.

Assume that v_{3} and w_{2} are adjacent. Then $\Gamma\left(v_{1}\right) \cap \Gamma\left(v_{3}\right)=\left\{u, w_{1}, w_{2}\right\}=\Gamma\left(v_{2}\right) \cap \Gamma\left(v_{3}\right)$. Thus $\left|\Delta_{2}\right|=3$ where $\Delta_{2}=\left(\Gamma_{2}(u) \cap \Gamma\left(v_{3}\right)\right) \backslash\left(\Gamma\left(v_{1}\right) \cup \Gamma\left(v_{2}\right)\right)$. Note that $\Gamma_{2}(u) \cap \Gamma\left(v_{1}\right), \Delta_{1}$ and Δ_{2} pair-wise have empty intersection and $\left(\Gamma_{2}(u) \cap \Gamma\left(v_{1}\right)\right) \cup \Delta_{1} \cup \Delta_{2} \subseteq \Gamma_{2}(u)$, so $\left|\Gamma_{2}(u)\right| \geqslant\left|\Gamma_{2}(u) \cap \Gamma\left(v_{1}\right)\right|+\left|\Delta_{1}\right|+\left|\Delta_{2}\right|=11$, contradicting the fact that $\left|\Gamma_{2}(u)\right|=10$. Hence v_{3} and w_{2} are non-adjacent.

Therefore $\Gamma(u) \cap \Gamma\left(w_{2}\right)=\left\{v_{1}, v_{2}, x\right\}$ for some $x \in\left\{v_{4}, v_{5}, v_{6}\right\}$, and $\Gamma(u) \cap\left(\Gamma\left(w_{1}\right) \cup\right.$ $\left.\Gamma\left(w_{2}\right)\right)=\left\{v_{1}, v_{2}, v_{3}, x\right\}$. In particular, each $y \in\left\{v_{4}, v_{5}, v_{6}\right\} \backslash\{x\}$ is adjacent to neither w_{1} nor w_{2}. As $\Gamma_{2}(u) \cap \Gamma\left(v_{1}\right) \cap \Gamma\left(v_{2}\right)=\left\{w_{1}, w_{2}\right\}$, it follows that $\left|\Gamma_{2}(u) \cap \Gamma\left(v_{1}\right) \cap \Gamma\left(v_{2}\right) \cap \Gamma(y)\right|=0$. Let $A:=\operatorname{Aut}(\Gamma)$. As $|\Gamma(u)|=6$, it is well-known that there are only four 2 -transitive permutation groups of degree 6 , namely A_{5}, S_{5}, A_{6} and S_{6}, see for instance [14, p.5960]. Further, all these four permutation groups are 3-transitive on $\Gamma(u)$. Thus $A_{u, v_{1}}^{\Gamma(u)}$ is transitive between sets $\left\{v_{2}, v_{3}\right\}$ and $\left\{v_{2}, y\right\}$. Recall that $\left|\Gamma_{2}(u) \cap \Gamma\left(v_{1}\right) \cap \Gamma\left(v_{2}\right) \cap \Gamma(y)\right|=0$. It follows that $\left|\Gamma_{2}(u) \cap \Gamma\left(v_{1}\right) \cap \Gamma\left(v_{2}\right) \cap \Gamma\left(v_{3}\right)\right|=0$. However, $\Gamma_{2}(u) \cap \Gamma\left(v_{1}\right) \cap \Gamma\left(v_{2}\right) \cap \Gamma\left(v_{3}\right)=$ $\left\{w_{1}\right\}$, a contradiction. Therefore, $\left(a_{1}, c_{2}\right) \neq(0,3)$.

Lemma 14. Let Γ be a 2-distance-primitive graph of valency r and girth at least 4. Let $A:=\operatorname{Aut}(\Gamma)$ and let $u \in V(\Gamma)$. Suppose that A_{u} is 2 -transitive on $\Gamma_{2}(u)$. Then $\Gamma \cong C_{n}$ with $n \geqslant 4, \mathrm{~K}_{r, r}$, or $\mathrm{K}_{r+1, r+1}-(r+1) \mathrm{K}_{2}$ with $r \geqslant 3$.
Proof. If $r=2$, then $\Gamma \cong C_{n}$ with $n \geqslant 4$. In the remainder, we assume that $r \geqslant 3$. Let (u, v, w) be a 2 -geodesic. Since Γ has girth at least 4, the induced subgraph $[\Gamma(u)]$ is an empty graph. By the assumption, A_{u} is 2-transitive on $\Gamma_{2}(u)$, so $\left[\Gamma_{2}(u)\right]$ is either complete or empty. Assume that $\left[\Gamma_{2}(u)\right]$ is a complete graph. Then $\left[\Gamma_{2}(u) \cap \Gamma(v)\right]$ is a complete graph. Since Γ has valency at least 3 and girth at least $4, b_{1}=\left|\Gamma_{2}(u) \cap \Gamma(v)\right| \geqslant 2$, so (v, x, y) is a triangle for any two distinct vertices $x, y \in \Gamma_{2}(u) \cap \Gamma(v)$, contradicting the fact that Γ has girth at least 4.

Thus $\left[\Gamma_{2}(u)\right]$ is an empty graph. Since $b_{1} \geqslant 2$, there exists a vertex $w_{1} \in \Gamma_{2}(u) \cap \Gamma(v)$ such that $w_{1} \neq w$. Then $\left(w, v, w_{1}\right)$ is a 2-geodesic. Since $A_{u, w}$ is transitive on $\Gamma_{2}(u) \backslash\{w\}$, it follows that for any $w^{\prime} \in \Gamma_{2}(u) \backslash\{w\}, A_{u, w}$ is transitive between w^{\prime} and w_{1}, and so $w^{\prime} \in \Gamma_{2}(w)$. Hence $\Gamma_{2}(u) \backslash\{w\} \subseteq \Gamma_{2}(w)$. As $\left|\Gamma_{2}(u) \backslash\{w\}\right|=\left|\Gamma_{2}(w)\right|-1$, it follows that

$$
\begin{equation*}
\{w\} \cup \Gamma_{2}(w)=\{u\} \cup \Gamma_{2}(u) \tag{*}
\end{equation*}
$$

If Γ has diameter at least 4, then there exists a vertex $z \in \Gamma_{4}(u) \cap \Gamma_{2}(w)$, contradicting $(*)$. Thus Γ has diameter at most 3 .

Assume that Γ has diameter 2. Recall that both $[\Gamma(u)]$ and $\left[\Gamma_{2}(u)\right]$ are empty graphs. Hence every vertex of $\Gamma_{2}(u)$ is adjacent to all vertices of $\Gamma(u)$, and so $\Gamma \cong \mathrm{K}_{r, r}$.

Now suppose that Γ has diameter 3. Let $z \in \Gamma_{3}(u) \cap \Gamma(w)$. Then (u, v, w, z) is a 3 -geodesic. Assume $b_{2}=1$. Then $\left|\Gamma_{3}(u) \cap \Gamma(w)\right|=1$. Since $\left[\Gamma_{2}(u)\right]$ is an empty graph, it follows that $|\Gamma(u) \cap \Gamma(w)|=r-1$. Note that there are $r(r-1)$ edges between $\Gamma(u)$ and $\Gamma_{2}(u)$. Thus $\left|\Gamma_{2}(u)\right|=r$. It follows from Lemma 5 that $\Gamma \cong \mathrm{K}_{r+1, r+1}-(r+1) \mathrm{K}_{2}$.

Now assume that $b_{2} \geqslant 2$. Then $\left|\Gamma_{3}(u)\right| \geqslant 2$. If z is adjacent to some $z^{\prime} \in \Gamma_{3}(u)$, then $z^{\prime} \in \Gamma_{2}(w) \cup \Gamma(w)$. $\mathrm{By}(*), z^{\prime} \notin \Gamma_{2}(w)$, so $z^{\prime} \in \Gamma(w)$, hence $\left(z, w, z^{\prime}\right)$ is a triangle,
contradicting the fact that Γ has girth at least 4. Thus $\Gamma_{3}(u) \cap \Gamma(z)=\emptyset$. Since Γ has diameter 3, it follows that $\Gamma(z) \subseteq \Gamma_{2}(u)$. As w is any vertex of $\Gamma_{2}(u)$ and z is any vertex of $\Gamma_{3}(u) \cap \Gamma(w)$, it follows that $\left[\Gamma_{3}(u)\right]$ is an empty graph. Therefore,

$$
\Gamma \text { is a diameter } 3 \text { bipartite graph. } \quad(* *)
$$

Setting the two biparts of Γ are $\Delta_{1}=\{u\} \cup \Gamma_{2}(u)$ and $\Delta_{2}=\Gamma(u) \cup \Gamma_{3}(u)$. Since A_{u} is 2-transitive on $\Gamma_{2}(u), A_{\Delta_{1}}^{\Delta_{1}}$ is 3 -transitive on Δ_{1}. Since Γ is vertex-transitive, also $A_{\Delta_{2}}^{\Delta_{2}}$ is 3-transitive on Δ_{2}. It is well-known that a 2-transitive permutation group is type either affine or almost simple. Assume first that the $A_{\Delta_{i}-}^{\Delta_{i}}$ action on Δ_{i} is the affine type. Suppose $A_{\Delta_{i}}^{\Delta_{i}}$ is solvable. Then $\left(A_{\Delta_{i}}^{\Delta_{i}}\right)_{u}$ is solvable. As A_{u} is primitive on both $\Gamma(u)$ and $\Gamma_{2}(u)$, it follows that the socle of A_{u} is regular on both $\Gamma(u)$ and $\Gamma_{2}(u)$, hence $|\Gamma(u)|=\left|\Gamma_{2}(u)\right|$. By Lemma $5, \Gamma \cong \mathrm{~K}_{r+1, r+1}-(r+1) \mathrm{K}_{2}$, contradicting that $b_{2} \geqslant 2$. Suppose $A_{\Delta_{i}}^{\Delta_{i}}$ is non-solvable. Then as $A_{\Delta_{i}}^{\Delta_{i}}$ is 3 -transitive on Δ_{i} of affine type, it follows that $\left|\Delta_{i}\right|$ and $\left(A_{\Delta_{i}}^{\Delta_{i}}\right)_{u}$ are listed in [9, p.195], and inspecting the candidates, $\left|\Delta_{i}\right|$ and $\left(A_{\Delta_{i}}^{\Delta_{i}}\right)_{u}$ are one of the following cases: 1) $\left|\Delta_{i}\right|=q^{d}$ and $\left.S L(d, q) \triangleleft\left(A_{\Delta_{i}}^{\Delta_{i}}\right)_{u} \leqslant \Gamma L(d, q) ; 2\right)\left|\Delta_{i}\right|=q^{2 d}$ and $\left.S p(d, q) \triangleleft\left(A_{\Delta_{i}}^{\Delta_{i}}\right)_{u}, d \geqslant 2 ; 3\right)\left|\Delta_{i}\right|=q^{6}$ and $G_{2}(q) \triangleleft\left(A_{\Delta_{i}}^{\Delta_{i}}\right)_{u} \leqslant \Gamma L(d, q), q$ is even. In those cases, the socle of $\left(A_{\Delta_{i}}^{\Delta_{i}}\right)_{u}$ is non-solvable. Since $\left(A_{\Delta_{i}}^{\Delta_{i}}\right)_{u}$ is a 2-transitive group, we know that $\left(A_{\Delta_{i}}^{\Delta_{i}}\right)_{u}$ is 2-transitive of almost simple type. Thus $\left|\Delta_{i}\right|-1$ and the socle of $\left(A_{\Delta_{i}}^{\Delta_{i}}\right)_{u}$ are listed in [9, p.197], by inspecting the candidates, they do not occur.

Table 3: Non-solvable k-transitive groups with $k \geqslant 3$

M	degree t
$A_{t}, t \geqslant 5$	t
$P S L(2, q), q$ is a prime power, $q \neq 2,3$	$q+1$
M_{11}	11
M_{11}	12
M_{12}	12
M_{22}	22
M_{23}	23
M_{24}	24

Thus the 2-transitive action of $A_{\Delta_{i}}^{\Delta_{i}}$ on Δ_{i} is the almost simple type. By [9, p.196-197], the socle M of $A_{\Delta_{i}}^{\Delta_{i}}$ and $\left|\Delta_{i}\right|=t$ are in one of the lines of Table 3. Since A_{u} is transitive on both $\Gamma(u)$ and $\Gamma_{2}(u)$, there are $r(r-1)$ edges between $\Gamma(u)$ and $\Gamma_{2}(u)$, and so

$$
\begin{equation*}
r(r-1)=c_{2} \cdot\left|\Gamma_{2}(u)\right|=c_{2}(t-1) \tag{1}
\end{equation*}
$$

Recall that $3 \leqslant r \leqslant t-2$. Suppose $t-1$ is a prime integer. Then by equation (1), $t-1 \mid r(r-1)$, a contradiction. Thus $t-1$ is not a prime. Hence $t \neq 12,24$.

Suppose that A_{u} is 2-transitive on $\Gamma(u)$. If A_{u} has exactly one 2-transitive permutation representation, then $|\Gamma(u)|=\left|\Gamma_{2}(u)\right|$, and by Lemma $5, \Gamma \cong \mathrm{~K}_{r+1, r+1}-(r+1) \mathrm{K}_{2}$, contradicts that $b_{2} \geqslant 2$. Thus A_{u} has more than one 2-transitive permutation representation. Then by Lemma 10, the socle of A_{u} and its degree n are in one line of Table 1. If
r is a prime, then by Lemma $12, \Gamma \cong \mathrm{~K}_{r+1, r+1}-(r+1) \mathrm{K}_{2}$ with $r \geqslant 3$, a contradiction. Thus r is not a prime. By equation (1), $r(r-1)=c_{2}\left|\Gamma_{2}(u)\right|$. Since $\Gamma \not \approx \mathrm{K}_{r, r}, c_{2} \neq r$, so $c_{2} \leqslant r-1$. If $c_{2}=r-1$, then $\left|\Gamma_{2}(u)\right|=r$, and by Lemma $5, \Gamma \cong \mathrm{~K}_{r+1, r+1}-(r+1) \mathrm{K}_{2}$, contradicts that $b_{2} \geqslant 2$. Assume $c_{2}<r-1$. Then $t-1=\left|\Gamma_{2}(u)\right|>r$. By checking Tables 1 and 3, the pair $\left(r,\left|\Gamma_{2}(u)\right|\right) \in\{(6,10),(8,15),(9,28)\}$. It follows from Lemma 13 that $\left(a_{1}, c_{2}\right) \neq(0,3)$, so $\left(r,\left|\Gamma_{2}(u)\right|\right) \neq(6,10)$. However, if $\left(r,\left|\Gamma_{2}(u)\right|\right)=(8,15)$ or $(9,28)$, then $\left|\Gamma_{2}(u)\right|$ is not a divisor of $r(r-1)$, a contradiction. Therefore, A_{u} is not 2-transitive on $\Gamma(u)$.

Suppose $(M, t)=\left(M_{11}, 11\right)$. Then $t-1=10=\frac{r(r-1)}{c_{2}}$, where $3 \leqslant r \leqslant 9$. Hence $r=5$ or 6 . If $r=5$, then $c_{2}=2$; if $r=6$, then $c_{2}=3$. Recall that A_{u} is primitive but not 2-transitive on $\Gamma(u)$. Then $r \neq 6$. If $r=5$, then $A_{u} \cong \mathbb{Z}_{5}: \mathbb{Z}_{k}$ where $k<5$ and $k \mid 4$, this contradicts that A_{u} is 2-transitive on $\Gamma_{2}(u)$, as $\left|\Gamma_{2}(u)\right|=10$.

Suppose $(M, t)=\left(M_{22}, 22\right)$. Then $t-1=21=\frac{r(r-1)}{c_{2}}$. The stabilizer of M_{22} is $\operatorname{PSL}(3,4)$. Since $21 \mid r(r-1)$, it follows that $r=7$ or 15 . Since A_{u} is primitive on $\Gamma(u)$, M_{u} is transitive on $\Gamma(u)$. However, $P S L(3,4)$ does not have a transitive representation on 7 or 15 vertices, a contradiction.

Suppose $(M, t)=(P S L(2, q), q+1)$. Then $t-1=q=\frac{r(r-1)}{c_{2}}$. However, in this case, the stabilizer A_{u} does not have a 2-transitive representation of degree q where q is a prime power, except $q=5$. Assume $q=5$. Then $\left|\Gamma_{2}(u)\right|=5=\frac{r(r-1)}{c_{2}}$. Recall that $3 \leqslant r \leqslant t-2$. So $r=3$, which is impossible.

Suppose $(M, t)=\left(M_{23}, 23\right)$. Then $t-1=22=\frac{r(r-1)}{c_{2}}$ and $M_{u} \cong M_{22}$. Since 11|r(r-1), it follows that $r=11$ or 12 . However, M_{22} does not have a transitive representation on 11 or 12 vertices, a contradiction.

Finally, suppose $(M, t)=\left(A_{n}, n\right)$. Then $\left|\Gamma_{2}(u)\right|=n-1=\frac{r(r-1)}{c_{2}}$ where $3 \leqslant r \leqslant n-2$. Since $M_{u}=A_{n-1}$ is transitive on $\Gamma(u)$, but $|\Gamma(u)|=r \leqslant n-2$, which is impossible.

We are ready to prove our second theorem.

Proof of Theorem 2. If Γ has girth at least 4 , then by Lemma $14, \Gamma \cong C_{n}$ for some $n \geqslant 4$, $\mathrm{K}_{r, r}$, or $\mathrm{K}_{r+1, r+1}-(r+1) \mathrm{K}_{2}$ with $r \geqslant 3$. If Γ has girth 3 , then by Lemma $9, \Gamma$ is either the halved 5 -cube or the complement of the Higman-Sims graph. We complete the proof.

4 Locally cyclic graphs

In this section, we prove Theorem 3, that is, determine the unique 2-distance-primitive graph which is locally cyclic.

Proof of Theorem 3. Suppose first that Γ is a non-complete, connected, locally cyclic 2 -distance-primitive graph of valency $n \geqslant 3$. Then $[\Gamma(u)] \cong C_{n}$ for each $u \in V(\Gamma)$. If $n=3$, then $[\Gamma(u)] \cong C_{3}$, so $\Gamma \cong \mathrm{K}_{4}$, contradicting that Γ is non-complete. Hence $n \geqslant 4$. Since Γ is 2-distance-primitive, the stabilizer A_{u} is primitive on $\Gamma(u)$ where $A:=\operatorname{Aut}(\Gamma)$, and so the A_{u}-action on $\Gamma(u)$ does not have nontrivial blocks. As $[\Gamma(u)] \cong C_{n}$, it follows that n is an odd integer, and so $n \geqslant 5$.

By Theorem 1, A_{u} acts faithfully on $\Gamma(u)$. As $[\Gamma(u)] \cong C_{n}, A_{u}=A_{u}^{\Gamma(u)} \leqslant \operatorname{Aut}\left(C_{n}\right)=$ $D_{2 n}=\mathbb{Z}_{n}: \mathbb{Z}_{2}$. In particular, $\mathbb{Z}_{n} \leqslant A_{u}$ as n is an odd integer and A_{u} is transitive on $\Gamma(u)$. Further, since A_{u} is primitive on $\Gamma_{2}(u)$, the normal subgroup \mathbb{Z}_{n} is transitive and so regular on $\Gamma_{2}(u)$, so $\left|\Gamma_{2}(u)\right|=n$.

Let (u, v, w) be a 2-geodesic. Since Γ is non-complete, $[\Gamma(u)]$ is a non-complete graph, and so $\left|\Gamma(u) \cap \Gamma_{2}(v)\right| \geqslant 1$. If $\left|\Gamma(u) \cap \Gamma_{2}(v)\right|=1$, then $n=4$, as $[\Gamma(u)] \cong C_{n}$, contradicting that $n \geqslant 5$. Hence $\left|\Gamma(u) \cap \Gamma_{2}(v)\right| \geqslant 2$. Since $[\Gamma(u)] \cong C_{n}$ and $\left.\Gamma(u)=\{v\} \cup(\Gamma(u) \cap \Gamma(v))\right) \cup$ $\left(\Gamma(u) \cap \Gamma_{2}(v)\right)$, it follows that the induced subgraph $\left[\Gamma(u) \cap \Gamma_{2}(v)\right]$ contains edges, and so $\left[\Gamma_{2}(v)\right]$ contains edges. Hence $\left[\Gamma_{2}(u)\right]$ contains edges. Recall that n is odd, so $\left[\Gamma_{2}(u)\right]$ has even valency. Since $c_{2}=n-3, a_{2} \leqslant 3$, so $a_{2}=2$, that is, $\left[\Gamma_{2}(u)\right]$ has valency 2. As A_{u} is primitive on $\Gamma_{2}(u)$, it follows that

$$
\left[\Gamma_{2}(u)\right] \cong C_{n}
$$

Let $z \in \Gamma_{3}(u) \cap \Gamma(w)$. Then (u, v, w, z) is a 3 -geodesic. Recall that $c_{2}=n-3$ and $a_{2}=$ 2, it follows that $b_{2}=1$, so $\left|\Gamma_{3}(u) \cap \Gamma(w)\right|=1$, hence $\Gamma_{3}(u) \cap \Gamma(w)=\{z\}$. Since (v, w, z) is a 2-geodesic, $|\Gamma(v) \cap \Gamma(z)|=n-3$. Note that $\Gamma(v)=\{u\} \cup(\Gamma(u) \cap \Gamma(v)) \cup\left(\Gamma_{2}(u) \cap \Gamma(v)\right)$, $\left|\Gamma_{2}(u) \cap \Gamma(v)\right|=n-3$ and $(\{u\} \cup(\Gamma(u) \cap \Gamma(v))) \cap \Gamma(z)=\emptyset$. It follows that $\Gamma_{2}(u) \cap \Gamma(v)=$ $\Gamma(v) \cap \Gamma(z)$. Hence $n-3=\left|\Gamma_{2}(u) \cap \Gamma(v)\right|=|\Gamma(v) \cap \Gamma(z)| \leqslant\left|\Gamma_{2}(u) \cap \Gamma(z)\right| \leqslant n$.

Since Γ is 2-distance-transitive and $\left|\Gamma_{3}(u) \cap \Gamma(w)\right|=1$, it follows that Γ is 3-distancetransitive. Thus $\left|\Gamma_{2}(u) \cap \Gamma(z)\right|=c_{3}$, so $n-3 \leqslant c_{3} \leqslant n$. Counting the number of edges between $\Gamma_{2}(u)$ and $\Gamma_{3}(u)$, we get $n=c_{3}\left|\Gamma_{3}(u)\right|$. Hence c_{3} divides n. Since $n-3 \leqslant c_{3} \leqslant n$, it follows that $c_{3}=n-3, n-2, n-1$ or n. Since $n-1$ and n are coprime and c_{3} is a divisor of $n, c_{3} \neq n-1$. If $c_{3}=n-2$, then as $c_{3} \mid n, n=3$ or 4 , contradicting that $n \geqslant 5$. If $c_{3}=n-3$, then as $c_{3} \mid n, n=4$ or 6 , which is impossible, as $n \geqslant 5$ is odd. Therefore, $c_{3}=n$, and so

$$
\left|\Gamma_{3}(u)\right|=1
$$

Thus $\Gamma_{3}(u)=\{z\}$.
Let $\Delta_{1}=\Gamma(v) \cap \Gamma_{2}(u)$ and $\Delta_{2}=\Gamma_{2}(u) \backslash \Delta_{1}$. Then $\left|\Delta_{1}\right|=n-3$ and $\left|\Delta_{2}\right|=3$. Set $\Gamma(u)=\left\{v_{1}=v, v_{2}, \ldots, v_{n}\right\}$ and $\Gamma_{2}(u)=\left\{w_{1}=w, w_{2}, \ldots, w_{n}\right\}$. Assume $\left(v_{1}, v_{3}, v_{4}, \ldots, v_{n}\right.$, $\left.v_{2}, v_{1}\right) \cong C_{n}$. Then $\left|\Gamma\left(v_{1}\right) \cap \Gamma\left(v_{2}\right)\right|=2$. Suppose $\Gamma\left(v_{1}\right) \cap \Gamma\left(v_{2}\right)=\left\{u, w_{1}\right\}$. Then $\Gamma\left(v_{2}\right) \cap \Delta_{1}=$ $\left\{w_{1}\right\}$. Since $\left|\Gamma_{2}(u) \cap \Gamma\left(v_{2}\right)\right|=n-3$, it follows that $\left|\Gamma\left(v_{2}\right) \cap \Delta_{2}\right|=n-4 \leqslant 3$, and so $n \leqslant 7$. Thus $n=5$ or 7 , as $n \geqslant 5$ is odd.

Suppose $n=7$. Then $\left|\Delta_{1}\right|=4,\left|\Delta_{2}\right|=3$, and $\Delta_{2} \subset \Gamma\left(v_{2}\right)$. Similarly, $\Delta_{2} \subset \Gamma\left(v_{3}\right)$, as $\left(v_{1}, v_{3}\right)$ is also an arc. Thus $\Delta_{2} \subset \Gamma\left(v_{2}\right) \cap \Gamma\left(v_{3}\right)$. Assume $\Delta_{1}=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ and $\Delta_{2}=\left\{w_{5}, w_{6}, w_{7}\right\}$. Then $\Gamma\left(v_{1}\right)=\left\{u, v_{2}, v_{3}\right\} \cup \Delta_{1}$. Suppose $\left(u, v_{2}, w_{1}, w_{2}, w_{3}, w_{4}, v_{3}\right) \cong$ $C_{7} \cong\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}\right)$. Then $\Gamma\left(v_{3}\right)=\left\{u, v_{1}, v_{4}, w_{4}\right\} \cup \Delta_{2}$. Since $\left[\Gamma\left(v_{3}\right)\right] \cong C_{7}$ and $\left(v_{4}, u, v_{1}, w_{4}, w_{5}, w_{6}, w_{7}\right)$ is a 6 -arc, it follows that v_{4} is adjacent to w_{7}. Since $v_{4} \in \Gamma_{2}\left(v_{1}\right)$, $\left|\Gamma\left(v_{1}\right) \cap \Gamma\left(v_{4}\right)\right|=4$, so $\left|\Gamma\left(v_{4}\right) \cap \Delta_{1}\right|=2$, hence $\left|\Gamma\left(v_{4}\right) \cap \Delta_{2}\right|=2$, say $\Gamma\left(v_{4}\right) \cap \Delta_{2}=\left\{w_{7}, w_{j}\right\}$. Note that $\left(v_{5}, u, v_{3}, w_{7}\right)$ is a 4 -arc and $\Delta_{2} \subseteq \Gamma\left(v_{3}\right)$. Hence v_{3} is adjacent to both w_{7} and w_{j}, contradicting that $\left[\Gamma\left(v_{4}\right)\right] \cong C_{7}$. Thus $n \neq 7$, and so $n=5$, and Γ is the icosahedron.

Conversely, assume that Γ is the icosahedron. Then $[\Gamma(u)] \cong\left[\Gamma_{2}(u)\right] \cong C_{5}$ for each $u \in V(\Gamma)$. By Theorem 1.2 of [13], Γ is 2-geodesic-transitive, and so it is 2-distanceprimitive.

Acknowledgements

The authors are grateful to the anonymous referees for valuable suggestions and comments.

References

[1] B. Alspach, M. Conder, D. Marušič, and M. Y. Xu. A classification of 2-arc transitive circulants, J. Algebraic Combin., 5:83-86, 1996.
[2] M. Aschbacher. The nonexistence of rank three permutation groups of degree 3250 and subgree 57, J. Algebra, 19:538-540, 1971.
[3] W. Bosma, C. Cannon, and C. Playoust. The MAGMA algebra system I: The user language, J. Symbolic Comput., 24:235-265, 1997.
[4] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-Regular Graphs, Springer Verlag, Berlin, Heidelberg, New York, (1989).
[5] T. C. Burness, M. Giudici, and R. Wilson. Prime order derangements in primitive permutation groups, J. Algebra, 341:158-178, 2011.
[6] T. C. Burness, C. E. Praeger, and Á. Seress. Extremely primitive classical groups, J. Pure and Applied Algebra, 216(7):1580-1610, 2012.
[7] P. J. Cameron. Suborbits in transitive permutation groups, Combinatorics, M. Hall, Jr. and J. H. Van lint, p.419-450, Reidel, Dordrecht, (1975).
[8] P. J. Cameron. Finite permutation groups and finite simple groups, Bull. London Math. Soc., 13:1-22, 1981.
[9] P. J. Cameron. Permutation Groups, volume 45 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, (1999).
[10] P. J. Cameron and C. E. Praeger. On 2-arc transitive graphs of girth 4, J. Combin. Theory, Ser. B, 35:1-11, 1983.
[11] A. Devillers, M. Giudici, C. H. Li, and C. E. Praeger. Locally s-distance transitive graphs, J. Graph Theory, 69(2):176-197, 2012.
[12] A. Devillers, W. Jin, C. H. Li, and C. E. Praeger. Local 2-geodesic transitivity and clique graphs, J. Combin. Theory, Ser. A, 120:500-508, 2013.
[13] A. Devillers, W. Jin, C. H. Li, and C. E. Praeger. Finite 2-geodesic transitive graphs of prime valency, J. Graph Theory, 80:18-27, 2015.
[14] J. D. Dixon and B. Mortimer. Permutation groups, Springer, New York, (1996).
[15] Y. Q. Feng and J. H. Kwak. Cubic s-regular graphs of order $2 p^{3}$, J. Graph Theory, 52:341-352, 2006.
[16] M. Giudici, C. H. Li, and C. E. Praeger. Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc., 356:291-317, 2003.
[17] C. D. Godsil and G. F. Royle. Algebraic Graph Theory, Springer, New York, Berlin, Heidelberg, (2001).
[18] D. G. Higman. Intersection matrices for finite permutation groups, J. Algebra, 6:2242, 1967.
[19] A. A. Ivanov and C. E. Praeger. On finite affine 2-arc transitive graphs, European J. Combin., 14:421-444, 1993.
[20] W. Jin and L. Tan. Finite two-distance-transitive graphs of valency 6, Ars Math. Contemp., 11:49-58, 2016.
[21] C. H. Li. Permutation groups with a cyclic regular subgroup and arc transitive circulants, J. Algebraic Combin., 21:131-136, 2005.
[22] C. H. Li, B. G. Luo, and J. M. Pan. Finite locally primitive abelian Cayley graphs, Sci. China Math., 54(4):845-854, 2011.
[23] C. H. Li, J. M. Pan, and L. Ma. Locally primitive graphs of prime power order, J. Aust. Math. Soc., 86:111-122, 2009.
[24] C. H. Li, C. E. Praeger, A. Venkatesh, and S. M. Zhou. Finite locally-primitive graphs, Discrete Math., 246:197-218, 2002.
[25] C. H. Li and Á. Seress. The primitive permutation groups of squarefree degree, Bull. London Math. Soc., 35:635-644, 2003.
[26] M. W. Liebeck, C. E. Praeger, and J. Saxl. On the O'Nan-Scott theorem for finite primitive permutation groups, J. Austral. Math. Soc. Ser. A, 44:389-396, 1988.
[27] M. W. Liebeck. The affine permutation groups of rank three, Proc. London Math. Soc., 54(3):477-516, 1987.
[28] M. W. Liebeck and J. Saxl. The finite primitive permutation groups of rank three, Bull. London Math. Soc., 18(2):165-172, 1986.
[29] J. M. Pan, Z. Liu, and Z. W. Yang. On 2-arc-transitive representations of the groups of fourth-power-free order, Discrete Math., 310:1949-1955, 2010.
[30] P. Potočnik. On 2-arc transitive Cayley graphs of abelian groups, Discrete Math., 244(1-3):417-421, 2002.
[31] C. E. Praeger. Primitive permutation groups with a doubly transitive subconstituent, J. Austral Math. Soc. (Series A), 45:66-77, 1988.
[32] C. E. Praeger. Finite Transitive Permutation Groups and Finite Vertex-Transitive graphs, Graph Symmetry: Algebraic Methods and Applications, NATO Adv. Sci. Inst. Ser.C Math. Phys. Sci. 497:277-318, 1997.
[33] C. E. Praeger, J. Saxl and K. Yokohama. Distance transitive graphs and finite simple groups, Proc. London Math. Soc., 55(3):1-21, 1987.
[34] Z. Qiao, S. F. Du, and J. Koolen. 2-Walk-regular dihedrants from group divisible designs, Electronic J. Combin., 23(2):\#P2.51, 2016.
[35] L. L. Scott. Representations in characteristic p, Santa Cruz conference on finite groups, Proc. Sympos. Pure Math., 37:318-331, 1980.
[36] W. T. Tutte. A family of cubical graphs, Proc. Cambridge Philos. Soc., 43:459-474, 1947.
[37] W. T. Tutte. On the symmetry of cubic graphs, Canad. J. Math., 11:621-624, 1959.

[^0]: * Corresponding author.
 ${ }^{\dagger}$ Supported by NSFC (11661039,12061034) and NSF of Jiangxi (20192ACBL21007,2018ACB21001, GJJ190273).
 ${ }^{\ddagger}$ Supported by NSFC (11901512) and NSF of Yunnan (2019FD116).

