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Abstract

Let d ∈ Z+, K be a field of characteristic zero and A be a nonempty finite
subset of K2. Denote by Cd,K the family of algebraic curves of degree d in K2 and

C6d,K :=
⋃d
e=1 Ce,K. For any C1 ∈ Cd,K, we say that C1 is determined by A if for any

C2 ∈ Cd,K such that C2 ∩A ⊇ C1 ∩A, we have that C1 = C2; we denote by Dd,K(A)
the family of elements of Cd,K determined by A. Beck’s theorem establishes that if
K = R and A is not collinear, then

|D1,R(A)| = Θ

(
|A| min

C∈C1,R
|A \ C|

)
.

In this paper we generalize Beck’s theorem showing that for all d ∈ Z+, there exists
a constant c = c(d) > 0 such that if minC∈C6d,K |A \ C| > c, then

|Dd,K(A)| = Θd

(
|A|d

d∏
e=1

(
min

C∈C6e,K
|A \ C|

)d−e+1
)
.

Mathematics Subject Classifications: 14N10, 52C10

1 Introduction

In this paper R,C,Q,Z,Z+,Z+
0 denote the set of real numbers, complex numbers, rational

numbers, integers, positive integers and nonnegative integers, respectively. For any n,m ∈
Z, we write [n,m] := {k ∈ Z : n 6 k 6 m}. Let d, n ∈ Z+ and K be a field of
characteristic zero. A (plane) curve of degree d in K2 is a subset C of K2 which is
the zero set of a polynomial in K[x, y] of degree d; we denote by Cd,K the family of

curves of degree d in K2 and C6d,K :=
⋃d
e=1 Ce,K. For each nonempty finite subset A

of K2, we say that C1 ∈ Cd,K is determined by A if for any C2 ∈ Cd,K satisfying that
C2 ∩ A ⊇ C1 ∩ A, we have that C1 = C2; we denote by Dd,K(A) the family of elements
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of Cd,K which are determined by A. Thus, for instance, D1,K(A) is the family of lines L
in K2 such that |L ∩ A| > 2. Denote by SK the family of finite subsets of K2. As usual,
for any maps ϕ, τ : SK → R and parameters d1, d2, . . ., we write ϕ(A) = Od1,d2,...(τ(A))
(resp. ϕ(A) = Ωd1,d2,...(τ(A))) if there are constants c = c(d1, d2, . . .), c

′ = c′(d1, d2, . . .)
such that for all A ∈ SK satisfying that |A| > c, we have that ϕ(A) 6 c′τ(A) (resp.
ϕ(A) > c′τ(A)); the notation ϕ(A) = Θd1,d2,...(τ(A)) means that ϕ(A) = Od1,d2,...(τ(A))
and ϕ(A) = Ωd1,d2,...(τ(A)).

An important problem in combinatorial geometry is to know how many lines are
determined by a nonempty finite subset of R2. P. Erdős conjectured in [8](see also [9],
[10]) that if A is a nonempty finite subset of R2 which is not collinear, then |D1,R(A)| =
Ω
(
|A|minC∈C1,R |A \ C|

)
. L. M. Kelly and W. Moser proved in [15, Thm. 4.1] that if

|A| = Ω(minC∈C1,R |A \ C|2), then the conjecture of Erdős holds. Later in [1], J. Beck
proved the conjecture of Erdős unconditionally. Beck’s theorem can be stated as follows.

Theorem 1. Let A be a finite subset of R2 such that minC∈C1,R |A \ C| > 1. Then

|D1,R(A)| = Θ

(
|A| min

C∈C1,R
|A \ C|

)
.

Proof. See [1, Thm. 1.2].

Beck’s theorem has important applications in different areas of mathematics, and it
has opened a new research field in combinatorial geometry, see for instance [1], [4], [6],
[7], [13], [16]. Another important family of problems in combinatorial geometry is to
bound the number of curves with a given degree that are determined by A and satisfy
other conditions (for example, in the Sylvester-Gallai type results, the curves have to
pass through few points of A), see for instance [2], [3], [5], [19]. Thus it seems natural
and important to ask if Beck’s theorem can be generalized for conics, cubics, etc. and
arbitrary fields. This question is the motivation for the main result of this paper.

Theorem 2. For any d ∈ Z+, there is c1 = c1(d) > 0 with the following property. Let K be
a field of characteristic zero and A be a finite subset of K2 such that minC∈C6d,K |A\C| > c1.
Then

|Dd,K(A)| = Θd

(
|A|d

d∏
e=1

(
min

C∈C6e,K
|A \ C|

)d−e+1
)
.

A number of consequences can be obtained from Theorem 2. An immediate conse-
quence of Theorem 2 is a lower bound of the number of curves of degree d determined by
A.

Corollary 3. For any d ∈ Z+, there is c1 = c1(d) > 0 with the following property. Let K
be a field of characteristic zero and A be a finite subset of K2 such that minC∈C6d,K |A\C| >
c1. Then

|Dd,K(A)| = Ωd

(
|A|d

)
.
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A straightforward consequence of Theorem 1 is that there is a line which contains
several points of A or A determines a quadratic number of lines. Using Theorem 2, we
can generalize this for curves.

Corollary 4. For any d ∈ Z+, there are c1 = c1(d), c2 = c2(d), c3 = c3(d) > 0 with the
following property. Let K be a field of characteristic zero, A be a finite subset of K2 such
that minC∈C6d,K |A \ C| > c1 and e ∈ [1, d]. Then one of the following claims holds:

i) There is C ∈ C6e,K such that |A ∩ C| > c2|A|.

ii) |Dd,K(A)| > c3|A|d+e(d−
e−1
2

).

The proof of Theorem 2 has 3 main steps that we sketch now.

• Using the Veronese map ψd,K : K2 → K
d(d+3)

2 , the problem of counting curves of
degree d determined by A in K2 is almost equivalent to count the number of hyper-

planes in K
d(d+3)

2 which are generated (as flats) by ψd,K(A). This is a consequence
of Corollary 7 and Lemma 12.

• The number of hyperplanes in C
d(d+3)

2 generated by ψd,C(A) can be bounded using
Lund’s theorem (see Theorem 10). Lund’s theorem is given in terms of essential
dimension, maximal subsets with a given essential dimension, etc. Hence, to be
able to conclude the proof of Theorem 2 when K = C, we need to translate the

information about flats in C
d(d+3)

2 provided by Lund’s theorem into the information
about curves in C2. The tools we use to do this are well known properties of the
Veronese map and Bezout’s theorem (see Theorem 5). The key lemma in this part
of the proof is Lemma 16.

• Lund’s theorem works only for K = C (and K = R) so, to conclude the proof of
Theorem 2 for arbitrary fields of characteristic zero, we need a Lefschetz principle
type results. In this part of the proof of Theorem 2, Lemma 18 is the result that
allows us complete the proof for arbitrary fields of characteristic zero.

This paper is organized as follows. In Section 2 we state some auxiliary results. As it is
explained above, we need to bound the number of hyperplanes generated by the image
of A under the Veronese map, and then to translate this information into the original
problem. This is done in Section 3. The conclusion of the proof of Theorem 2 is given in
Section 4. Also, after we conclude the proof of Theorem 2, we discuss some facts about
the constants in Theorem 2, possible generalizations, etc.

2 Preliminaries

In this section we state some results needed in the proof of Theorem 2.
Let K be a field and n ∈ Z+. For any q(x1, x2, . . . , xn) ∈ K[x1, x2, . . . , xn], we denote

by Z(q(x1, x2, . . . , xn)) its zero set in Kn and by deg(p(x1, x2, . . . , xn)) its degree. We
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say that p(x, y) ∈ K[x, y] is irreducible if deg(p(x, y)) > 0 and for any factorization
p(x, y) = p1(x, y)p2(x, y), we get that pi(x, y) ∈ K for some i ∈ {1, 2}. We say that
Z(p(x, y)) is irreducible if p(x, y) is irreducible. We start with a weak version of Bezout’s
theorem.

Theorem 5. Let K be a field of characteristic zero and C1, C2 ∈ Cd,K be irreducible. If
C1 6= C2, then

|C1 ∩ C2| 6 d2.

Proof. See [12, Cor. I.7.8].

The curves C = Z(p(x, y)) are not always uniquely determined by the polynomial
p(x, y) (for instance, Z(x + y) = Z ((x+ y)2)). However, as we will see later, the next
lemma is a useful tool to know when Z(p(x, y)) = Z(q(x, y)) with p(x, y) irreducible.

Lemma 6. Let K be a field and p(x, y), q(x, y) ∈ K[x, y] with p(x, y) an irreducible poly-
nomial. If q(x, y) is not divisible by p(x, y), then Z(p(x, y)) ∩ Z(q(x, y)) is finite.

Proof. See [17, Ch. 1.1].

Let d ∈ Z+ and K a field of characteristic zero. Write

Kd[x, y] := {p(x, y) ∈ K[x, y] : deg(p(x, y)) ∈ [1, d]}.

In K[x, y], we define the relation p(x, y) ∼ q(x, y) if there is r ∈ K \ {0} such that
p(x, y) = r · q(x, y), and we denote by [p(x, y)] the class of p(x, y) and by K[x, y]/ ∼ the
set of classes. For any subset X of K[x, y], we write

X/ ∼:= {[p(x, y)] ∈ K[x, y]/ ∼: [p(x, y)] ∩X 6= ∅}.

Note that for any p(x, y), q(x, y) ∈ K[x, y] such that [p(x, y)] = [q(x, y)], we have that
deg(p(x, y)) = deg(q(x, y)) and Z(p(x, y)) = Z(q(x, y)); thus the map σd,K defined below
is well defined

σd,K : Kd[x, y]/ ∼−→ C6d,K, σd,K([p(x, y)]) = Z(p(x, y)).

Let p(x, y) ∈ K[x, y] be such that deg(p(x, y)) > 0 and consider a factorization
p(x, y) = r

∏n
i=1 pi(x, y)mi with m1,m2, . . . ,mn ∈ Z+, r ∈ K, [pi(x, y)] 6= [pj(x, y)] for

all i, j ∈ [1, n] such that i 6= j, and pi(x, y) irreducible for each i ∈ [1, n]. Then the
irreducible curves Z(p1(x, y)),Z(p2(x, y)), . . . ,Z(pn(x, y)) are known as the irreducible
components of Z(p(x, y)). The irreducible components satisfy that

Z(p(x, y)) =
n⋃
i=1

Z(pi(x, y)) = Z

(
n∏
i=1

pi(x, y)

)
and

deg(p(x, y)) =
n∑
i=1

mi deg(pi(x, y)) >
n∑
i=1

deg(pi(x, y)).
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For any q(x, y) ∈ K[x, y] such that Z(p(x, y)) = Z(q(x, y)), take a factorization q(x, y) =
s
∏l

i=1 qi(x, y)ki with k1, k2, . . . , kl ∈ Z+, s ∈ K, [qi(x, y)] 6= [qj(x, y)] for all i, j ∈ [1, l]
such that i 6= j, and qi(x, y) irreducible for each i ∈ [1, l]. Since K is infinite, we have
that Z(p1(x, y)), . . .Z(pn(x, y)),Z(q1(x, y)), . . .Z(ql(x, y)) are infinite sets. On the one
hand, for each i ∈ [1, n], we have that Z(pi(x, y)) ⊆ Z(p(x, y)) = Z(q(x, y)) so Lemma 6
applied to pi(x, y) and q(x, y) implies that pi(x, y) divides q(x, y). On the other hand, for
each i ∈ [1, l], we have that Z(qi(x, y)) ⊆ Z(q(x, y)) = Z(p(x, y)) so Lemma 6 applied to
qi(x, y) and p(x, y) implies that qi(x, y) divides p(x, y). Hence, since K[x, y] is a unique
factorization domain, we get that q(x, y) = t

∏n
i=1 pi(x, y)ki for some k1, k2, . . . , kn ∈ Z+

and t ∈ K. As a consequence of these facts, the irreducible components of C do not depend
on the polynomial from which C is the zero set, and we get the following corollary.

Corollary 7. Let K be field of characteristic zero, d ∈ Z+ and C ∈ C6d,K with pairwise
distinct irreducible components Z(p1(x, y)),Z(p2(x, y)), . . . ,Z(pn(x, y)). Then

σ−1d,K(C) =

{[
n∏
i=1

pmi
i

]
∈ Kd[x, y]/ ∼: m1,m2, . . . ,mn ∈ Z+,

n∑
i=1

mi deg(pi) 6 d

}
.

Since the number of solutions (m1,m2, . . . ,mn) ∈ Z+n of
∑n

i=1mi deg(pi) 6 d is bounded
by dd, we get in particular that

|σ−1d,K(C)| 6 dd.

Let K be a field and d, e ∈ Z+
0 with e 6 d. A translation F of a vectorial subspace V

of Kd will be called a flat. We write dimF := dimV , and also if V is an e-dimensional
subspace, we say that F is an e-flat; in particular, 1-flats are lines and d − 1-flats are
hyperplanes. The family of e-flats in Kd will be denoted by Ge,K. For any subset S of Kd,
we denote by Fl(S) the smallest flat (with respect to ⊆) which contains S and we write
dimS := dim Fl(S). If S = {s1, s2, . . . , sn}, we write Fl(s1, s2, . . . , sn) := Fl(S). The
family of e-flats F in Kd such that there is a subset R of S satisfying that F = Fl(R) will
be denoted by Ge,K(S).

A fundamental tool in this paper is the Veronese map. Let d ∈ Z+ and K be a field.

Write Id :=
{

(n,m) ∈ Z+
0
2

: n+m ∈ [1, d]
}

so |Id| =
(
d+2
2

)
− 1 = d(d+3)

2
. The d-Veronese

map is the map

ψd,K : K2 −→ K
d(d+3)

2 , ψd,K(a1, a2) = (an1a
m
2 )(n,m)∈Id .

To avoid confusion, the ring of polynomials which corresponds to K2 will be denoted

by K[x, y] and the ring of polynomials which corresponds to K
d(d+3)

2 will be denoted by
K[z(n,m)](n,m)∈Id . The Veronese map has some well-known properties that we will need
later. The proof of the following facts can be found in standard algebraic geometry
books, see for instance [12, Ch. I], [17, Ch. 1].

Remark 8. Let d ∈ Z+ and K be a field of characteristic zero.

i) The map ψd,K is an isomorphism onto its image.
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ii) The map
τd,K : Kd[x, y]/ ∼−→ G d(d+3)

2
−1,K,

τd,K

r(0,0) +
∑

(n,m)∈Id

r(n,m)x
nym

 = Z

r(0,0) +
∑

(n,m)∈Id

r(n,m)z(n,m)


is a bijection. Note that for any [p(x, y)] ∈ Kd[x, y]/ ∼, we have that

ψd,K(Z(p(x, y))) = τd,K([p(x, y)]) ∩ ψd,K(K2).

Another important property of ψd,K is that the image of any d + 1 elements of K2

cannot be contained in a d− 1-flat.

Theorem 9. Let d ∈ Z+, K be a field and A a subset of K2. If |A| > d, then
dimψd,K(A) > d.

Proof. See [14, Thm. 1.1].

Let d ∈ Z+ and S be a nonempty subset of Cd. The smallest e ∈ Z+
0 such that there

is a collection of flats {Fi}i∈I in Cd satisfying that

• S ⊆
⋃
i∈I Fi

• dimFi > 1 for all i ∈ I

•
∑

i∈I dimFi = e

will be called the essential dimension of S and we will denote it by dim S. For instance, if
S is the union of two skew lines in C3, then dimS = 3 and dim S = 2. For each e ∈ [0, d],
denote by Fe(S) the family of subsets R of S such that dim R 6 e, and we write

φe(S) := max
R∈Fe(S)

|R|.

In other words, φe(S) is the maximum size which can have a subset of S with essential
dimension at most e. A fundamental tool in the proof of Theorem 2 is the following weak
version of a theorem showed by B. Lund.

Theorem 10. For any e ∈ Z+, there is c5 = c5(e) > 0 with the following property. Let
d ∈ Z+ be such that d > e and S be a subset of Cd such that |S| − φe(S) > c5. Then

|Ge,C(S)| = Θe

(
e∏

f=0

(|S| − φf (S))

)
.

Proof. See [16, Thm. 2].

We conclude this section with a Lefschetz principle type result.

Theorem 11. Let K be a finitely generated field over Q. Then there is an injective
morphism of fields ρ : K −→ C.

Proof. See [18, Prop. 4].
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3 Curves and hyperplanes

In this section we prove some results which are needed in the proof of Theorem 2. The
first result of this section shows that for any field K of characteristic zero, there is an

important relation between the family of hyperplanes generated by ψd,K(A) in K
d(d+3)

2 and
the family of curves of degree d in K2 determined by A. This is done using the maps σd,K
and τd,K defined in the previous section.

Lemma 12. Let d ∈ Z+, K be a field of characteristic zero and A be a nonempty subset
of K2 satisfying that there is no element of C6d,K which contains A. Then

τd,K
(
σ−1d,K(Dd,K(A))

)
= G d(d+3)

2
−1,K(ψd,K(A)).

Proof. Write τ := τd,K, σ := σd,K, ψ := ψd,K,D := Dd,K(A) and G := G d(d+3)
2
−1,K(ψd,K(A)).

First we show that
τ(σ−1(D)) ⊆ G. (1)

Take [p1] ∈ σ−1(D) and write C1 := Z(p1). From Remark 8.ii, we know that τ([p1]) ∈
G d(d+3)

2
−1,K and

ψ(C1 ∩ A) ⊆ ψ(C1) = τ([p1]) ∩ ψ(K2) ⊆ τ([p1]);

in particular, Fl(ψ(C1 ∩ A)) ⊆ τ([p1]). By contradiction, we prove that

Fl(ψ(C1 ∩ A)) = τ([p1]). (2)

If Fl(ψ(C1 ∩ A)) is contained properly in τ([p1]), then

dim Fl(ψ(C1 ∩ A)) < dim τ([p1]) =
d(d+ 3)

2
− 1.

Since A is not contained in an element of C6d,K by assumption, we get that A * C1. Take

a ∈ A \C1. Since dim Fl(ψ(C1 ∩A)) < d(d+3)
2
− 1, there is a hyperplane H in K

d(d+3)
2 such

that it contains {ψ(a)} and Fl(ψ(C1 ∩ A)). From Remark 8.ii, there is [p] ∈ Kd[x, y]/ ∼
such that τ([p]) = H. Write C := Z(p). Insomuch as ψ(C1 ∩ A) ⊆ H = τ([p]), Remark
8.ii leads to

ψ(C1 ∩ A) ⊆ τ([p]) ∩ ψ(K2) = ψ(C),

and the injectivity of ψ yields that C1 ∩A ⊆ C ∩A. We construct a curve C2 as follows.

• Assume that deg(p) = d. Write C2 := C. On the one hand, since a 6∈ C1 and
a ∈ ψ−1(H) = C, we get that C1 6= C2. On the other hand, C1∩A ⊆ C∩A = C2∩A.

• Assume that deg(p) < d. Choose a polynomial q(x, y) ∈ K[x, y] such that deg(q) =
d − deg(p). Write C2 := Z(pq). Since deg(q) = d − deg(p), we get that C2 ∈ Cd,K.
Inasmuch as a 6∈ C1 and a ∈ ψ−1(H) = C ⊆ C2, we have that C1 6= C2. Since
C1∩A ⊆ C∩A = Z(p(x, y))∩A, we get that C1∩A ⊆ Z(p(x, y)q(x, y))∩A = C2∩A.
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In any case we constructed a C2 ∈ Cd,K \ {C1} such that C1∩A ⊆ C2∩A; however, this is
impossible since C1 ∈ D. Thereby (2) is true and this implies that τ([p1]) ∈ G concluding
the proof of (1).

Now we show that
τ(σ−1(D)) ⊇ G. (3)

Take H1 ∈ G. Remark 8.ii implies that there is [p1] ∈ Kd[x, y]/ ∼ such that τ([p1]) = H1.
Write C1 := Z(p1) so ψ(C1) = H1∩ψ(K2) by Remark 8.ii. Since H1 is generated as a flat
by elements of ψ(A), we get that

H1 = Fl(H1 ∩ ψ(A)) = Fl(ψ(C1) ∩ ψ(A)) = Fl(ψ(C1 ∩ A)). (4)

We prove by contradiction that deg(p1) = d. If deg(p1) < d, then we can take q ∈ K[x, y]
such that deg(q) = d− deg(p1), and write C := Z(p1 · q). Since deg(p1) < deg(p1 · q), we
get that [p1] 6= [p1 · q]. Now

C1 ∩ A = Z(p1) ∩ A ⊆ Z(p1 · q) ∩ A = C ∩ A

so (4) leads to

τ([p1]) = H1 = Fl(ψ(C1 ∩ A)) ⊆ Fl(ψ(C ∩ A)) ⊆ Fl(ψ(C)) ⊆ τ([p1 · q]),

but this is impossible since both τ([p1]) and τ([p1 · q]) are different hyperplanes (because
[p1] 6= [p1 · q]). Therefore deg(p1) = d. It remains to prove that C1 is determined by A.
Assume that there is C2 ∈ Cd,K such that C1∩A ⊆ C2∩A, and fix [p2] ∈ Kd[x, y]/ ∼ such
that C2 = Z(p2). Then ψ(C1 ∩ A) ⊆ ψ(C2 ∩ A), and (4) leads to

τ([p1]) = H1 = Fl(ψ(C1 ∩ A)) ⊆ Fl(ψ(C2 ∩ A)) ⊆ Fl(ψ(C2)) ⊆ τ([p2]).

Thereby, since τ([p1]) and τ([p2]) are hyperplanes, the previous inclusion implies that
τ([p1]) = τ([p2]); from Remark 8.ii, this gives that [p1] = [p2] and then C1 = C2. This
shows that C1 ∈ D, and it proves (3). The lemma is a consequence of (1) and (3).

For technical reasons, write C60,K := ∅ for any field K.

Lemma 13. Let K be a field of characteristic zero and C be a curve in K2. For any
d ∈ Z+

0 , there is a subset A of K2 \ C such that |A| =
(
d+2
2

)
and there is no element of

C6d,K which contains A.

Proof. Since K2 is a surface and C a curve, we have that K2 \C 6= ∅. Therefore, if d = 0,
the statement holds taking A = {a} for some a ∈ K2 \ C.

We assume that d > 0 from now on. Write ψ := ψd,K, τ := τd,K, G := G d(d+3)
2
−1,K

and C := C6d,K. We claim for all H ∈ G, we have that H does not contain ψ(K2 \ C).
Indeed, assume that there is H ∈ G such that ψ(K2 \ C) ⊆ H. From Remark 8.ii,
there is [p] ∈ Kd[x, y]/ ∼ such that H = τ([p]). Hence, since ψ(Z(p)) = H ∩ ψ(K2) by
Remark 8.ii, we get that ψ(K2 \ C) ⊆ ψ(Z(p)). Since ψ is injective by Remark 8.i, the
last inclusion leads to K2 ⊆ C ∪ Z(p); however, this is impossible since K2 is a surface
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while C ∪Z(p) is a curve. The fact that there is no hyperplane in K
d(d+3)

2 which contains

ψ(K2\C) leads to dimψ(K2\C) = d(d+3)
2

. Therefore there exists S ⊆ ψ(K2\C) such that

|S| =
(
d+2
2

)
= d(d+3)

2
+ 1 and dimS = d(d+3)

2
. Write A := ψ−1(S) so |A| = |S| =

(
d+2
2

)
. On

the one hand, A ⊆ K2 \ C since S ⊆ ψ(K2 \ C). On the other hand, dimS = d(d+3)
2

so
there is no hyperplane containing S, and hence, by Remark 8.ii, we have that ψ−1(S) = A
cannot be contained in an element of C.

Lemma 14. Let K be a field of characteristic zero, d, e ∈ Z+ be such that e 6 d and
q(x, y) =

∏n
i=1 qi(x, y) with deg(q(x, y)) = e and q1(x, y), q2(x, y), . . . , qn(x, y) ∈ K[x, y]

irreducible polynomials satisfying that [qi(x, y)] 6= [qj(x, y)] for all i, j ∈ [1, n] such that
i 6= j. Then

dimψd,K(Z(q(x, y))) =

(
d+ 2

2

)
−
(
d+ 2− e

2

)
− 1.

Proof. Write ψ := ψd,K, τ := τd,K, G := G d(d+3)
2
−1,K and C := C6d,K. Also write C := Z(q).

First we show that

dimψ(C) 6

(
d+ 2

2

)
−
(
d+ 2− e

2

)
− 1. (5)

We assume that (5) is false and we will reach a contradiction. Suppose that

dimψ(C) >

(
d+ 2

2

)
−
(
d+ 2− e

2

)
− 1. (6)

From Remark 8.ii, we get that ψ(K2) cannot be contained in a hyperplane of K
d(d+3)

2

(otherwise, K2 is contained in a curve). Thus dimψ(K2) = d(d+3)
2

, and therefore there

exists a subset R of ψ(K2) \ψ(C) such that |R| = d(d+3)
2
− dimψ(C) and dimψ(C)∪R =

d(d+3)
2

. Fix a subset S of R such that |R \ S| = 1. Then

|S| = |R| − 1 =
d(d+ 3)

2
− 1− dimψ(C) =

(
d+ 2

2

)
− 2− dimψ(C)

and dimψ(C) ∪ S =
(
d+2
2

)
− 2. Set A := ψ−1(S). From (6),

|A| = |S| =
(
d+ 2

2

)
− 2− dimψ(C) <

(
d− e+ 2

2

)
− 1. (7)

Consider the coefficients of the polynomial p(x, y) = r(0,0) +
∑

(n,m)∈Id−e
r(n,m)x

nym as

variables. On the one hand, if r(d−e,0) = 1 and p(a) = 0 for all a ∈ A, then the coefficients

{r(0,0)}∪{r(n,m)}(n,m)∈Id−e
satisfy at most

(
d−e+2

2

)
−1 linear equations by (7). On the other

hand, the coefficients {r(0,0)}∪{r(n,m)}(n,m)∈Id−e
are
(
d−e+2

2

)
variables. Hence the difference

between the number of variables and the number of linear equations leads to the existence
of p1(x, y), p2(x, y) ∈ K[x, y] with deg(p1) = deg(p2) = d−e such that p1(x, y) 6= r ·p2(x, y)
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for all r ∈ K and p1(a) = p2(a) = 0 for all a ∈ A. Define C1 := Z(q·p1) and C2 := Z(q·p2),
and notice that [q · p1] 6= [q · p2] since p1 6= r · p2 for all r ∈ K. For i ∈ {1, 2}, we have that
A ⊆ Z(pi) so

C ∪ A ⊆ Z(q · pi) = Ci;

applying ψ to both sides of the previous inclusion, we obtain that

ψ(C) ∪ S ⊆ ψ(Ci),

and then Remark 8.ii gives

ψ(C) ∪ S ⊆ ψ(Ci) = τ([q · pi]) ∩ ψ(K2) ⊆ τ([q · pi]). (8)

Recall that dimψ(C)∪S =
(
d+2
2

)
−2; hence, since τ([q ·p1]) and τ([q ·p1]) are hyperplanes,

they are flats with dim τ([q · p1]) = dim τ([q · p2]) =
(
d+2
2

)
− 2, and then (8) implies that

τ([q · p1]) = τ([q · p2]). However, this is impossible since [q · p1] 6= [q · p2] and τ in injective
by Remark 8.ii. This contradiction proves (5).

Now we show by contradiction that

dimψ(C) >

(
d+ 2

2

)
−
(
d+ 2− e

2

)
− 1. (9)

Suppose that

dimψ(C) <

(
d+ 2

2

)
−
(
d+ 2− e

2

)
− 1. (10)

From Lemma 13, we know there is a subset A of K2\C such that |A| =
(
d+2−e

2

)
and there is

no element of C6d−e,K which contains A. Since |A| =
(
d+2−e

2

)
, we get that |ψ(A)| =

(
d+2−e

2

)
,

and hence (10) leads to

dimψ(C ∪ A) = dimψ(C) ∪ ψ(A) <

(
d+ 2

2

)
− 1 =

d(d+ 3)

2
. (11)

From (11), there is H1 ∈ G such that ψ(C ∪ A) ⊆ H1. From Remark 8.ii, there is
[p] ∈ Kd[x, y]/ ∼ such that τ([p]) = H1 and ψ(Z(p)) = τ([p]) ∩ ψ(K2). Set C1 := Z(p).
Then, since ψ(C ∪ A) ⊆ H1, we get that

ψ(C ∪ A) ⊆ H1 ∩ ψ(K2) = τ([p]) ∩ ψ(K2) = ψ(C1),

and the injectivity of ψ implies that

C ∪ A ⊆ C1. (12)

Consider a factorization p(x, y) = r
∏l

i=1 pi(x, y)mi with m1,m2, . . . ,ml ∈ Z+, r ∈ K,
[pi(x, y)] 6= [pj(x, y)] for all i, j ∈ [1, l] such that i 6= j, and pi(x, y) irreducible for each
i ∈ [1, l]. Then Z(p1),Z(p2), . . . ,Z(pl) are the pairwise distinct irreducible components of
C1. From (12), C is the union of some irreducible components of C1; hence we can assume
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without loss of generality that there is m ∈ [1, l] such that C =
⋃m
i=1Z(pi). However, also

C = Z(q) =
⋃n
i=1Z(qi). Hence, from Corollary 7, we get that[

n∏
i=1

qi

]
=

[
m∏
i=1

pi

]
;

thus there is s ∈ K such that q(x, y) = s
∏m

i=1 pi(x, y). Write C2 := Z
(∏l

i=m+1 pi

)
so

C1 = C ∪ C2. On the one hand, A ∩ C = ∅ so (12) leads to

A ⊆ C1 \ C ⊆ C2. (13)

On the other hand,

deg

(
m∏
i=1

pi

)
+ deg

(
l∏

i=m+1

pi

)
6 deg

(
l∏

i=1

pmi
i

)
. (14)

Then

deg

(
l∏

i=m+1

pi

)
6 deg(p)− deg(q)

(
by (14)

)
= deg(p)− e

(
since deg(q) = e

)
6 d− e.

(
since deg(p) 6 d

)
(15)

However, (13) and (15) contradict the fact that there is no element of C6d−e,K which
contains A. This contradiction proves (9). The claim follows from (5) and (9).

Lemma 15. Let K be a field of characteristic zero, d, e ∈ Z+ be such that e 6 d, F be

a flat in K
d(d+3)

2 such that dimF <
(
d+2
2

)
−
(
d+1−e

2

)
− 1 and A be a subset of ψ−1d,K(F )

such that |A| > d(d+2
2 )+1. Then there is a curve C ∈ C6e,K such that ψd,K(C) ⊆ F and

|A \ C| 6 d(d+2
2 )+1.

Proof. Write ψ := ψd,K, τ := τd,K and C := C6e,K. If dimF = d(d+3)
2
− 1, then F

is a hyperplane and e = d. Thus, in this case, Remark 8.ii implies that there is [p] ∈
Kd[x, y]/ ∼ such that τ([p]) = F , and also it satisfies that ψ(Z(p)) = F∩ψ(K2). Therefore
ψ(Z(p)) ⊆ F and A ⊆ Z(p) meaning that Z(p) satisfies the desired properties.

From now on, we assume that dimF < d(d+3)
2
− 1 and set f := d(d+3)

2
− dimF . Since

F is a flat with codimension f > 2 in K
d(d+3)

2 , there are H1, H2, . . . , Hf hyperplanes in

K
d(d+3)

2 such that F =
⋂f
i=1Hi. For each i ∈ [1, f ], Remark 8.ii warranties the existence

of [pi] ∈ Kd[x, y]/ ∼ such that τ([pi]) = Hi, and we set Ci := Z(pi). Hence, since
ψ(Ci) = Hi ∩ ψ(K2) for each i ∈ [1, f ] by Remark 8.ii, we get that

ψ−1(F ) = ψ−1

(
f⋂
i=1

Hi

)
=

f⋂
i=1

ψ−1(Hi) =

f⋂
i=1

Ci. (16)
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For each i ∈ [1, f ], let Z(pi,1),Z(pi,2), . . . ,Z(pi,ni
) be the pairwise distinct irreducible

components of Ci; for each j ∈ [1, ni], write Ci,j := Z(pi,j). Note that C is an irreducible
curve contained in ψ−1(F ) if and only if C is an irreducible component of Ci for all
i ∈ [1, f ]. Thus, relabelling if necessary, assume that there is g ∈ Z+

0 such that

i) For all h ∈ [1, g], we have that C1,h = C2,h = · · · = Cf,h .

ii) For all h > g and i ∈ [1, f ], there is j ∈ [1, f ] such that Ci,h 6∈
{Cj,1, Cj,2, . . . , Cj,nj

};

notice that g can be zero if ψ−1(F ) does not contain irreducible curves. Set

J := [1, n1]× [1, n2]× · · · × [1, nf ]

I := {j = (j1, j2, . . . , jf ) ∈ J : j1 = j2 = · · · = jf and j1 ∈ [1, g]}
K := J \ I.

Insomuch as
∑ni

j=1 deg(pi,j) 6 deg(pi) 6 d and deg(pi,j) > 1 for all i ∈ [1, f ] and j ∈ [1, ni],
we get that

|K| 6 |J | =
f∏
i=1

ni 6 df 6 d
d(d+3)

2 . (17)

For each j ∈ J , we write j = (j1, j2, . . . , jf ). Since Ci =
⋃ni

j=1Ci,j for each i ∈ [1, f ], we
get from (16) that

ψ−1(F ) =

f⋂
i=1

Ci =

f⋂
i=1

ni⋃
j=1

Ci,j =
⋃
j∈J

f⋂
i=1

Ci,ji =

(⋃
j∈I

f⋂
i=1

Ci,ji

)
∪

(⋃
j∈K

f⋂
i=1

Ci,ji

)
. (18)

Write C := Z (
∏g

k=1 p1,k). Then the definition of I leads to

C = Z

(
g∏

k=1

p1,k

)
=

g⋃
k=1

C1,k =

g⋃
k=1

f⋂
i=1

Ci,k =
⋃
j∈I

f⋂
i=1

Ci,ji .

From i) and ii), notice that for all j ∈ K, there are k, l ∈ [1, f ] such that Ck,jk 6= Cl,jl , and
then Theorem 5 leads to

|Ck,jk ∩ Cl,jl | 6 d2.

Thus, for all j ∈ K, ∣∣∣∣∣
f⋂
i=1

Ci,ji

∣∣∣∣∣ 6 d2. (19)
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We get that

|A \ C| 6 |ψ−1(F ) \ C|
(

since A ⊆ ψ−1(F )
)

6

∣∣∣∣∣⋃
j∈K

f⋂
i=1

Ci,ji

∣∣∣∣∣ (
by (18)

)
6 |K| d2

(
by (19)

)
6 d

d(d+3)
2

+2.
(

by (17)
)

(20)

Since |A| > d(d+2
2 )+1, we conclude from (20) that C 6= ∅ (i.e. g > 0). Now we apply

Lemma 14 to the polynomial
∏g

k=1 p1,k(
d+ 2

2

)
−
(
d+ 2− deg (

∏g
k=1 p1,k)

2

)
− 1 = dimψ(C).

Since C ⊆ ψ−1(F ) by (18), we have that dimψ(C) 6 dimF so the previous equality
yields that(

d+ 2

2

)
−
(
d+ 2− deg (

∏g
k=1 p1,k)

2

)
− 1 = dimψ(C)

6 dimF

<

(
d+ 2

2

)
−
(
d+ 1− e

2

)
− 1;

thus deg (
∏g

k=1 p1,k) 6 e and therefore C ∈ C. This fact and (20) conclude the proof.

It looks like the upper bound |A \C| 6 d(d+2
2 )+1 in Lemma 15 is not optimal. It would

be an interesting problem by its own right to improve this upper bound.
Recall that if S is a subset of Cd and e ∈ [1, d], then φe(S) is the the size of a largest

subset of S with essential dimension 6 e.

Lemma 16. Let d, e ∈ Z+ be such that e 6 d and A be a nonempty finite subset of C2.
For any f ∈

[(
d+2
2

)
−
(
d+2−e

2

)
− 1,

(
d+2
2

)
−
(
d+1−e

2

)
− 2
]
,

|A| − φf (ψd,C(A)) 6 min
C∈C6e,C

|A \ C| 6 |A| − φf (ψd,C(A)) +
d(d+ 3)

2
· d(d+2

2 )+1.

Proof. Write ψ := ψd,C, C := C6e,C and φ := φf . First we show that

|A| − φ(ψ(A)) 6 min
C∈C
|A \ C|. (21)

Take C1 ∈ C. Then there is p(x, y) ∈ K[x, y] with deg(p(x, y)) ∈ [1, e] such that
C1 = Z(p(x, y)). Now, if Z(p1),Z(p2), . . . ,Z(pn) are the pairwise distinct irreducible com-
ponents of C1, then Corollary 7 yields that [p] = [

∏n
i=1 p

mi
i ] for some m1,m2, . . . ,mn ∈ Z+.
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Therefore

deg

(
n∏
i=1

pi

)
6 deg

(
n∏
i=1

pmi
i

)
= deg(p) 6 e,

and applying Lemma 14 to the polynomial
∏n

i=1 pi, we obtain that

dimψ(C1) = dimψ

(
Z

(
n∏
i=1

pi

))

=

(
d+ 2

2

)
−
(
d+ 2− deg (

∏n
i=1 pi)

2

)
− 1

6

(
d+ 2

2

)
−
(
d+ 2− e

2

)
− 1. (22)

We claim that

dim ψ(C1 ∩ A) 6

(
d+ 2

2

)
−
(
d+ 2− e

2

)
− 1. (23)

Indeed, set F := Fl(ψ(C1)). Then the family (with only one flat) {F} satisfies that
ψ(C1 ∩ A) ⊆ F and 1 6 dimF 6

(
d+2
2

)
−
(
d+2−e

2

)
− 1 by (22). Hence the definition of

essential dimension leads to (23). Now, since f >
(
d+2
2

)
−
(
d+2−e

2

)
−1 and ψ(C1∩A) ⊆ ψ(A),

we get from (23) that

φ(ψ(A)) = max
R∈Ff (ψ(A))

|R| > |ψ(C1 ∩ A)| = |C1 ∩ A|. (24)

Since C1 is arbitrary, (24) implies that

φ(ψ(A)) > max
C∈C
|C ∩ A|. (25)

Inasmuch as
max
C∈C
|C ∩ A| = |A| −min

C∈C
|A \ C|,

we have that (21) is a consequence of (25).
It is time to show that

min
C∈C
|A \ C| 6 |A| − φ(ψ(A)) +

d(d+ 3)

2
· d(d+2

2 )+1. (26)

Fix an R ∈ Ff (ψ(A)) such that φ(ψ(A)) = |R|. Since R ∈ Ff (ψ(A)), we have that

dim R 6 f . Therefore we can fix a family {Fi}i∈[1,n] of flats in C
d(d+3)

2 satisfying that

R ⊆
n⋃
i=1

Fi, (27)

dimFi > 1 for all i ∈ [1, n] (28)
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and
n∑
i=1

dimFi = dim R 6 f 6
d(d+ 3)

2
− 1. (29)

For each i ∈ [1, n], let Ci be the family of curves C in C2 such that ψ(C) ⊆ Fi. Relabelling
if necessary, we assume that there is m ∈ [0, n] such that Ci 6= ∅ for all i ∈ [1,m] and
Ci = ∅ for all i ∈ [m+ 1, n] (m can be zero if Ci = ∅ for all i ∈ [1, n]). For each i ∈ [1,m],
fix a Ci ∈ Ci such that

|ψ−1(R ∩ Fi) \ Ci| = min
C∈Ci
|ψ−1(R ∩ Fi) \ C|,

and fix irreducible polynomials pi,1(x, y), pi,2(x, y), . . . , pi,ni
(x, y) ∈ C[x, y] such that

Z(pi,1),Z(pi,2), . . . ,Z(pi,ni
) are the pairwise distinct irreducible components of Ci.

We claim that for all i ∈ [1,m],

|ψ−1(R ∩ Fi) \ Ci| 6 d(d+2
2 )+1. (30)

If (30) is false, then the set ψ−1(R ∩ Fi) \ Ci and the flat Fi satisfy the assumptions of

Lemma 15 so there is a curve Di ∈ C6d,C such that |(ψ−1(R ∩ Fi) \ Ci) \ Di| 6 d(d+2
2 )+1

and ψ(Di) ⊆ Fi. Nonetheless, this means that the curve Ei := Ci ∪ Di satisfies that
ψ(Ei) ⊆ Fi and

|ψ−1(R ∩ Fi) \ Ci| > d(d+2
2 )+1 > |ψ−1(R ∩ Fi) \ Ei|,

but this is impossible by the way we chose Ci.
Now we show by contradiction that for all i ∈ [m+ 1, n],

|ψ−1(R ∩ Fi)| 6 d(d+2
2 )+1. (31)

Indeed, if (31) does not hold, then the set ψ−1(R∩Fi) and the flat Fi satisfy the assump-
tions of Lemma 15. Therefore there is a curve Ci ∈ C6d,C such that ψ(Ci) ⊆ Fi which is
impossible since Ci = ∅.

The conclusion of the proof of (26) is divided into two cases.

• Suppose that m = 0. Fix any D ∈ C. Then

|ψ−1(R) \D| 6
n∑
i=1

|ψ−1(R ∩ Fi) \D|
(

by (27)
)

6
n∑
i=1

|ψ−1(R ∩ Fi)|

6 nd(d+2
2 )+1

(
by (31)

)
6
d(d+ 3)

2
· d(d+2

2 )+1.
(

by (28), (29)
)

(32)
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Thus

min
C∈C
|A \ C| 6 |A \D|

6 |A \ ψ−1(R)|+ |ψ−1(R) \D|
(

since R ⊆ ψ(A)
)

= |A| − |R|+ |ψ−1(R) \D|
(

by Rem. 8.i
)

= |A| − φ(ψ(A)) + |ψ−1(R) \D|

6 |A| − φ(ψ(A)) +
d(d+ 3)

2
· d(d+2

2 )+1,
(

by (32)
)

and this completes the proof of (26) in this case.

• Suppose that m > 0. Set D := Z
(∏m

i=1

∏ni

j=1 pi,j

)
=
⋃m
i=1Ci. Note that

m∑
i=1

(d+ 2

2

)
−
(
d+ 2− deg

(∏ni

j=1 pi,j

)
2

)
− 1


=

m∑
i=1

dimψ

(
Z

(
ni∏
j=1

pi,j

)) (
by Lemma 14

)
=

m∑
i=1

dimψ(Ci)

6
m∑
i=1

dimFi

(
since ψ(Ci) ⊆ Fi

)
6f

(
by (29)

)
<

(
d+ 2

2

)
−
(
d+ 2− (e+ 1)

2

)
− 1. (33)

Since the map x 7→
(
d+2
2

)
−
(
d+2−x

2

)
− 1 is convex, we conclude from (33) that

deg

(
m∏
i=1

ni∏
j=1

pi,j

)
=

m∑
i=1

deg

(
ni∏
j=1

pi,j

)
< e+ 1

and then
D ∈ C. (34)
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Also note that

|ψ−1(R) \D| 6
n∑
i=1

|ψ−1(R ∩ Fi) \D|
(

by (27)
)

6
m∑
i=1

|ψ−1(R ∩ Fi) \ Ci|+
n∑

i=m+1

|ψ−1(R ∩ Fi)|

6 nd(d+2
2 )+1

(
by (30), (31)

)
6
d(d+ 3)

2
· d(d+2

2 )+1.
(

by (28), (29)
)
(35)

Finally

min
C∈C
|A \ C| 6 |A \D|

(
by (34)

)
6 |A \ ψ−1(R)|+ |ψ−1(R) \D|

(
since R ⊆ ψ(A)

)
= |A| − |R|+ |ψ−1(R) \D|

(
by Rem. 8.i

)
= |A| − φ(ψ(A)) + |ψ−1(R) \D|

6 |A| − φ(ψ(A)) +
d(d+ 3)

2
· d(d+2

2 )+1,
(

by (35)
)

and this completes the proof of (26).

As we explained in the introduction, Lund’s theorem (i.e. Theorem 10) is not proven
for arbitrary fields of characteristic zero. Therefore we need to reduce Theorem 2 to the
complex case and this is what we will do in the last part of this section. Before we state
and proof Lemma 18, we need some notation and observations.

Let d ∈ Z+ and K,L,M be fields such that M ⊆ K. For any injective morphism of fields
ρ : L −→ K, abusing of notation, we denote by ρ : Ld −→ Kd the map (a1, a2, . . . , ad) 7→
(ρ(a1), ρ(a2), . . . , ρ(ad)). For any subset S of K[x1, . . . , xd], ZK(S) will denote the common
zero set of the polynomials in Kd (this to distinguish in which affine space we are taking
the zero set of a family of polynomials). For any subset S of K[x1, . . . , xd], we say that
V = ZK(S) is defined over M if S ⊆M[x1, . . . , xd]. On the one hand, since M[x1, . . . , xd] ⊆
K[x1, . . . , xd], we have the injection of affine varieties of Md into the affine varieties of Kd

given by ZM(S) 7→ ZK(S) for any S ⊆M[x1, . . . , xd]. On the other hand, if F is a flat in
Kd such that there is a subset A of Md satisfying that F = Fl(A), then F is defined over
M. Indeed, translating F if necessary, assume that F is a linear subspace of Kd. Since
F = Fl(A) with A ⊆Md, we get that F has a basis formed by elements in Md. Thereby,
there are linear equations with coefficients in M such that this vector space is the common
zero set of these linear equations, and hence F is defined over M. These two ideas give
the following facts for flats.

Remark 17. Let e, d ∈ Z+ be such e 6 d, K be a field and M a subfield of K.
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i) For each F ∈ Ge,M, fix a set of linear polynomials SF ⊆ M[x1, . . . , xd] such that
F = ZM(SF ). For any subset R of Md, the map

Ge,M(R) −→ Ge,K(R), F = ZM(SF ) 7→ ZK(SF )

is injective; in particular, |Ge,M(R)| 6 |Ge,K(R)|.

ii) If F ∈ Ge,K is such that F = Fl(S) for some subset S of Md, then F is defined over
M. Then, for any subset R of Md, the following map is well defined and injective

Ge,K(R) −→ Ge,M(R), F 7→ F ∩Md;

in particular, |Ge,K(R)| 6 |Ge,M(R)|.

Now we are ready to state and proof the last result of this section.

Lemma 18. Let d ∈ Z+, K be a field of characteristic zero and A a nonempty finite subset
in K2. Then there are a subfield L of K such that A ⊆ L2 and an injective morphism of
fields ρ : L −→ C such that for all e ∈ [1, d],

min
C∈C6e,C

|ρ(A) \ C| 6 min
C∈C6e,K

|A \ C| 6 min
C∈C6e,C

|ρ(A) \ C|+ d(d+2
2 )+1 (36)

and ∣∣σ−1d,K(Dd,K(A))
∣∣ =

∣∣σ−1d,C(Dd,C(ρ(A))
∣∣ . (37)

Proof. Since K is a field of characteristic zero, its prime subfield is isomorphic to Q so we
may assume that K is an extension of Q. Let S1 be the set of all the entries of all the
elements of A. For each class U ∈ σ−1d,K(Dd,K(A)), fix a polynomial pU(x, y) in it. Let S2 be

the set of all the coefficients of the polynomials in {pU(x, y) : U ∈ σ−1d,K(Dd,K(A))}. Since

A is finite, the number of hyperplanes generated by ψd,K(A) in K
d(d+3)

2 is finite, and then
Lemma 12 yields that σ−1d,K(Dd,K(A)) is finite; therefore S2 is finite. For each e ∈ [1, d], fix
a curve Ce ∈ C6e,K such that

|A \ Ce| = min
C∈C6e,K

|A \ C|,

and fix qe(x, y) ∈ K[x, y] such that Ce = ZK(qe(x, y)). Let S3 be the set of all the
coefficients of the polynomials in {qe(x, y) : e ∈ [1, d]}. Write L := Q(S1 ∪ S2 ∪ S3). We
have seen that S1, S2 and S3 are finite so L is finitely generated over Q. Also notice that
L ⊆ K. Since the entries of the elements of A are in Q(S1) ⊆ L, we get that

A ⊆ L2. (38)

Insomuch as L ⊆ K, we have that L[x, y] ⊆ K[x, y] and hence
∣∣σ−1d,L(Dd,L(A))

∣∣ 6∣∣σ−1d,K(Dd,K(A))
∣∣. On the other hand, by the construction of S2, each class of σ−1d,K(Dd,K(A))
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has a representative with all its coefficients in Q(S2) ⊆ L so
∣∣σ−1d,K(Dd,K(A))

∣∣ 6∣∣σ−1d,L(Dd,L(A))
∣∣, and hence ∣∣σ−1d,K(Dd,K(A))

∣∣ =
∣∣σ−1d,L(Dd,L(A))

∣∣ . (39)

Inasmuch as L ⊆ K, we have that minC∈C6e,K |A \C| 6 minC∈C6e,L |A \C| for all e ∈ [1, d].
Now, for e ∈ [1, d], the construction of S3 yields that the minimum of minC∈C6e,K |A \ C|
is achieved by Ce = ZK(qe(x, y)) with qe(x, y) ∈ Q(S3)[x, y] ⊆ L[x, y]; then

min
C∈C6e,L

|A \ C| 6 |A \ ZL(qe(x, y))| = |A \ ZK(qe(x, y))| = min
C∈C6e,K

|A \ C|,

and thereby
min

C∈C6e,K
|A \ C| = min

C∈C6e,L
|A \ C|. (40)

Since L is finitely generated over Q, Theorem 11 establishes the existence of an injective
morphism of fields ρ : L → C. Since A ⊆ L2 by (38), it remains to prove that ρ satisfies
(36) and (37).

Write M := ρ(L). The isomorphism of fields ρ : L→M leads to∣∣σ−1d,L(Dd,L(A))
∣∣ =

∣∣σ−1d,M(Dd,M(ρ(A)))
∣∣ , (41)

and for all e ∈ [1, d],
min

C∈C6e,L
|A \ C| = min

C∈C6e,M
|ρ(A) \ C|. (42)

The next step is to show that∣∣σ−1d,M(Dd,M(ρ(A)))
∣∣ =

∣∣σ−1d,C(Dd,C(ρ(A)))
∣∣ . (43)

Since M ⊆ C and ρ(A) ⊆ M2, we have that ψd,M(ρ(A)) = ψd,C(ρ(A)); write T :=
ψd,C(ρ(A)). From Lemma 12, we have that

τd,M
(
σ−1d,M(Dd,M(ρ(A)))

)
= G d(d+3)

2
−1,M(T )

τd,C
(
σ−1d,C(Dd,C(ρ(A)))

)
= G d(d+3)

2
−1,C(T ). (44)

Insomuch as ρ(A) ⊆ M2, notice that T ⊆ M
d(d+3)

2 . Then Remark 17.i and Remark 17.ii
applied to T lead to

|G d(d+3)
2
−1,M(T )| = |G d(d+3)

2
−1,C(T )|. (45)

Since τd,M and τd,C are bijections by Remark 8.ii, we have that (43) is a consequence of
(44) and (45).

Now we prove that for all e ∈ [1, d],

min
C∈C6e,C

|ρ(A) \ C| 6 min
C∈C6e,M

|ρ(A) \ C| 6 min
C∈C6e,C

|ρ(A) \ C|+ d(d+2
2 )+1. (46)
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Since M is a subfield of C, the left-hand side inequality of (46) is true. Next we prove
that

min
C∈C6e,M

|ρ(A) \ C| 6 min
C∈C6e,C

|ρ(A) \ C|+ d(d+2
2 )+1. (47)

Considering that |ρ(A)| = |ρ(A) \ C| + |ρ(A) ∩ C| for any curve C, we have that (47) is
equivalent to

max
C∈C6e,C

|ρ(A) ∩ C| 6 max
C∈C6e,M

|ρ(A) ∩ C|+ d(d+2
2 )+1 (48)

so it is enough to prove (48). Take D ∈ C6e,C such that |ρ(A) ∩D| =
maxC∈C6e,C |ρ(A)∩C|. For any point there is always a curve C ∈ C6e,C passing through it,
then from the maximality of |ρ(A)∩D|, it is clear that ρ(A)∩D 6= ∅. Fix q1, q2, . . . , qn ∈
C[x, y] such that Z(q1),Z(q2), . . . ,Z(qn) are the pairwise distinct irreducible components
of D. From Corollary 7, any q ∈ Cd[x, y] such that Z(q) = D needs to satisfy that
[q] = [

∏n
i=1 q

mi
i ] for some m1,m2, . . . ,mn ∈ Z+. Hence, since D ∈ C6e,C, we conclude that

deg

(
n∏
i=1

qi

)
6 e. (49)

Write B := ρ(A)∩D and G := Fl(ψd,C(B)) in C
d(d+3)

2 . Since B ⊆ ρ(A) ⊆Md, we get that

ψd,C(B) ⊆M
d(d+3)

2 and then Remark 17.ii indicates that F := G ∩M
d(d+3)

2 satisfies that

dimF = dimG (50)

(note that dimF is the dimension of F as a M-flat and dimG is the dimension of G as a

C-flat ). If |B| 6 d(d+2
2 )+1, then (48) is true so we assume from now on that

|B| > d(d+2
2 )+1. (51)

Because B ⊆ D, notice that
dimG 6 dimψd,C(D). (52)

Hence

dimF = dimG
(

by (50)
)

6 dimψd,C(D)
(

by (52)
)

= dimψd,C

(
Z

(
n∏
i=1

qi

))

=

(
d+ 2

2

)
−
(
d+ 2− deg (

∏n
i=1 qi)

2

)
− 1

(
by Lemma 14

)
<

(
d+ 2

2

)
−
(
d+ 1− e

2

)
− 1.

(
by (49)

)
(53)
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From (51) and (53), the set B, the flat F and the field M satisfy the assumptions of

Lemma 15. Thus there is E ∈ C6e,M such that |B \ E| 6 d(d+2
2 )+1. Then

max
C∈C6e,M

|ρ(A) ∩ C| > |ρ(A) ∩ E|
(

since E ∈ C6e,M
)

> |B ∩ E|
(

since B ⊆ ρ(A)
)

= |B| − |B \ E|

> |B| − d(d+2
2 )+1

(
since |B \ E| 6 d(d+2

2 )+1
)

= max
C∈C6e,C

|ρ(A) ∩ C| − d(d+2
2 )+1,

which implies (48) (and hence (47)).
On the one hand, (36) is a direct consequence of (40), (42) and (46). On the other

hand, (37) follows from (39), (41) and (43).

4 Proof of Theorem 2

In this section we complete the proof of Theorem 2, and then we discuss about some
details of this theorem.

Proof. (Theorem 2). Let c5 = c5

(
d(d+3)

2
− 1
)

be a constant satisfying Theorem 10 for
d(d+3)

2
− 1 and write

c1 := max {c5, 1}+ (d+ 3) · d(d+2
2 )+2.

From Lemma 18, there exists a subfield L of K such that A ⊆ L2 and an injective
morphism of fields ρ : L −→ C such that for all e ∈ [1, d],

min
C∈C6e,C

|ρ(A) \ C| 6 min
C∈C6e,K

|A \ C| 6 min
C∈C6e,C

|ρ(A) \ C|+ d(d+2
2 )+1 (54)

and ∣∣σ−1d,K(Dd,K(A))
∣∣ =

∣∣σ−1d,C(Dd,C(ρ(A))
∣∣ . (55)

From Corollary 7, we get that

|Dd,K(A)| 6
∣∣σ−1d,K(Dd,K(A))

∣∣ 6 dd |Dd,K(A)| . (56)

Since C6e,K ⊆ C6d,K for all e ∈ [1, d] and minC∈C6d,K |A \C| > c1 by assumption, we get
that minC∈C6e,K |A \ C| > c1 for all e ∈ [1, d]. Then, since c1 > 1, we get from (54) that
for all e ∈ [1, d],

min
C∈C6e,C

|ρ(A) \ C| 6 min
C∈C6e,K

|A \ C| 6 2d(d+2
2 )+1 min

C∈C6e,C
|ρ(A) \ C|. (57)
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Now we prove that

∣∣σ−1d,C(Dd,C(ρ(A)))
∣∣ = Θd

(
|ρ(A)|d

d∏
e=1

(
min

C∈C6e,C
|ρ(A) \ C|

)d−e+1
)
. (58)

Write S := ψd,C(ρ(A))). From Lemma 12,

τd,C
(
σ−1d,C(Dd,C(ρ(A)))

)
= G d(d+3)

2
−1,C(S),

and by Remark 8.ii, τd,C is a bijection so∣∣σ−1d,C(Dd,C(ρ(A)))
∣∣ = |G d(d+3)

2
−1,C(S)|. (59)

On the one hand, for each f ∈ [0, d − 1], fix R ∈ Ff (S) such that φf (S) = |R| and also

fix a family of flats {Fi}i∈I in C
d(d+3)

2 satisfying that

R ⊆
⋃
i∈I

Fi, (60)

∑
i∈I

dimFi = dim R 6 f, (61)

and for all i ∈ I,
dimFi > 1. (62)

Theorem 9 implies that for any g ∈ [0, d−1], we have that any g-flat in C
d(d+3)

2 can contain
at most g + 1 elements of R; hence, since f 6 d− 1, (61) yields that for all i ∈ I,

|R ∩ Fi| 6 dimFi + 1. (63)

Thus, for all f ∈ [0, d− 1],

φf (S) = |R|

6
∑
i∈I

|R ∩ Fi|
(

by (60)
)

6
∑
i∈I

(dimFi + 1)
(

by (63)
)

6 f + |I|
(

by (61)
)

6 2f.
(

by (61),(62)
)

(64)

Hence, since |S| = |ρ(A)| > c1 > 4d, we have by (64) that for all f ∈ [0, d− 1],

|S| − φf (S) 6 |ρ(A)| 6 2(|S| − φf (S)). (65)
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On the other hand, for all e, f ∈ Z+ such that e ∈ [1, d] and
f ∈

[(
d+2
2

)
−
(
d+2−e

2

)
− 1,

(
d+2
2

)
−
(
d+1−e

2

)
− 2
]
, Lemma 16 applied to A yields that

|S| − φf (S) 6 min
C∈C6e,C

|ρ(A) \ C| 6 |S| − φf (S) +
d(d+ 3)

2
· d(d+2

2 )+1. (66)

Then

min
C∈C6e,C

|ρ(A) \ C| > min
C∈C6e,K

|A \ C| − d(d+2
2 )+1

(
by (54)

)
> min

C∈C6d,K
|A \ C| − d(d+2

2 )+1
(

since e 6 d
)

> c1 − d(d+2
2 )+1

> c5 +
d(d+ 3)

2
· d(d+2

2 )+1

so we get from (66) that
|S| − φf (S) > c5 (67)

and
|S| − φf (S) 6 min

C∈C6e,C
|ρ(A) \ C| 6 2(d+ 3) · d(d+2

2 )+2(|S| − φf (S)). (68)

Taking f = d(d+3)
2
− 1 in (67), we get that the assumptions of Theorem 10 are satisfied by

S and d(d+3)
2
− 1. Then Theorem 10 implies that

|G d(d+3)
2
−1,C(S)| = Θd

 d(d+3)
2
−1∏

f=0

(|S| − φf (S))

 . (69)

Thus ∣∣σ−1d,C(Dd,C(ρ(A)))
∣∣

=|G d(d+3)
2
−1,C(S)|

(
by (59)

)
=Θd

 d(d+3)
2
−1∏

f=0

(|S| − φf (S))

 (
by (69)

)

=Θd

(
|ρ(A)|d

d∏
e=1

(
min

C∈C6e,C
|ρ(A) \ C|

)d−e+1
)
,

(
by (65), (68)

)
and it concludes the proof of (58).
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Finally,

|Dd,K(A)| = Θd

(∣∣σ−1d,K(Dd,K(A))
∣∣) (

by (56)
)

= Θd

(∣∣σ−1d,C(Dd,C(ρ(A)))
∣∣) (

by (55)
)

= Θd

(
|ρ(A)|d

d∏
e=1

(
min

C∈C6e,C
|ρ(A) \ C|

)d−e+1
) (

by (58)
)

= Θd

(
|A|d

d∏
e=1

(
min

C∈C6e,K
|A \ C|

)d−e+1
)
,

(
by (57)

)
and this completes the proof.

As it can be noted in the first part of the proof of Theorem 2, the constant c1 =

c1(d) > 0 depends on the constant c5 = c5

(
d(d+3)

2
− 1
)

of Theorem 10. It can be noticed

in [16, Sec. 7] that the constant c5 is not easy to compute; nonetheless, Lund proves that
c5(d) > d−O(1) and he gives a conjecture of a stronger lower bound of c5(d).

Theorem 2 holds for fields of characteristic zero. Many tools of the proof are true
also for more general fields. Nevertheless, Theorem 11 (and therefore Lemma 18) is a
fundamental tool in the proof of Theorem 2. Perhaps, using some ultralimits techniques,
Theorem 2 can be extended to fields with positive characteristic. Also, maybe some
ideas and results established by C. Grosu in [11] are helpful to prove Theorem 2 in Z/pZ
(however, it seems that Grosu’s results cannot be applied directly to achieve this goal so
new ideas are required).

Another interesting problem is to generalize Theorem 1.2 to higher dimensional affine
algebraic subsets.
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