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Abstract

In this paper, we consider the volume of a special kind of flow polytope. We show
that its volume satisfies a certain system of differential equations, and conversely, the
solution of the system of differential equations is unique up to a constant multiple.
In addition, we give an inductive formula for the volume with respect to the rank
of the root system of type A.

Mathematics Subject Classifications: 52B20, 05A16

1 Introduction

The number of lattice points and the volume of a convex polytope are important and
interesting objects and have been studied from various points of view (see, e.g., [4]). For
example, the number of lattice points of a convex polytope associated to a root system
is called the Kostant partition function, and it plays an important role in representation
theory of Lie groups (see, e.g., [9]).

We consider a flow polytope associated to the root system of type A. As explained
in [2, 3], the cone spanned by the positive roots is divided into several polyhedral cones
called chambers, and the combinatorial property of a flow polytope depends on a chamber.
Moreover, there is a specific chamber called the nice chamber, which plays a significant role
in [11]. In this paper, we call a flow polytope for the nice chamber a special flow polytope.
Also in [2, 3], a number of theoretical results related to the Kostant partition function and
the volume function of a flow polytope can be found. In particular, it is shown that these
functions for the nice chamber are written as iterated residues ([3, Lemma 21]). We also
refer to [1] for similar formulas for other chambers in more general settings. Moreover, we
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mention that a generalization of the Lidskii formula is shown in [3, Theorem 38], there
is a geometric proof of the Lidskii formula in [12], and combinatorial applications of this
formula are given in [5, 7].

The purpose of this paper is to characterize the volume function of a flow polytope for
the nice chamber in terms of a system of differential equations, based on a result in [3]. In
order to state the main results, we give some notation. Let e1, . . . , er+1 be the standard
basis of Rr+1 and let

A+
r = {ei − ej | 1 ⩽ i < j ⩽ r + 1}

be the positive root system of type A with rank r. We assign a positive integer mi,j to
each i and j with 1 ⩽ i < j ⩽ r + 1. Let us set m = (mi,j) and M =

∑
1⩽i<j⩽r+1mi,j.

For a = a1e1 + · · ·+ arer − (a1 + · · ·+ ar)er+1 ∈ Rr+1, where ai ∈ R⩾0 (i = 1, . . . , r), the
following polytope PA+

r ,m(a) is called the flow polytope associated to the root system of
type A:

PA+
r ,m(a) =

{
(yi,j,k) ∈ RM

∣∣∣∣ 1 ⩽ i < j ⩽ r + 1 , 1 ⩽ k ⩽ mi,j , yi,j,k ⩾ 0 ,∑
1⩽i<j⩽r+1

∑
1⩽k⩽mi,j

yi,j,k(ei − ej) = a

}
.

Note that the flow polytopes in [3] include the case that some of mi,j’s are zero, whereas
we exclude such cases in this paper. We denote the volume of PA+

r ,m(a) by vA+
r ,m(a).

The open set

cnice := {a = a1e1 + · · ·+ arer − (a1 + · · ·+ ar)er+1 ∈ Rr+1 | ai > 0, i = 1, . . . , r}

in Rr+1 is called the nice chamber. We are interested in the volume vA+
r ,m(a) when a is in

the closure of the nice chamber, and then it is written by vA+
r ,m,cnice

. It is a homogeneous
polynomial of degree M − r. The first result of this paper is the following.

Theorem 1. Let a =
∑r

i=1 ai(ei − er+1) ∈ cnice, and let vA+
r ,m,cnice

(a) be the volume of
PA+

r ,m(a). Then v = vA+
r ,m,cnice

(a) satisfies the system of differential equations as follows:
∂
mr,r+1
r v = 0

(∂r−1 − ∂r)
mr−1,r∂

mr−1,r+1

r−1 v = 0
...

(∂1 − ∂2)
m1,2(∂1 − ∂3)

m1,3 · · · (∂1 − ∂r)
m1,r∂

m1,r+1

1 v = 0,

where ∂i =
∂
∂ai

for i = 1, . . . , r. Conversely, the polynomial v = v(a) of degree M − r
satisfying the above equations is equal to a constant multiple of vA+

r ,m,cnice
(a).

We remark that it is known that the volume function vA+
r ,m(a) of PA+

r ,m(a), as a
distribution on Rr, satisfies the differential equation

LvA+
r ,m(a) = δ(a)

in general, where L =
∏

i<j(∂i − ∂j)
mi,j and δ(a) is the Dirac delta function on Rr ([8,

11]). Note that ∂r+1 in the definition of L is supposed to be zero. The above theorem
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characterizes the function vA+
r ,m,cnice

(a) on cnice more explicitly. It might be interesting to
see what kind of properties of the volume can be derived from Theorem 1.

In addition, in Theorem 20, we show the volume vA+
r ,m,cnice

(a) is written by a linear
combination of vA+

r−1,m
′,c′nice

(a′) and its partial derivatives, wherem′ = (mi,j)2⩽i<j⩽r+1, c
′
nice

is the nice chamber of A+
r−1, and a′ =

∑r
i=2 ai(ei − er+1) ∈ c′nice. It might be interesting

to ask whether there is a relaton between this theorem and the inductive formulas of
Schmidt–Bincer [13, (4.1), (4.24)].

This paper is organized as follows. In Section 2, we recall the iterated residue, the
Jeffrey-Kirwan residue, and the nice chamber based on [2], [3], [6] and [10]. Also, we give
some examples of PA+

r ,m(a) and the calculations of the volume vA+
r ,m,cnice

(a). In Section
3, we prove the main theorems.

2 Preliminaries

In this section, we set up the tools to prove the main theorems based on [2], [3], [6] and
[10].

2.1 Flow polytopes and its volumes

Let e1, . . . , er+1 be the standard basis of Rr+1, and let

V =

{
a =

r+1∑
i=1

aiei ∈ Rr+1

∣∣∣∣∣
r+1∑
i=1

ai = 0

}
.

We consider the positive root system of type A with rank r as follows:

A+
r = {ei − ej | 1 ⩽ i < j ⩽ r + 1}.

Let C(A+
r ) be the convex cone generated by A+

r :

C(A+
r ) = {a = a1e1 + · · ·+ arer − (a1 + · · ·+ ar)er+1 | a1, . . . , ar ∈ R⩾0}.

We assign a positive integer mi,j to each i and j with 1 ⩽ i < j ⩽ r + 1, and it is
called a multiplicity. Let us set m = (mi,j) and M =

∑
1⩽i<j⩽r+1mi,j.

Definition 2. Let a = a1e1 + · · ·+ arer − (a1 + · · ·+ ar)er+1 ∈ C(A+
r ). We consider the

following polytope:

PA+
r ,m(a) =

{
(yi,j,k) ∈ RM

∣∣∣∣ 1 ⩽ i < j ⩽ r + 1 , 1 ⩽ k ⩽ mi,j , yi,j,k ⩾ 0 ,∑
1⩽i<j⩽r+1

∑
1⩽k⩽mi,j

yi,j,k(ei − ej) = a

}
,

which is called the flow polytope associated to the root system of type A.

Remark 3. The flow polytopes in [3] include the case that mi,j = 0 for some i and j.
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The elements of A+
r generate a lattice VZ in V . The lattice VZ determines a measure

da on V .
Let du be the Lebesgue measure on RM . Let [α1, . . . , αM ] be a sequence of elements

of A+
r with multiplicity mi,j, and let φ be the surjective linear map from RM to V defined

by φ(ek) = αk. The vector space ker(φ) = φ−1(0) is of dimension d = M − r and it is
equipped with the quotient Lebesgue measure du/da. For a ∈ V , the affine space φ−1(a)
is parallel to ker(φ), and thus also equipped with the Lebesgue measure du/da. Volumes
of subsets of φ−1(a) are computed for this measure. In particular, we can consider the
volume vA+

r ,m(a) of the polytope PA+
r ,m(a).

2.2 Total residue and iterated residue

Let Ar = A+
r ∪ (−A+

r ), and let U be the dual vector space of V . We denote by RAr the
ring of rational functions f(x1, . . . , xr) on the complexification UC of U with poles on the
hyperplanes xi − xj = 0 (1 ⩽ i < j ⩽ r + 1) or xi = 0 (1 ⩽ i ⩽ r). A subset σ of Ar is
called a basis of Ar if the elements α ∈ σ form a basis of V . In this case, we set

fσ(x) :=
1∏

α∈σ α(x)

and call such a element a simple fraction. We denote by SAr the linear subspace of RAr

spanned by simple fractions. The space U acts on RAr by differentiation: (∂(u)f)(x) =
( d
dε
)f(x + εu)|ε=0. We denote by ∂(U)RAr the space spanned by derivatives of functions

in RAr . It is shown in [6, Proposition 7] that RAr = ∂(U)RAr ⊕ SAr . The projection map
TresAr : RAr → SAr with respect to this decomposition is called the total residue map.

We extend the definition of the total residue to the space R̂Ar consisting of functions
P/Q where Q is a finite product of powers of the linear forms α ∈ Ar and P =

∑∞
k=0 Pk

is a formal power series with Pk of degree k. As the total residue vanishes outside the ho-
mogeneous component of degree −r of Ar, we can define TresAr(P/Q) = TresAr(Pq−r/Q),
where q is degree of Q. For a ∈ V and multiplicities m = (mi,j) ∈ (Z⩾0)

M of elements of
A+

r , the function

F :=
ea1x1+···+arxr∏r

i=1 x
mi,r+1

i

∏
1⩽i<j⩽r(xi − xj)mi,j

is in R̂Ar . We define JA+
r ,m(a) ∈ SAr by

JA+
r ,m(a) = TresArF.

Next, we describe the iterated residue.

Definition 4. For f ∈ RAr , we define the iterated residue by

Iresx=0f = Resx1=0Resx2=0 · · ·Resxr=0f(x1, . . . , xr).

Since the iterated residue Iresx=0f vanishes on the space ∂(U)RAr as in [3], we have

Iresx=0JA+
r ,m(a) = Iresx=0F. (1)
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2.3 Chambers and Jeffrey–Kirwan residue

Definition 5. Let C(ν) be the closed cone generated by ν for any subset ν of A+
r and

let C(A+
r )sing be the union of the cones C(ν) where ν is any subset of A+

r of cardinal
strictly less than r = dimV . By definition, the set C(A+

r )reg of A+
r -regular elements is

the complement of C(A+
r )sing. A connected component of C(A+

r )reg is called a chamber.

The Jeffrey–Kirwan residue [10] associated to a chamber c of C(A+
r ) is a linear form

f 7→ ⟨⟨c, f⟩⟩ on the vector space SAr of simple fractions. Any function f in SAr can be
written as a linear combination of functions fσ, with a basis σ of Ar contained in A+

r . To
determine the linear map f 7→ ⟨⟨c, f⟩⟩, it is enough to determine it on this set of functions
fσ. So we assume that σ is a basis of Ar contained in A+

r .

Definition 6. For a chamber c and fσ ∈ SAr , we define the Jeffrey–Kirwan residue
⟨⟨c, fσ⟩⟩ associated to a chamber c as follows:

• If c ⊂ C(σ), then ⟨⟨c, fσ⟩⟩ = 1.

• If c ∩ C(σ) = ∅, then ⟨⟨c, fσ⟩⟩ = 0,

where C(σ) is the convex cone generated by σ.

Remark 7. More generally, as in [3, Definition 11], the Jeffrey–Kirwan residue ⟨⟨c, fσ⟩⟩
is defined to be 1

vol(σ)
if c ⊂ C(σ), where vol(σ) is the volume of the parallelepiped

⊕α∈σ[0, 1]α, relative to our Lebesgue measure da. In our case, the volume vol(σ) is equal
to 1 since Ar is unimodular.

The volume vA+
r ,m(a) of the flow polytope PA+

r ,m(a) is written by the function JA+
r ,m(a)

and the Jeffrey–Kirwan residue in the following.

Theorem 8 (Baldoni–Vergne [3]). Let c be a chamber of C(A+
r ). Then, for a ∈ c̄, the

volume vA+
r ,m(a) of PA+

r ,m(a) is given by

vA+
r ,m(a) = ⟨⟨c, JA+

r ,m(a)⟩⟩.

We denote by vA+
r ,m,c(a) the polynomial function of a coinciding with vA+

r ,m(a) when
a ∈ c̄. It is a homogeneous polynomial of degree M − r.

2.4 Nice chamber

Definition 9. The open subset cnice of C(A+
r ) is defined by

cnice = {a ∈ C(A+
r ) | ai > 0 (i = 1, . . . , r)}.

The set cnice is in fact a chamber for the root system A+
r ([3]). The chamber cnice is called

the nice chamber.

Lemma 10 (Baldoni–Vergne [3]). For the nice chamber cnice of A
+
r and f ∈ SAr , we have

⟨⟨cnice, f⟩⟩ = Iresx=0f.
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From Theorem 8, Lemma 10 and (1), we have the following corollary.

Corollary 11 (Lidskii formula [3]). Let a ∈ cnice. Then the volume function vA+
r ,m,cnice

(a)
is given by

vA+
r ,m,cnice

(a) = Iresx=0F.

2.5 Examples

In this subsection, we give some examples of the flow polytopes for A1, A2, and A3, and
calculate their volumes.

Example 12. When r = 1, the nice chamber of A+
1 is cnice = {a = a1(e1 − e2) | a1 > 0}.

For a = a1(e1 − e2) ∈ cnice,

PA+
1 ,m(a) =

{
(yi,j,k) ∈ Rm1,2 | yi,j,k ⩾ 0 , y1,2,1 + y1,2,2 + · · ·+ y1,2,m1,2 = a1

}
.

From Corollary 11, we have

vA+
1 ,m,cnice

(a) = Resx1=0

(
ea1x1

x
m1,2

1

)
=

1

(m1,2 − 1)!
a
m1,2−1
1 .

Example 13. When r = 2, there are two chambers c1, c2 of A+
2 as below, and the nice

chamber cnice of A
+
2 is c1.

e1 − e2

e1 − e3e2 − e3

c2

c1

O

Figure 1 : The chamber of A+
2 .

For example, we set m1,2 = n (n ∈ Z>0), m1,3 = 1, and m2,3 = 1. For a = a1e1 +
a2e2 − (a1 + a2)e3 ∈ cnice,

PA+
2 ,m(a) =

(yi,j,k) ∈ Rn+2

∣∣∣∣∣∣
yi,j,k ⩾ 0
y1,2,1 + y1,2,2 + · · ·+ y1,2,n + y1,3,1 = a1
−y1,2,1 − y1,2,2 − · · · − y1,2,n + y2,3,1 = a2

 .

From Corollary 11, we have

vA+
2 ,m,cnice

(a) = Iresx=0

(
ea1x1+a2x2

x1x2(x1 − x2)n

)
= Resx1=0Resx2=0

(
ea1x1+a2x2

x1x2(x1 − x2)n

)
=

1

n!
an1 .
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Example 14. When r = 3, there are seven chambers of A+
3 as below ([1]), and the nice

chamber cnice of A
+
3 is c1.

e1 − e3 e2 − e4

e2 − e3

e1 − e4

e1 − e2 e3 − e4

c7

c1c2

c3c4

c5c6

Figure 2 : The chamber of A+
3 .

For example, we set m1,2 = 1, m1,3 = 1, m1,4 = 2, m2,3 = 1, m2,4 = 2, and m3,4 = 2.
For a =

∑3
i=1 ai(ei − e4) ∈ cnice,

PA+
3 ,m(a) =

(yi,j,k) ∈ R9

∣∣∣∣∣∣∣∣
yi,j,k ⩾ 0
y1,2,1 + y1,3,1 + y1,4,1 + y1,4,2 = a1
−y1,2,1 + y2,3,1 + y2,4,1 + y2,4,2 = a2
−y1,3,1 − y2,3,1 + y3,4,1 + y3,4,2 = a3

 .

From Corollary 11, we have

vA+
3 ,m,cnice

(a) = Iresx=0

(
ea1x1+a2x2+a3x3

x2
1x

2
2x

2
3(x1 − x2)(x1 − x3)(x2 − x3)

)
=

1

360
a31(a

3
1 + 6a21a2 + 3a21a3 + 15a1a

2
2 + 15a1a2a3 + 10a32 + 30a22a3).

3 Main theorems

In this section, we prove the main theorems of this paper. Let cnice be the nice chamber
of A+

r and let a =
∑r

i=1 ai(ei − er+1) ∈ cnice.

Theorem 15. For a ∈ cnice, let PA+
r ,m(a) be the flow polytope as in Definition 2 and let

vA+
r ,m,cnice

(a) be the volume of PA+
r ,m(a). Then v = vA+

r ,m,cnice
(a) satisfies the system of

differential equations as follows:
∂
mr,r+1
r v = 0

(∂r−1 − ∂r)
mr−1,r∂

mr−1,r+1

r−1 v = 0
...

(∂1 − ∂2)
m1,2(∂1 − ∂3)

m1,3 · · · (∂1 − ∂r)
m1,r∂

m1,r+1

1 v = 0,

(2)
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where ∂i =
∂
∂ai

for i = 1, . . . , r.

Proof. We will prove the first two relations. Let F = ea1x1+···+arxr∏r
i=1 x

mi,r+1
i

∏
1⩽i<j⩽r(xi−xj)

mi,j
. It is

easy to see that

P (∂1, . . . , ∂r)(Iresx=0F ) = Iresx=0(P (∂1, . . . , ∂r)F ) = Iresx=0(P (x1, . . . , xr)F ), (3)

where P is a polynomial. Since ea1x1+···+akxk∏k−1
i=1 x

mi,r+1
i

∏
1⩽i<j⩽k(xi−xj)

mi,j
is holomorphic at xk = 0,

Resxk=0

(
ea1x1+···+akxk∏k−1

i=1 x
mi,r+1

i

∏
1⩽i<j⩽k(xi − xj)mi,j

)
= 0 (4)

for k = 1, . . . , r. Therefore, from Corollary 11, (3) and (4), we obtain

∂mr,r+1
r v = ∂mr,r+1

r Iresx=0F = Iresx=0∂
mr,r+1
r F

= Iresx=0

(
ea1x1+···+arxr∏r−1

i=1 x
mi,r+1

i

∏
1⩽i<j⩽r(xi − xj)mi,j

)
= 0,

and

(∂r−1 − ∂r)
mr−1,r∂

mr−1,r+1

r−1 v

= Iresx=0(∂r−1 − ∂r)
mr−1,r∂

mr−1,r+1

r−1 F

= Iresx=0(∂r−1 − ∂r)
mr−1,r

(
ea1x1+···+arxr

x
mr,r+1
r

∏r−2
i=1 x

mi,r+1

i

∏
1⩽i<j⩽r(xi − xj)mi,j

)

= Iresx=0

(
ea1x1+···+arxr

x
mr,r+1
r

∏r−2
i=1 x

mi,r+1

i

∏
1⩽i<j⩽r,(i,j)̸=(r−1,r)(xi − xj)mi,j

)

= Resx1=0 · · ·

(
Resxr−1=0

(
ea1x1+···+ar−1xr−1∏r−2

i=1 x
mi,r+1

i

∏
1⩽i<j⩽r−1(xi − xj)mi,j

×Resxr=0

(
earxr

x
mr,r+1
r

∏r−2
i=1 (xi − xr)mi,r

)))
= 0.

Similarly, we can verify the remaining expressions.

Remark 16. In general, it is known that the volume function vA+
r ,m(a) of PA+

r ,m(a), as a
distribution on V , satisfies the differential equation

LvA+
r ,m(a) = δ(a),

where L =
∏

i<j(∂i − ∂j)
mi,j and δ(a) is the Dirac delta function on V ([8, 11]). Note

that ∂r+1 in the definition of L is supposed to be zero. Theorem 15 above, together with
Proposition 17 and Theorem 18 as below, characterizes the function vA+

r ,m,cnice
(a) on cnice

more explicitly.
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Let Mℓ =
∑r+1

i=ℓ+1mℓ,i for ℓ = 1, . . . , r. Then we have the following proposition.

Proposition 17. The coefficient of aM1−1
1 aM2−1

2 · · · aMr−1−1
r−1 aMr−1

r in the volume function
vA+

r ,m(a) is given by

1

(M1 − 1)!(M2 − 1)! · · · (Mr−1 − 1)!(Mr − 1)!
.

Proof. From the Lidskii formula in Corollary 11, we have

vA+
r ,m,cnice

(a) =
∑

|i|=ℓ−r

ai11
i1!

· · · a
ir
r

ir!
Iresx=0

(
xi1
1 · · · xir

r∏r
i=1 x

mi,r+1

i

∏
1⩽i<j⩽r(xi − xj)mi,j

)
,

where |i| = i1 + · · ·+ ir. When iℓ = Mℓ − 1 for ℓ = 1, . . . , r,

Iresx=0

(
xM1−1
1 · · · xMr−1

r∏r
i=1 x

mi,r+1

i

∏
1⩽i<j⩽r(xi − xj)mi,j

)

= Resx1=0 · · ·Resxr−1=0Resxr=0

(
x
(
∑r

i=2 m1,i)−1
1 · · · xmr−1,r−1

r−1

xr

∏
1⩽i<j⩽r(xi − xj)mi,j

)

= Resx1=0 · · ·Resxr−1=0

(
x
(
∑r−1

i=2 m1,i)−1
1 · · · xmr−2,r−1−1

r−2

xr−1

∏
1⩽i<j⩽r−1(xi − xj)mi,j

)
= Resx1=0

1

x1

= 1.

Thus we obtain the proposition.

Theorem 18. Let ϕr = ϕ(a1, . . . , ar) be a homogeneous polynomial of a1, . . . , ar with
degree d and let M =

∑
1⩽i<j⩽r+1mi,j. Suppose ϕr satisfies the system of differential

equations as follows:
∂
mr,r+1
r ϕr = 0

(∂r−1 − ∂r)
mr−1,r∂

mr−1,r+1

r−1 ϕr = 0
...

(∂1 − ∂2)
m1,2(∂1 − ∂3)

m1,3 · · · (∂1 − ∂r)
m1,r∂

m1,r+1

1 ϕr = 0.

(5)

(i) If M − r < d, then ϕr = 0.

(ii) If 0 ⩽ d ⩽ M − r, then there is a non trivial homogeneous polynomial ϕr satisfying
(4).

(iii) If d = M − r in particular, ϕr is equal to a constant multiple of v = vA+
r ,m,cnice

(a).
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Proof. We argue by induction on r. In the case that r = 1, we write

ϕ1 = ϕ(a1) = pad1,

where p is a constant. If m1,2−1 < d and ϕ1 satisfies the differential equation ∂
m1,2

1 ϕ1 = 0,
then p = 0 and hence ϕ1 = 0. If 0 ⩽ d ⩽ m1,2 − 1, then for any p ̸= 0, ∂

m1,2

1 ϕ1 = 0.

Also, if d = m1,2 − 1, in particular, then ϕ1 = pa
m1,2−1
1 , while v = 1

(m1,2−1)!
a
m1,2−1
1 as in

Example 12. Hence ϕ1 is equal to a constant multiple of v.
We assume that the statement of this theorem holds for r − 1. We write ϕr as

ϕr = ϕ(a1, . . . , ar) = gd(a2, . . . , ar) + a1gd−1(a2, . . . , ar) + · · ·+ ad1g0(a2, . . . , ar),

where gk is a homogeneous polynomial of a2, . . . , ar with degree k for k = 0, 1, . . . , d.
Then for k = 0, 1, . . . , d, gk satisfies the differential equations as follows:

∂
mr,r+1
r gk = 0

(∂r−1 − ∂r)
mr−1,r∂

mr−1,r+1

r−1 gk = 0
...

(∂2 − ∂3)
m2,3(∂2 − ∂4)

m2,4 · · · (∂2 − ∂r)
m2,r∂

m2,r+1

2 gk = 0.

(6)

We set h = (
∑

2⩽i<j⩽r+1mi,j) − (r − 1). From the inductive assumption, if 0 ⩽ k ⩽ h,
then gk is a homogeneous polynomial. On the other hand, if h+ 1 ⩽ k ⩽ d, then gk = 0,
namely,

gd(a2, . . . , ar) = gd−1(a2, . . . , ar) = · · · = gh+1(a2, . . . , ar) = 0. (7)

(i) We consider the case of M − r < d. Let M1 =
∑r+1

i=2 m1,i. Now we compare
the coefficients of ad−h−M1+n

1 in (∂1 − ∂2)
m1,2(∂1 − ∂3)

m1,3 · · · (∂1 − ∂r)
m1,r∂

m1,r+1

1 ϕr for
n = 0, . . . , h. For q = 1, . . . ,M1 −m1,r+1, we define

Dq =
∑

2⩽i1⩽r

(
m1,i1

q ) ∂q
i1
+ · · ·+

∑
p1+···+pk=q

2⩽i1<···<ik⩽r

( ∏
1⩽l⩽k

(m1,il
pl

))
∂p1
i1
∂p2
i2
· · · ∂pk

ik

+ · · ·+
∑

2⩽i1<···<iq⩽r

( ∏
1⩽l⩽q

(m1,il
1

))
∂i1∂i2 · · · ∂iq .

Then we have the following equation:

(d− h+ n)!

(d− h−M1 + n)!
gh−n(a2, . . . , ar)−

(d− h+ n− 1)!

(d− h−M1 + n)!
D1gh−n+1(a2, . . . , ar)

+ · · ·+ (−1)j
(d− h+ n− j)!

(d− h−M1 + n)!
Djgh−n+j(a2, . . . , ar)

+ · · ·+ (−1)M1−m1,r+1
(d− h+ n− (M1 −m1,r+1))!

(d− h−M1 + n)!
DM1−m1,r+1gh−n+M1,r(a2, . . . , ar)

= 0. (8)
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When n = 0, from (7) and (8), we have

gh(a2, . . . , ar) = 0.

When n = 1, we have

(d− h+ 1)!

(d− h−M1 + 1)!
gh−1(a2, . . . , ar)−

(d− h)!

(d− h−M1 + 1)!
D1gh(a2, . . . , ar) = 0.

Thus we have
gh−1(a2, . . . , ar) = 0.

Similarly, we have

gh−2(a2, . . . , ar) = gh−3(a2, . . . , ar) = · · · = g0(a2, . . . , ar) = 0

and hence ϕr = 0.
(ii) We consider the case of 0 ⩽ d ⩽ M − r. By the inductive assumption, there

is a non trivial homogeneous polynomial gh−n1+i satisfying (6) for i = 1, . . . , n1, where
n1 = M − r − d+ 1. We can take

gh−n1+i(a2, . . . , ar) ̸= 0.

When n = n1, from (7) and (8),

gh−n1(a2, . . . , ar) =
(d− h+ n1 − 1)!

(d− h+ n1)!
D1gh−n1+1(a2, . . . , ar)

− (d− h+ n1 − 2)!

(d− h+ n1)!
D2gh−n1+2(a2, . . . , ar)

+ · · ·+ (−1)n1−1 (d− h)!

(d− h+ n1)!
Dn1gh(a2, . . . , ar).

When n = n1 + 1,

gh−(n1+1)(a2, . . . , ar) =
(d− h+ n1)!

(d− h+ n1 + 1)!
D1gh−n1(a2, . . . , ar)

− (d− h+ n1 − 1)!

(d− h+ n1 + 1)!
D2gh−n1+1(a2, . . . , ar)

+ · · ·+ (−1)n1
(d− h)!

(d− h+ n1 + 1)!
Dn1+1gh(a2, . . . , ar).

Similarly, for n = n1 + 2, . . . , h, we can express gh−j(a2, . . . , ar) (j = n1, n1 + 1, . . . , h)
in terms of gh−j+i(a2, . . . , ar) (i = 1, . . . , j) and their partial derivatives. Namely, we can
express ϕr in terms of gh−n1+i(a2, . . . , ar) and their partial derivatives. It follows that
ϕr ̸= 0 when 0 ⩽ d ⩽ M − r.
(iii) If d = M − r in particular, then n1 = 1, and gh−j (j = 1, . . . , h) becomes the linear

combination of gh and their partial derivatives. Therefore ϕr is uniquely determined by
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gh. Moreover, from the inductive assumption, gh = C ·vA+
r−1,m

′,c′nice
, where C is a constant,

m′ = (mi,j)2⩽i<j⩽r+1, and c′nice is a nice chamber of A+
r−1. Hence the solution of (5) is

unique up to a constant multiple. On the other hand, by Theorem 15, vA+
r ,m,cnice

satisfies
the system of differential equations (5). Hence ϕr is equal to a constant multiple of
vA+

r ,m,cnice
.

Recall that in the proof of Theorem 18, we have defined the operator

Dq =
∑

2⩽i1⩽r

(
m1,i1

q ) ∂q
i1
+ · · ·+

∑
p1+···+pk=q

2⩽i1<···<ik⩽r

( ∏
1⩽l⩽k

(m1,il
pl

))
∂p1
i1
∂p2
i2
· · · ∂pk

ik

+ · · ·+
∑

2⩽i1<···<iq⩽r

( ∏
1⩽l⩽q

(m1,il
1

))
∂i1∂i2 · · · ∂iq (9)

for q = 1, . . . ,M1 −m1,r+1.

Remark 19. Let M1 =
∑r+1

i=2 m1,i. When d = M − r, from the proof of Theorem 18 (iii),
gh−j (j = 1, . . . , h) is uniquely determined as follows:

gh−1 =
(M1−1)!

M1!
D1gh

gh−2 =
(M1−1)!
(M1+1)!

(D2
1 −D2)gh

gh−3 =
(M1−1)!
(M1+2)!

(D3
1 − 2D1D2 +D3)gh

...

g0 =
(M1−1)!
(M−r)!

(Dh
1 − (h− 1)Dh−2

1 D2 + · · ·+ (−1)h−1Dh)gh.

Let m′ = (mi,j)2⩽i<j⩽r+1, c
′
nice a nice chamber of A+

r−1 and a′ =
∑r

i=2 ai(ei − er+1) ∈
c′nice. From Proposition 17 and Remark 19, we obtain the following theorem.

Theorem 20. Let h = (
∑

2⩽i<j⩽r+1mi,j)− (r− 1) and let Dq (q = 1, . . . , h) be as in (9).
Then vA+

r ,m,cnice
(a) is written by the linear combination of vA+

r−1,m
′,c′nice

(a′) and its partial

derivatives as follows:

vA+
r ,m,cnice

(a) =

{
aM1−1
1

(M1 − 1)!
+

aM1
1

M1!
D1 +

aM1+1
1

(M1 + 1)!
(D2

1 −D2)

+
aM1+2
1

(M1 + 2)!
(D3

1 − 2D1D2 +D3) + · · ·

+
aM−r
1

(M − r)!
(Dh

1 − (h− 1)Dh−2
1 D2 + · · ·+ (−1)h−1Dh)

}
vA+

r−1,m
′,c′nice

(a′).

(10)

Example 21. Let r = 3, let a =
∑3

i=1 ai(ei−e4) ∈ cnice and let a′ =
∑3

i=2 ai(ei−e4) ∈ c′nice.
We set m1,2 = 1,m1,3 = 1,m1,4 = 2,m2,3 = 1,m2,4 = 2 and m3,4 = 2 as in Example 14.
Then we have

vA+
3 ,m,cnice

(a) =
1

360
a31(a

3
1 + 6a21a2 + 3a21a3 + 15a1a

2
2 + 15a1a2a3 + 10a32 + 30a22a3).
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We can check that v = vA+
3 ,m,cnice

(a) satisfies the system of differential equations as follows:
∂2
3v = 0

(∂2 − ∂3)∂
2
2v = 0

(∂1 − ∂2)(∂1 − ∂3)∂
2
1v = 0.

Also, from Proposition 17, the coefficient of the term a31a
2
2a3 is 1

3!2!1!
= 1

12
. When r = 2,

vA+
2 ,m′,c′nice

(a′) =
1

6
a22(a2 + 3a3).

Therefore, we have{
a31
6

+
a41
24

D1 +
a51
120

(D2
1 −D2) +

a61
720

(D3
1 − 2D1D2 +D3)

}
vA+

2 ,m′,c′nice
(a′)

=
a31a

3
2

36
+

a31a
2
2a3

12
+

a41a
2
2

24
+

a41a2a3
24

+
a51a2
60

+
a51a3
120

+
a61
360

= vA+
3 ,m,cnice

(a)

as in (10).
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