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Abstract

In this paper, we consider the volume of a special kind of flow polytope. We show
that its volume satisfies a certain system of differential equations, and conversely, the
solution of the system of differential equations is unique up to a constant multiple.
In addition, we give an inductive formula for the volume with respect to the rank
of the root system of type A.

Mathematics Subject Classifications: 52B20, 05A16

1 Introduction

The number of lattice points and the volume of a convex polytope are important and
interesting objects and have been studied from various points of view (see, e.g., [4]). For
example, the number of lattice points of a convex polytope associated to a root system
is called the Kostant partition function, and it plays an important role in representation
theory of Lie groups (see, e.g., [9]).

We consider a flow polytope associated to the root system of type A. As explained
in [2, 3], the cone spanned by the positive roots is divided into several polyhedral cones
called chambers, and the combinatorial property of a flow polytope depends on a chamber.
Moreover, there is a specific chamber called the nice chamber, which plays a significant role
in [11]. In this paper, we call a flow polytope for the nice chamber a special flow polytope.
Also in [2, 3], a number of theoretical results related to the Kostant partition function and
the volume function of a flow polytope can be found. In particular, it is shown that these
functions for the nice chamber are written as iterated residues ([3, Lemma 21]). We also
refer to [1] for similar formulas for other chambers in more general settings. Moreover, we
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mention that a generalization of the Lidskii formula is shown in [3, Theorem 38|, there
is a geometric proof of the Lidskii formula in [12], and combinatorial applications of this
formula are given in [5, 7).

The purpose of this paper is to characterize the volume function of a flow polytope for
the nice chamber in terms of a system of differential equations, based on a result in [3]. In
order to state the main results, we give some notation. Let eq,...,e,.1 be the standard
basis of R™*! and let

Af ={e;—ej|1<i<j<r+1}
be the positive root system of type A with rank r. We assign a positive integer m; ; to
each i and j with 1 <7 < j <r+1. Let usset m = (m;;) and M =37 ;i\ mij.
For a = aje; + -+ ape, — (a1 + -+ + a,)e,p1 € R where a; € Ry (i = 1,...,7), the
following polytope PA¢7m(a) is called the flow polytope associated to the root system of
type A:

I<i<y<r+1,1<k<my, yi,j7k>oa}

Z1<i<j<r+1 Zlgkgmi,j Yijrlei —e;) =a

Py (a) = {(yzgk) e RM

Note that the flow polytopes in [3] include the case that some of m; ;’s are zero, whereas
we exclude such cases in this paper. We denote the volume of P+, (a) by vy+ . (a).
The open set

Chice '={a=ae; +---+ae, — (a1 +--+a)e,y ER™a;>0i=1,...,r}

in R™*! is called the nice chamber. We are interested in the volume v,+ . (a) when a is in
the closure of the nice chamber, and then it is written by v+, . It is a homogeneous
polynomial of degree M — r. The first result of this paper is the following.

Theorem 1. Let a = Y, ai(€; — €,41) € Cnice, and let UAi,m,cmce(a) be the volume of
Pyt (@) Thenv=wv,+ . (a) satisfies the system of differential equations as follows:

oy = 0

(ar—l - ar)m7'71’7'am—T171,T+lv =0

r

(61 _ 82)m1,2 (61 _ 83)m1,3 . (81 — ar)ml,rainlﬂrlv =0,

where 0; = 8%,- fori =1,...,r. Conversely, the polynomial v = v(a) of degree M —r
satisfying the above equations is equal to a constant multiple of v Ai,m,cmce(a)'
We remark that it is known that the volume function v,+ , (a) of P4+ (a), as a
distribution on R", satisfies the differential equation
LUA:«r,m(a) = (S(CL)

in general, where L = [[,_;(0; — 9;)™ and 6(a) is the Dirac delta function on R" ([8,
11]). Note that 0,41 in the definition of L is supposed to be zero. The above theorem
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characterizes the function v+ . e (@) on Thice more explicitly. It might be interesting to
see what kind of properties of the volume can be derived from Theorem 1.

In addition, in Theorem 20, we show the volume v 4+, . (a) is written by a linear
combination of v+ .., (a’) and its partial derivatives, where m’ = (m; j)2<i<j<r+1, Chice
is the nice chamber of A, |, and @’ = 3_7_, a;(e; — €,41) € /.- It might be interesting
to ask whether there is a relaton between this theorem and the inductive formulas of
Schmidt-Bincer [13, (4.1), (4.24)].

This paper is organized as follows. In Section 2, we recall the iterated residue, the
Jeffrey-Kirwan residue, and the nice chamber based on [2], [3], [6] and [10]. Also, we give
some examples of P+ (a) and the calculations of the volume v ,+ (a). In Section

3, we prove the main theorems.

»"M; Cnice

2 Preliminaries

In this section, we set up the tools to prove the main theorems based on [2], [3], [6] and
[10].

2.1 Flow polytopes and its volumes

Let eq,...,e41 be the standard basis of R™™!, and let

r+1 r+1
V:{a:ZaieiERTH Zai:()}.
i=1 i=1

We consider the positive root system of type A with rank r as follows:

A ={e;—ej|1<i<j<r+1}
Let C(A;") be the convex cone generated by A':
CAH ={a=aaer+ - +ae. —(a;+ - +a)e1|ar,...,a € Rxo}.

We assign a positive integer m;; to each 7 and j with 1 < i < j <r+1, and it is
called a multiplicity. Let us set m = (m;;) and M =37, ;.. ™.

Definition 2. Let a = aje; + -+ aye, — (a1 + -+ -+ a,)e,p 1 € C(A}). We consider the
following polytope:

I<i<yi<r+1,1<k<my, yi,j,k20>}

Pyt (@) =3 (i) € RY
arm(@) {(ym’k) D i<ici<rl Zlgkgmi,j Yigk(e: —€;) =a

which is called the flow polytope associated to the root system of type A.

Remark 3. The flow polytopes in [3] include the case that m; ; = 0 for some ¢ and j.
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The elements of A generate a lattice Vz in V. The lattice V7 determines a measure
da on V.

Let du be the Lebesgue measure on RM. Let [y, ..., ay] be a sequence of elements
of A with multiplicity m; j, and let ¢ be the surjective linear map from R to V' defined
by ¢(er) = ax. The vector space ker(yp) = »~1(0) is of dimension d = M — r and it is
equipped with the quotient Lebesgue measure du/da. For a € V, the affine space ¢~ 1(a)
is parallel to ker(y), and thus also equipped with the Lebesgue measure du/da. Volumes
of subsets of ¢'(a) are computed for this measure. In particular, we can consider the
volume v 4+ . (a) of the polytope P,+ . (a).

2.2 Total residue and iterated residue

Let A, = AF U (—A), and let U be the dual vector space of V. We denote by R4, the
ring of rational functions f(z1,...,x,) on the complexification Uc of U with poles on the
hyperplanes z; —z; =0 (1 <i<j<r+1)orz; =0 (1 <i<r). Asubset oof A, is
called a basis of A, if the elements a € o form a basis of V. In this case, we set

b
[oe, a(@)

and call such a element a simple fraction. We denote by Sy, the linear subspace of R4,
spanned by simple fractions. The space U acts on R4, by differentiation: (9(u)f)(z) =
(L) f(x + eu)|.—o. We denote by O(U)Ry4, the space spanned by derivatives of functions
in Ra,. It is shown in [6, Proposition 7] that R4, = O(U)Ra, ® Sa,. The projection map
Tresa, : Ra, — Sa, with respect to this decomposition is called the total residue map.
We extend the definition of the total residue to the space R 4, consisting of functions
P/Q where @ is a finite product of powers of the linear forms o € A, and P =Y ;- P
is a formal power series with P, of degree k. As the total residue vanishes outside the ho-
mogeneous component of degree —r of A,, we can define Tresy, (P/Q) = Tresa, (P—./Q),
where ¢ is degree of Q). For a € V' and multiplicities m = (m; ;) € (Zs¢)™ of elements of

AT, the function

fo(x) =

ed1T1ttarey

[Ty 2 H1<i<j<r(37i — xj)™d

is in Ry,. We define J g+ m(a) € Sa, by

F =

Jat m(a) = Tresa, F.
Next, we describe the iterated residue.
Definition 4. For f € R,,, we define the iterated residue by
Ires,—of = Resy,—oResz,—0 - - - Resg, —of (21, .., 7).
Since the iterated residue Ires,—qf vanishes on the space (U)R4, as in [3], we have

Ires;—oJ 4+ (@) = Ires,—o F. (1)
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2.3 Chambers and Jeffrey—Kirwan residue

Definition 5. Let C'(v) be the closed cone generated by v for any subset v of A and
let C(A; )sing be the union of the cones C'(v) where v is any subset of Al of cardinal
strictly less than » = dim V. By definition, the set C(A] ), of Af-regular elements is

the complement of C'(A)gng. A connected component of C(A;"),eq is called a chamber.

The Jeffrey—Kirwan residue [10] associated to a chamber ¢ of C'(A)) is a linear form
f = ({c, f)) on the vector space Sy, of simple fractions. Any function f in Sy, can be
written as a linear combination of functions f,, with a basis o of A, contained in Af. To
determine the linear map f +— ((c, f)), it is enough to determine it on this set of functions
f»- So we assume that o is a basis of A, contained in Af.

Definition 6. For a chamber ¢ and f, € Sa,, we define the Jeffrey—Kirwan residue
((c, f»)) associated to a chamber ¢ as follows:

o If c C C(0), then ((c, f,)) = 1.
e If cnNC(o) =0, then ((c, f,)) =0,
where C(0) is the convex cone generated by o.

Remark 7. More generally, as in [3, Definition 11], the Jeffrey—Kirwan residue ({c, f,))

is defined to be VO+@ if ¢ C C(o), where vol(o) is the volume of the parallelepiped

Daeo |0, 1], relative to our Lebesgue measure da. In our case, the volume vol(o) is equal
to 1 since A, is unimodular.

The volume v+ . (a) of the flow polytope P+, (a) is written by the function J,+ , (a)
and the Jeffrey—Kirwan residue in the following.

Theorem 8 (Baldoni—Vergne [3]). Let ¢ be a chamber of C(AS). Then, for a € ¢, the
volume v 4+ .. (a) of Py+ . (a) is given by

at (@) = ({6 Jr (@)

We denote by v,+ . (a) the polynomial function of a coinciding with v,+ . (a) when
a € ¢. It is a homogeneous polynomial of degree M — r.

2.4 Nice chamber
Definition 9. The open subset cpic. of C(A}) is defined by

cnice:{aec(A:)|ai>O(i:17"'7r)}'

The set ¢yice 18 in fact a chamber for the root system A} ([3]). The chamber ¢y is called
the nice chamber.

Lemma 10 (Baldoni—Vergne [3]). For the nice chamber ¢yice of A} and f € Sa,, we have

<<cnicea f>> == Iresxzof.
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From Theorem 8, Lemma 10 and (1), we have the following corollary.

Corollary 11 (Lidskii formula [3]). Let a € tuice. Then the volume function v 4+
18 given by

»1M; Cnice (a)

Vg s (a) = Ires,—oF.

2.5 Examples

In this subsection, we give some examples of the flow polytopes for A;, Ay, and As, and
calculate their volumes.

Example 12. When 7 = 1, the nice chamber of Af is cpiee = {a = ai(e; — €2) | a1 > 0}.
For a = ay(e; — €3) € Thice,

Pys (a) = {iwk) ER™2 |y 20, yrog + Y122+ + Y1 2m. = a1}

From Corollary 11, we have

(a) =R . L gment
V s+ o la) = eSS, —o ) = aq ’ .
Al ;M Cnice 1 xl 1,2 (m172 _ 1)'

Example 13. When r = 2, there are two chambers ¢y, ¢y of A3 as below, and the nice
chamber cyice of A is ¢;.

€r — €3 €1 — €3
51
Co

>

O €1 — €3

Figure 1 : The chamber of A .

For example, we set mio = n (n € Zsg), mig = 1, and mo3 = 1. For a = aje; +
A9€o — (0,1 + a2)€3 S Cnices

Yijk =0
Py m(a) = (4igr) € R™ 2| yro1 + 122+ + Yrom + Y131 = a1
—Y121 — Y122~ — Y120 T Y231 = QA2

From Corollary 11, we have

€a1x1+a2z2 6a1m1+a2x2 > 1

= Ires,_ = Res,. —gRes,, —
VA m,cnice (a) F08z=0 <x1$2(l’1 — IQ)”) m=0 720 (:)311:2(:161 —rp)"
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Example 14. When r = 3, there are seven chambers of A3 as below ([1]), and the nice
chamber ¢, of A7 is ¢.

€9 — €3
C6 5
€1 — €3 Co — €4
Cq C3
€1 — €4
¢7
€1 — €9 €3 — €4

Figure 2 : The chamber of Aj.

For example, we set myo =1, my3 =1, myy =2, moz =1, mog = 2, and mg4 = 2.
3 Sl
FOI‘ a = Zz:l a/z(ez - 64) E cIliCQ)
Yijk = 0
121 T Y1,31 T Y141 T Y142 = a1
PA+m<a): (yz7j7k)€R9 y7» yv: y:a y77 -
37 —Y12,1 + Y231 + Y241+ Y242 = Q2
—Y1,31 — Y231 T Y341 + Y342 = a3

From Corollary 11, we have

( ) ( €a1$1+a2r2+a3z3 )
Vgt e (@) = Ires,—g
A Caice wiwias(z — x2) (21 — 3) (w2 — 73)

= Lag(ag’ + 6a2ay + 3ajas + 15a1a3 + 15a1a0a3 + 10a3 + 30a3as3)
3 Main theorems

In this section, we prove the main theorems of this paper. Let ¢ be the nice chamber
of Af andlet a =), a;(e; — €,11) € Cnice.

Theorem 15. For a € Tyice, let P+ ,.(a) be the flow polytope as in Definition 2 and let
Vgt e (@) be the volume of Py+, (a). Then v = v + (a) satisfies the system of
differential equations as follows:

oy =0

(Ot = 0,)"r =1 QT = 0

s Cnice

r—1

(81 — 82)m1,2 (81 — 63)m1‘3 s (81 — 8,n)m”8§n1”“+lv = O,
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where@z-:%forizl,...,r.

Proof. We will prove the first two relations. Let F = ———m— et
xT.

i=1T; H1<i<j<r(93¢—l"j)

. It is

my
2]

easy to see that

P(0y,...,0.)(Iresp—oF') = Ires,—o(P (01, ..., 0,)F) = Ires,—o(P(x1,...,2,)F), (3)

. . . ayjzr)+--tapx
where P is a polynomial. Since £ bR

— is holomorphic at x; = 0,

k—1_Mir+1
[z ™ H1<i<j<k(xi_xj)m ’
€a111+~~~+akrk
i=1 Li 1<i<j<k\ i — Lj) "

for k =1,...,r. Therefore, from Corollary 11, (3) and (4), we obtain

m m. ™m
oty = 't res, o F = Ires,—o0," ' F

6a1x1+---+arccr
= Ires,—g =0
= r—1 mjr41 o \mys ’
Hi:1 € H1<z’<j<r(xz Tj) ™

and
T —
(ar—l _ ar)m'r—l,r T_Tl 177"+1,U
My —
= Irescc:0<ar—1 - a’r)mril’r le bR
ed1z1ttarzr
= Tres,—(0p_1 — O0,) ™17
- - My r41 r—2 Mg r4-1 o \m; i
Lr [T = H1§i<j<r(‘r2 Tj)md
g1zt tarzy
= Ires,—g
= M 41 r—2 M r41 o \my
Ir [Liey 2 hicicicn igpem (T — 2™
€a11’1+'“+ar—19€r—1
= Resz,=0 -+ | Resg, =0 HT—2 g+ H (LL‘ —x )mz J
i=1 i 1<i<j<r—1\"2 J ’
earTr
xRes,;, —o =0.
- My r4-1 r—2 )
Lr [Tic (zi — @ )mer
Similarly, we can verify the remaining expressions. O

Remark 16. In general, it is known that the volume function v+  (a) of P+ (a), as a
distribution on V, satisfies the differential equation

L,UAff,m(a) = 5(0’)7

where L = [];_;(9; — 9;)™ and é(a) is the Dirac delta function on V' ([8, 11]). Note
that 0,,1 in the definition of L is supposed to be zero. Theorem 15 above, together with
Proposition 17 and Theorem 18 as below, characterizes the function v 4+ (@) on Cpice
more explicitly.

MM, Cnice
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Let M, = Z;}lﬂ my,; for £ =1,...,r. Then we have the following proposition.

) . Mi—1 _Ms—1 M,_1—1 M,—1
Proposition 17. The coefficient of a;"' " ay > ---a,{" “a."

Ut (@) is given by

in the volume function

1
(My = DV Mz = D)l (Myoy = DM, = 1)

Proof. From the Lidskii formula in Corollary 11, we have

i1 7 i1 7
V4t (a) = E S NI S 0 o S
A men = T Se= T it ]
r T Cnice 71! 1, | — )M

li|=t—r i=17T; H1<i<j<r<xi

where |i| =i+ -+ +4,. When iy = M, —1for £ =1,...,r,

xi\/flfl . xMr—l
Ires,—q r
- T My r4-1 L YO
[Tici i H1<i<j<r(xl T j)md
(XCi—ami)—1 mr—l,r—1>

Ty |

= Res;,—o - - Res,,_,—oRes;.—o (

Ly H1<i<j<r<xi — X))

(CrZ) mai)—1 mp_2,r—1—1
~R R o s
= Resy,—p - - NesSy,_ ;=0

Tr_1 H1<i<]<r—1(xi — @)™

1
= Res;,—o— = 1.
T
Thus we obtain the proposition. O]
Theorem 18. Let ¢, = ¢(ay,...,a,) be a homogeneous polynomial of ay,...,a, with

degree d and let M = Zl<i<j<r+1 m; ;. Suppose ¢, satisfies the system of differential
equations as follows:

877'7'74r,r+1¢r — O

(67"—1 - ar)mril’ra:ﬂn_rlilmﬂqbr =0

(81 — 62)”“’2 (81 — 03)”“’3 s ((91 — 8T)ml”"8;n1’r+l¢r =0.
(i) If M —r < d, then ¢, = 0.

(ii) If 0 < d < M —r, then there is a non trivial homogeneous polynomial ¢, satisfying

(4)-

(iii) If d = M —r in particular, ¢, is equal to a constant multiple of v ="v,+ . (a).
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Proof. We argue by induction on r. In the case that » = 1, we write

¢1 = ¢(CL1) = pa'ilv

where p is a constant. If m;,—1 < d and ¢, satisfies the differential equation 9;""*¢; = 0,
then p = 0 and hence ¢, = 0. If 0 < d < mys — 1, then for any p # 0, 9]"*¢; = 0.
Also, if d = my 9 — 1, in particular, then ¢, = pay* ™" while v = ma;m’rl as in
Example 12. Hence ¢, is equal to a constant multiple of v.

We assume that the statement of this theorem holds for r — 1. We write ¢, as

Or = Plar, ... a,) = ga(as,...,a,) + ar1gs—1(ag, ..., a;) + -+ aﬁlgo(ag, cey ),

where g is a homogeneous polynomial of as,...,a, with degree k for £k = 0,1,...,d.
Then for £k =0,1,...,d, g satisfies the differential equations as follows:

amv‘,r+1

T gr =0
(67«_1 — 8T)mr71,r 77:'17“1—1,T+1gk -0
' (6)

(82 - 83)7”2’3 (82 — a4)m2,4 s (82 — 07«)7”2”"6;7”’”1gk =0.

We set h = (3 ocicjcpi1 Miy) — (r —1). From the inductive assumption, if 0 < k < h,
then gi is a homogeneous polynomial. On the other hand, if h + 1 < k < d, then g, = 0,
namely,

galag, ... a,) = gg_1(as,...,a;) =+ = gpr1(ag,...,a,) =0. (7)

(i) We consider the case of M —r < d. Let M; = >./%)mi;. Now we compare
the coefficients of a% "™ M*™ in (9, — 9y)™2(dy — Dg)™3 - (O — )™y b, for
n=0,...,h Forq=1,..., My —my 41, we define

Dq: Z (m;i1)8§1+---+ Z (H ("2;1)) a£1ai2,..af:

2<i1<r p1+-+pPE=¢q 1<ILk
2<i < <ip <7

N Z ( H (mi”)> 8i18i2-..8iq.
2<i1 < <ig<r \1<I<q

Then we have the following equation:

(d—h+n) (d—h+n—1)
_ — Dign—
@ h— 3 a2 00) = Gy P (02 )
c(d=—h+n—j)
+-.-+(—1)j(d_h_Ml+n)!ngh,n+j(a2,...,Gr)

(d—h+n— (Ml — M,y 1))'
(d —h— M, + n), = ‘DMl_ml,r+1gh—n+M1,r(a27 s 7a7")

~0. 8)

N (_1)M1_ml,r+l
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When n = 0, from (7) and (8), we have

gn(ag,...,a.) =0.
When n = 1, we have

(d—h+1)! ooy A=)
(d—h—M1+1>'gh_1 29000y Up (d—h—M1+1)

'Dlgh(ag, coyar) =0.

Thus we have
gh—l(a27 s 7a7") = 0.

Similarly, we have

gh—2(as, ..., a,) = gns(as,...,a,) = --- = go(az,...,a,) =0

and hence ¢, = 0.

(ii) We consider the case of 0 < d < M — r. By the inductive assumption, there
is a non trivial homogeneous polynomial g;_,,; satisfying (6) for ¢ = 1,... ,n;, where
n=M-—r—d+ 1. We can take

Gh-ny+i(@z, ..., a,) #0.
When n = nq, from (7) and (8),

(d — h + ny — 1)'
Ghn (a2, .. ar) = (d—h+n)! Dign—ny+1(az, ..., ar)
T A= h+n) Dogh—n,+2(as, . .., ar)
d—h)!
PR N C ) L S
+ +( ) (d— h+n1)‘ 1gh(&27 y @ )
When n =nq + 1,
ghf(n1+1)(a27 s 7a7‘) :(d “ht ny + 1)| 19h—ny ((12, cee aa'r)
(d —h +ny — 1)‘
- (d—h+n1+1)' 2ghfn1+1(a27"'7a7“>
(d—h)!
—1)m™ D, Y
+ +( ) (d—h+n1—|—1)' 1+lgh(a2 CL)
Similarly, for n = ny +2,..., h, we can express g5—;(as,...,a,) (j = ni,n1 +1,...,h)
in terms of gp_jyi(as,...,a,) (i =1,...,7) and their partial derivatives. Namely, we can
express ¢, in terms of gn_,,yi(as,...,a,) and their partial derivatives. It follows that

¢ #0when 0 <d < M —r.
(ili) If d = M — r in particular, then n; =1, and ¢,—; (j = 1,..., h) becomes the linear
combination of g, and their partial derivatives. Therefore ¢, is uniquely determined by
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gn- Moreover, from the inductive assumption, g, = C'-v A i where C'is a constant,

m' = (m;;)a<icj<rt1, and ¢, is a nice chamber of Aqtl. Hence the solution of (5) is
unique up to a constant multiple. On the other hand, by Theorem 15, v 4+, . satisfies
the system of differential equations (5). Hence ¢, is equal to a constant multiple of
O

Va+ .
AT m,Cnice

Recall that in the proof of Theorem 18, we have defined the operator

D, = Z (m“l)aq R Z (H (mln)>aflap2. afkk

2<i1 <r p1++Pr=q 1<ISk
2<i << <1

LERE DY (H("“”))M -0, (9)
2<iy < <ig<r \1<I<q
forg=1,..., My —my,41.

Remark 19. Let M, = szl my,;. When d = M — r, from the proof of Theorem 18 (iii),
gn—; (7 =1,...,h) is uniquely determined as follows:

¢ _
Gh-1= (Mj\l/h,l)!th

—1\!
gh—2 = %QP&(D% — D3)gn

)
Jh—3 = (Ml_l)!(Di)’ —2D1 Dy + D3)gp

(M1+2)!

90 ((M1 1))' (Dh (h _ 1)D?—2D2 N (_1)h71Dh)gh.

Let m’ = (M ;)a<icj<ri1, Caie @ Dice chamber of A7 | and o’ = >"7 , a;(e; — €,41) €

Clice- From Proposition 17 and Remark 19, we obtain the following theorem.

Theorem 20. Let h = (3 5, i<, Mij) — (r—1) and let Dy (¢ =1,...,h) be as in (9).

Then vyt ... (@) is written by the linear combination of vy+ ..o (a') and its partial

deriatives as follows:

ai\/fl 1 aiwl ai\/[ﬁ-l )
= D D7 — D
UA;L’m’Cnice(a) {(Ml — 1) + M1| o (Ml -+ 1)|( 1 2)
ai\/f1+2 .
+W(Dl — 2D1D2 + Dg) +
aiw i h h—2 h—1 /
b (D = (0= DD 2Dt (1D s, ()

Example 21. Let r = 3, let a = Zle a;(e;—eq) € Chico and let a’ = Zsz a;(e;—eyq) € cmce

We set mio = 1,my13 =1,m4 = 2,me3 = 1,me4 = 2 and m34 = 2 as in Example 14.
Then we have
1
VAt msengee (@) = 36Oa1(a1 + 6aiay + 3ajas + 15a1a5 + 15a1aza3 + 10a3 + 30a3as).
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We can check that v = v Af (a) satisfies the system of differential equations as follows:

MM Cnice

d3v=0
(82 — 83)822?} =0
(81 — 82)(81 — 83)0%’0 = 0

Also, from Proposition 17, the coefficient of the term aa3as is 557 = 15. When r = 2,

1
UA;',m’ o (a') = 6@%(@2 + 3&3).

*“nice

Therefore, we have

a?+ailD+a?(D2 D)+a?(D3 2D, Dy + Ds) ()
T o4 Ton - o0 - Vgt . (@
6 24 " 1200t TH 0t L2 ) (VAL e
_ alay  alalas  ajd’ N atasas N ajas N ajas a_‘f o (@)
36 12 24 24 60 ' 120 ' 360  Admeni
as in (10).
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