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Abstract

The 2-block intersection graph (2-BIG) of a twofold triple system (TTS) is the
graph whose vertex set is composed of the blocks of the TTS and two vertices are
joined by an edge if the corresponding blocks intersect in exactly two elements.
The 2-BIGs are themselves interesting graphs: each component is cubic and 3-
connected, and a 2-BIG is bipartite exactly when the TTS is decomposable to two
Steiner triple systems. Any connected bipartite 2-BIG with no Hamilton cycle is
a further counter-example to a disproved conjecture posed by Tutte in 1971. Our
main result is that there exists an integer N such that for all v > N , if v ≡ 1
or 3 (mod 6) then there exists a TTS(v) whose 2-BIG is bipartite and connected
but not Hamiltonian. Furthermore, 13 < N 6 663. Our approach is to construct
a TTS(u) whose 2-BIG is connected bipartite and non-Hamiltonian and embed it
within a TTS(v) where v > 2u in such a way that, after a single trade, the 2-BIG
of the resulting TTS(v) is bipartite connected and non-Hamiltonian.

Mathematics Subject Classifications: 05B05, 05B07, 05C38

1 Introduction

A combinatorial design (V,B) consists of a set V of elements (called points), together with
a set B of subsets (called blocks) of V . In this paper we concentrate on triple systems,
namely designs for which every block of B consists of three points from V . A Steiner triple
system of order v (STS(v)) is a triple system (V,B) in which |V | = v and each 2-subset
of V is a subset of exactly one block of B. A twofold triple system of order v (TTS(v)) is
a triple system (V,B) in which |V | = v and each 2-subset of V is a subset of exactly two
blocks of B. A STS(v) exists if and only if v ≡ 1 or 3 (mod 6) [27], whereas a TTS(v)
exists if and only if v ≡ 0 or 1 (mod 3) [6].
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The block intersection graph of a design (V,B) is the graph whose vertices are the
blocks of B and two blocks B1, B2 ∈ B are adjacent if |B1 ∩ B2| > 0. For a nonnegative
integer i, the i-block intersection graph (i-BIG) of a design (V,B) is the graph whose
vertices are the blocks of B and two blocks B1, B2 ∈ B are adjacent if |B1 ∩B2| = i. Note
that the 0-BIG is the complement of the block intersection graph. The block intersection
graph of an STS is equivalent to the 1-BIG, but for a TTS the 1-BIG is a spanning
subgraph of the block intersection graph. Block intersection graphs of designs have been
a focus of attention since Ron Graham pondered whether STS block intersection graphs
might be Hamiltonian, which was subsequently confirmed [4, 24]. For some additional
results concerning Hamilton cycles and similar properties in block intersection graphs of
designs, see [1, 3, 5, 9, 12, 15, 16, 22, 23, 26, 28, 30, 31, 35, 36].

In this paper we focus on the absence of Hamilton cycles in the 2-BIGs of certain
twofold triple systems. A Hamilton cycle in the 2-BIG of a TTS is equivalent to a
cyclic Gray code [12], which leads to applications in coding theory. It is known that
for v > 4 such that v ≡ 0, 1 (mod 3) and v 6= 6, there exists a TTS(v) whose 2-BIG
is Hamiltonian [12, 16]. There also exists a TTS(v) whose 2-BIG is connected but non-
Hamiltonian when v = 6 or v > 12 and v ≡ 0, 1 (mod 3) [15]. While the existence of
TTSs in each case has been established, it is not yet known what properties of a TTS are
sufficient for the existence of a Hamilton cycle in the 2-BIG. We note that, in general, the
problem of determining whether cubic graphs are Hamiltonian is NP-complete [18].

We say a positive integer v is admissible if v ≡ 1 or 3 (mod 6). It is straightforward to
show that the 2-BIG of a TTS(v) is bipartite if and only if the TTS(v) can be decomposed
into two STS(v) (see Lemma 4). Our main result is as follows.

Theorem 1. There exists an integer N such that for all admissible v > N , there is a
TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, 13 <
N 6 663.

The 2-BIGs that arise out of Theorem 1 are all 3-connected bipartite cubic graphs
(see [10] for the proof that shows each component is 3-connected). In 1971, Tutte [39]
conjectured that every 3-connected bipartite cubic graph is Hamiltonian. This was dis-
proved by Horton in the 1970s (see [7]). Horton’s counter-example and other subsequent
counter-examples [13, 14, 19, 25, 33] are not 2-BIGs (and hence they cannot be labelled
with the blocks of a TTS) because their vertex sets have cardinalities that do not equal
the number of blocks of any TTS. Another conjecture in this strain is Barnette’s con-
jecture which poses the still-open question that every planar 3-connected bipartite cubic
graph is Hamiltonian (see [21]). While the 2-BIGs we construct are not planar graphs, we
note that labelling their vertices with the blocks of a corresponding TTS induces a cycle
double-cover of the graph.

As already mentioned, the existence of TTSs with connected non-Hamiltonian 2-BIGs
has previously been established [15]. A few of the constructions in [15] are able to produce
bipartite 2-BIGs when a (smaller) bipartite 2-BIG is used as an ingredient. However, no
such 2-BIGs were known to exist prior to our current paper. In an initial attempt to
find bipartite connected non-Hamiltonian 2-BIGs we conducted an exhaustive computer
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search to examine small TTS(v) whose 2-BIG is bipartite and connected; the results of
this search are summarised by the following lemma.

Lemma 2. For admissible v 6 13, if the 2-BIG corresponding to a TTS(v) is bipartite
and connected then it contains a Hamilton cycle.

Our approach to proving Theorem 1 is to construct a TTS(u) whose 2-BIG is connected
bipartite and non-Hamiltonian and embed it within a TTS(v) where v > 2u in such a
way that, after a single trade, the 2-BIG of the resulting TTS(v) is bipartite connected
and non-Hamiltonian. We therefore prove the following Doyen-Wilson type result which
is similar to Lindner’s result for embedding pairs of Steiner triple systems [29].

Theorem 3. Suppose u and v are admissible integers such that v > 2u and u > 13.
If there exists a TTS(u) whose 2-BIG is bipartite connected and non-Hamiltonian, then
there exists a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian.

In order to apply Theorem 3, in Section 2 we will construct a TTS(331) whose 2-BIG
is bipartite connected and non-Hamiltonian.

2 Construction of first example of order 331

We begin by considering the bipartite subgraph illustrated in Figure 1, for which it is a
simple exercise to confirm that for any Hamilton cycle of any cubic graph containing this
subgraph, the two edges e1 and e3 are both in the cycle or both absent from the cycle
(and similarly for the edges e2 and e4). We want to associate the vertices of this subgraph
with blocks of a partial TTS so that the subgraph is a 2-BIG; one way of doing so is with
the blocks listed in Table 1. Any set of sixteen blocks on nine points having the subgraph
of Figure 1 as its 2-BIG will be denoted as configuration T.

B1 {4, 5, 6} B9 {3, 5, 9}
B2 {4, 5, 8} B10 {5, 8, 9}
B3 {4, 7, 8} B11 {1, 8, 9}
B4 {3, 4, 6} B12 {2, 3, 5}
B5 {1, 4, 7} B13 {1, 2, 8}
B6 {3, 6, 9} B14 {2, 5, 6}
B7 {6, 7, 9} B15 {2, 6, 7}
B8 {1, 7, 9} B16 {2, 7, 8}

Table 1: Blocks for configuration T.

We initially discovered configuration T by observing that it occurs within some TTSs
of order 13. To construct a TTS(331) with the properties we desire, we will perform
a number of operations that entail embeddings of configuration T. As an intermediate
goal, we exploit the twinned behaviour of edges e1 and e3 to develop a configuration that
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B1 B2 B3

B4 B5

B6 B7 B8

B9 B10 B11

B12 B13

B14 B15 B16

e1 e2

e3 e4

Figure 1: The 2-BIG of configuration T.

forbids Hamilton cycles. We then show how to embed such an obstructing configuration
into a TTS.

To some extent our approach is similar to the constructions of other counter-examples
to Tutte’s conjecture, whereby a bipartite cubic Hamiltonian graph with a twinned pair
of edges is used to construct a bipartite cubic connected non-Hamiltonian graph (for
instance, see [14, 19] as well as Exercise 4.2.14 of [7]). However, we additionally require
our graphs to be 2-BIGs of (partial) TTSs, which is not the case with these known
counter-examples to Tutte’s conjecture.

In Figure 2 we depict a configuration on 34 blocks and 16 points, denoted as con-
figuration X. For the T configuration on the left (for which only the four vertices with
external neighbours are shown), use the 16 blocks from Table 1. For the blocks of the
T configuration on the right, apply the function fX to each block of Table 1, where fX
maps point 1 (resp. 2, 3, 4) to 11 (resp. 1, 2, 10) and fX(x) = x + 7 for each point
x ∈ {5, . . . , 9}. The other two blocks are {3, 4, 10} and {2, 3, 10}. Observe that for any
cubic graph having the 2-BIG of configuration X as a subgraph, the edge eX must be in
every Hamilton cycle. Moreover, vertex {2, 3, 10} is incident with eX.

In Figure 3 we illustrate configuration P, which has 36 blocks and 16 points. For the
T configuration on the left, we again use the 16 blocks from Table 1. For the blocks of
the T configuration on the right, apply the function fP to each block of Table 1, where
fP maps point 1 (resp. 2, 3, 4) to 2 (resp. 1, 11, 10) and fP(x) = x + 7 for each point
x ∈ {5, . . . , 9}. The other four blocks are {3, 4, 10}, {2, 3, 10}, {4, 10, 11} and {1, 4, 11}.
Note that 2-BIG of configuration P is a bipartite cubic graph in which the edge eP is in
every Hamilton cycle. Moreover, vertex {2, 3, 10} is incident with eP.

We will next employ several constructions that bear similarities to one that is at-
tributed to D.A. Holton in [13]. Holton’s construction begins with a bipartite cubic graph
G1 having a vertex v1 with neighbours x1, y1 and z1 such that the edge {v1, z1} is in no
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T T

eX

Figure 2: Configuration X

T

T

eP

Figure 3: Configuration P

Hamilton cycle. Let G2 also be a bipartite cubic graph for which there is a vertex v2 with
neighbours x2, y2 and z2 such that the edge {v2, z2} is in no Hamilton cycle. For each
i ∈ {1, 2} remove vertex vi from Gi, leaving a severed edge dangling from each of xi, yi
and zi, and then bind these dangling edges together to create a bipartite cubic graph on
|V (G1)|+ |V (G2)| − 2 vertices. Holton is careful to bind the severed edge dangling from
x1 to the one dangling from z2, and to bind the severed edge dangling from z1 to the one
dangling from x2, thereby ensuring that the resultant graph is non-Hamiltonian.

We will call operations of this nature splicing operations; such terminology was previ-
ously used in [34]. Although the description of Holton’s construction as presented in [13]
requires that G2 be an isomorphic copy of G1, we will allow G1 and G2 to be non-
isomorphic. We will also relax the cubic requirement, allowing one of the graphs G1 and
G2 to be a non-regular graph of maximum degree 3, as would be the case for the 2-BIG
of configuration X. Moreover, although Holton’s construction specifies an edge in each of
G1 and G2 that is in no Hamilton cycle, we will begin with edges that have the property
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of being in every Hamilton cycle, as is the case with the edges eX and eP of configurations
X and P respectively.

For our first splicing operation, take two copies of configuration P, say P1 and P2. For
each i ∈ {1, 2}, remove a vertex vi that is incident with an edge ei that must be in every
Hamilton cycle of the 2-BIG of Pi. Now bind the six dangling edges so that e1 and e2 are
not bound to each other. In the resulting graph, which we denote P � P, the edges arising
from each of e1 and e2 have the property of being in every Hamilton cycle in P � P. Hence
the third edge that is formed during the splicing operation has the property of being in
no Hamilton cycle.

What remains to be confirmed is that P � P can be realised as the 2-BIG of a
configuration of 70 blocks of a partial TTS. For configuration P1 take the 36 blocks on
point set {1, 2, . . . , 16} that are used for our initial description of the P configuration.
For the blocks of configuration P2, apply the function fP2 to each block of P1, where
fP2 maps point 2 (resp. 3, 10) to 3 (resp. 2, 10) and the remaining points of P1 (viz.,
1, 4, 5, . . . , 9, 11, 12, . . . , 16) are mapped to 17, 18, 19, . . . , 29, respectively. Each of P1 and
P2 contains a block {2, 3, 10}, which is the block that we delete from each of P1 and P2

as we commence the splicing operation. The binding of severed edges is now naturally
determined by shared pairs of points, so that vertices {3, 4, 10}, {2, 3, 5} and {2, 10, 14}
of P1 are made adjacent to {3, 10, 27}, {2, 3, 19} and {2, 10, 18} of P2, respectively. Hence
P � P does indeed correspond to a configuration of blocks as desired. Moreover, the edge
between {2, 3, 5} and {2, 3, 19} is in no Hamilton cycle of the 2-BIG of P � P.

We now perform a second splicing operation, this time working with a copy of config-
uration X and a copy of configuration P. For the X configuration, take the 34 blocks on
point set {1, 2, . . . , 16} that are used for our initial description of the X configuration. For
the blocks of the P configuration, apply the same function fP2 that was used in building
P � P to each block of our initial P configuration. Again, delete two instances of block
{2, 3, 10} and then let X � P denote the resulting configuration on 68 blocks and 29
points. It now follows that the edge between {2, 3, 5} and {2, 3, 19} is in no Hamilton
cycle of any cubic graph that has the 2-BIG of X � P as a subgraph.

For our third and final splicing operation we will use X � P together with P � P,
each of which contains an edge that is in no Hamilton cycle (as is the case with Holton’s
construction). For the X � P configuration, take the X � P configuration on point
set {1, 2, . . . , 29} that is described in the preceding paragraph. For the blocks of the
P � P configuration, apply the function fP�P to each block of the P � P configura-
tion that was previously described on point set {1, 2, . . . , 29}, where fP�P maps point 2
(resp. 3, 5) to 5 (resp. 3, 2) and the remaining points (viz., 1, 4, 6, 7, . . . , 29) are mapped
to 30, 31, 32, . . . , 55, respectively. Now remove the two instances of the block {2, 3, 5} and
denote the resulting configuration of 136 blocks on 55 points by F.

Observe that any cubic graph that has the 2-BIG of configuration F as a subgraph
cannot be Hamiltonian. So our goal now is to embed configuration F into a TTS, thereby
ensuring that the 2-BIG of the TTS is non-Hamiltonian. We also require that the 2-BIG
of the TTS is bipartite and we show in the following lemma that this is equivalent to the
TTS being composed from two STSs.
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Lemma 4. The 2-BIG of a (partial) TTS(v), (V,B) is bipartite if and only if the blocks
of B can be partitioned into the blocks of two (partial) STS(v), (V,S1) and (V,S2).

Proof. First suppose that the blocks of B can be partitioned into two (partial) STS(v).
If there is an edge {X, Y } in the 2-BIG of B then the blocks corresponding to X and Y
have two points in common and must be in distinct partial STS(v). Hence the 2-BIG is
bipartite.

Now suppose that the 2-BIG corresponding to (V,B) is bipartite with partition set S1
and S2. Consider the set of blocks given by vertices in S1. No pair of points occurs more
than once in this set of blocks, otherwise there would be an edge between the corresponding
vertices in S1. Thus, because B is a (partial) TTS(v), the blocks corresponding to vertices
in S1 form a (partial) STS(v). Likewise, the blocks corresponding to vertices of S2 form
a (partial) STS(v).

We note that the 2-BIG of F is a bipartite graph and F contains no repeated blocks.
By Lemma 4, the blocks in F can therefore be partitioned into the blocks of two block-
disjoint partial STS. Here we turn to a result by Lindner that shows that F can indeed
be embedded into a simple TTS of order 331 (and many larger orders as well).

Theorem 5 (See Theorem 7.2 of [29]). Let (U,P1) and (U,P2) be partial STS(u). Then
for every admissible v > 6u + 1, there exists a pair of STS(v), (V,S1) and (V,S2) such
that (U,P1) is embedded in (V,S1), (U,P2) is embedded in (V,S2) and P1 ∩P2 = S1 ∩S2.

However, this result by Lindner does not provide any assurance that a connected 2-BIG
will result from any of the TTSs that are produced, whereas we specifically seek 2-BIGs
that are connected. We therefore implemented the construction outlined in the proof of
Lindner’s theorem (which itself incorporates constructions by Cruse [11], Evans [17] and
Ryser [37] when v ≡ 1 (mod 6)) and built an actual instance of a TTS(331) in which
configuration F is embedded. It was then a relatively straightforward task to confirm
that the 2-BIG of this particular TTS(331) is indeed connected. As some steps in the
construction entail elements of choice, we provide the full list of 36410 blocks of our
TTS(331) within a supplementary data file.

3 Embedding TTS and maintaining connected 2-BIG

In this section we prove our main result, Theorem 1. Our overall approach is to obtain
Theorem 3 which is a generalised Doyen-Wilson result for constructing a TTS with con-
nected bipartite non-Hamiltonian 2-BIGs. We then apply this result to the TTS(331)
constructed in Section 2.

We will first use collections of difference triples to construct a pair of block-disjoint
partial STS(v). The 2-BIG of the resulting partial TTS(v) is clearly bipartite since the
partial TTS(v) is decomposable to two partial STS(v)s, and we use properties of the
difference triples to show that it is connected. Furthermore, the resulting partial TTS(v)
can be completed to a TTS(v) by adding the blocks of a TTS(u). We show that non-
Hamiltonicity of the 2-BIG is preserved in this construction by first constructing a TTS(v)
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whose 2-BIG has two components, one of which corresponds to the original TTS(u), and
then performing a single trade to connect the two components.

The following notation and preliminary results will be required throughout the con-
struction.

A circulant graph with vertex set Zw is a graph with edge set E = {{i, i+d (mod w)} :
i ∈ Zw, d ∈ S} where S ⊆ {1, . . . , bw

2
c} is the generating set of differences; we denote this

graph by Circ(w, S). In a circulant graph Circ(w, S), the order of an edge {i, i+d} is the
order of d in Zw. We say that an edge in Circ(w, S) is even if it has even order.

For a 1-factor F on vertex set W and a vertex ∞ 6∈ W , we define the following blocks
on W ∪ {∞} as F ∨∞ = {{x, y,∞} : {x, y} ∈ F}. We will use the following results to
construct 1-factorisations from which we build blocks of the form F ∨ ∞, where F is a
1-factor of Zw.

Lemma 6 ([38, Lemma 2]). Let G be a circulant graph with vertex set Zw. If G contains
an edge of even order, then G can be 1-factorised.

Lemma 7. Let w be a positive even integer and let G be a circulant graph Circ(w, S)
where S contains distinct elements c and d such that gcd(w, c) = 1 and d has even order
in Zw. Then G has a 1-factorisation F , and there are two 1-factors F1 and F2 in F such
that F1 ∪ F2 is a Hamilton cycle in G.

Proof. Circ(w, S) contains edges {i, i+ c} for i ∈ Zw. Let

F1 = {{i, i+ c} : i ∈ {0, 2, . . . , w − 2}} and F2 = {{i, i+ c} : i ∈ {1, 3, . . . , w − 1}} .

Then Circ(w, S \ {c}) has a 1-factorisation by Lemma 6.

A difference triple is an ordered 3-tuple (a, b, c) that satisfies a + b = c. Two dif-
ference triples are disjoint if they have no elements in common. For an even inte-
ger w and a set D of pairwise disjoint difference triples on a subset of the differences
{1, 2, . . . , w

2
− 1}, the partial STS(w) induced by D is given by (Zw,S), where S =

{{i, b+ i, c+ i} : i ∈ Zw, (a, b, c) ∈ D}.

3.1 The TTS(v) construction

Our embedding will rely on the following sets of difference triples. Constructions 1 and 3
are given by Stern and Lenz in their proof of the Doyen-Wilson Theorem [38].

Construction 1. Let w = 12t + k where k ∈ {0, 2, 4} and t > 0. We construct the 2t− 1
difference triples

(1, 3t− 1, 3t), (2, 5t− 1, 5t+ 1),
(3, 3t− 2, 3t+ 1), (4, 5t− 2, 5t+ 2),
...

...
(2t− 3, 2t+ 1, 4t− 2), (2t− 2, 4t+ 1, 6t− 1),
(2t− 1, 2t, 4t− 1).

Note that in these difference triples, every difference d ∈ {1, 2, . . . , 6t} \ {4t, 5t, 6t} occurs
exactly once.
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Construction 2. Let w = 12t + k where k ∈ {0, 2, 4} and t > 0. We construct the 2t− 1
difference triples

(1, 5t, 5t+ 1), (2, 3t− 1, 3t+ 1),
(3, 5t− 1, 5t+ 2), (4, 3t− 2, 3t+ 2),
...

...
(2t− 3, 4t+ 2, 6t− 1), (2t− 2, 2t+ 1, 4t− 1),
(2t− 1, 4t+ 1, 6t).

Note that in these difference triples, every difference d ∈ {1, 2, . . . , 6t} \ {2t, 3t, 4t} occurs
exactly once.

Construction 3. Let w = 12t + k where k ∈ {6, 8, 10} and t > 0. We construct the 2t
difference triples

(1, 5t+ 2, 5t+ 3), (2, 3t, 3t+ 2),
(3, 5t+ 1, 5t+ 4), (4, 3t− 1, 3t+ 3),
...

...
(2t− 1, 4t+ 3, 6t+ 2), (2t, 2t+ 1, 4t+ 1).

Note that in these difference triples, every difference d ∈ {1, 2, . . . , 6t+ 3} \ {3t+ 1, 4t+
2, 6t+ 3} occurs exactly once.

Construction 4. Let w = 12t + k where k ∈ {6, 8, 10} and t > 0. We construct the 2t
difference triples

(1, 3t+ 1, 3t+ 2), (2, 5t+ 2, 5t+ 4),
(3, 3t, 3t+ 3), (4, 5t+ 1, 5t+ 5),
...

...
(2t− 1, 2t+ 2, 4t+ 1), (2t, 4t+ 3, 6t+ 3).

Note that in these difference triples, every difference d ∈ {1, 2, . . . , 6t+ 3} \ {2t+ 1, 4t+
2, 5t+ 3} occurs exactly once.

We now give the construction that will be used to prove Theorem 3.

Construction 5. Suppose u and v are admissible integers such that v > 2u and u > 13.
Let U = {∞1, . . . ,∞u} and V = U ∪ Zw, where w = v − u. We construct a pair of
partial STS(v), (V,R1) and (V,R2) so that R1 ∪R2 can be completed to the block set of
a TTS(v) by adding the blocks of a TTS(u) with point set U . Throughout the following
we will assume addition is modulo w.

Let k, t and s be integers such that w = 12t + k where k ∈ {0, 2, . . . , 10}, s = 2t if
k > 6 and s = 2t− 1 if k 6 4. Let m = s+ 1.

If w ≡ 2 (mod 6) then let u = 7 + 6h where h ∈ {2, . . . , s− 2}, and if w ≡ 4 (mod 6)
then u = 9 + 6h where h ∈ {1, . . . , s − 2}. If w ≡ 0 (mod 6) then let u = 1 + 6h where
h ∈ {3, 4, . . . , s− 2}, or u = 3 + 6h where h ∈ {2, 3, . . . , s− 2}.

Step 1. If w ≡ 0 (mod 6) then we add the following blocks to the partial STS(v)s.
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• If u ≡ 1 (mod 6), then we include in R1 the 4m blocks {i,m + i, 2m + i},
{2m+ i, 3m+ i, 4m+ i}, {4m+ i, 5m+ i, i} and {m+ i, 3m+ i, 5m+ i} where
i ∈ {0, . . . , s}. Similarly, we include in R2 the 4m blocks {i,m + i, 5m + i},
{m+ i, 2m+ i, 3m+ i}, {3m+ i, 4m+ i, 5m+ i} and {i, 2m+ i, 4m+ i} where
i ∈ {0, . . . , s}. Note that these blocks only use pairs of difference m and 2m.

• If u ≡ 3 (mod 6), then for i ∈ {0, . . . ,m−1}, add a copy of the blocks {i, 2m+
i, 4m + i} and {m + i, 3m + i, 5m + 1} to both R1 and R2. Note that these
blocks only use pairs of difference 2m. We also note that in Step 5 these blocks
will be traded away from R1 to ensure that the triple system has no repeated
blocks.

Step 2. We define two sets of difference triples D1 and D2, and add the blocks of the
partial STS(v) induced by these difference triples to R1 and R2 respectively.
Note that, when relevant, we will not use the differences required in Step 1. For
i ∈ {1, 2}, we define Si to be the set of differences in {1, 2, . . . , w

2
} that are not in a

difference triple of Di. Let S ′ = S1 ∩ S2, let S∗1 = S1 \ S2 and S∗2 = S2 \ S1.
The sets D1 and D2 are defined as follows.
• If w−u ∈ {1, 3, 5} then let D1 = D2 = ∅. Clearly {1, w

2
} ⊆ S ′ and S∗1 = S∗2 = ∅.

• If w − u ∈ {7, 9, 11} and 20 6 w 6 26 then let D1 = {(2, 3, 5)} and D2 =
{(2, 7, 9)}. Note that {1, w

2
} ⊆ S ′, S∗1 = {7, 9} and S∗2 = {3, 5}.

• If w − u ∈ {7, 9, 11} and w > 28 then let D1 = {(2, 2t + 3, 2t + 5)} and
D2 = {(2, 2t + 7, 2t + 9)}. Note that {1, w

2
} ⊆ S ′, S∗1 = {2t + 7, 2t + 9} and

S∗2 = {2t+ 3, 2t+ 5}.
Now suppose w − u > 11, the D1 and D2 are defined as follows.
• If k ∈ {6, 8, 10} then let D′1 and D′2 be the collections of difference triples given

by Constructions 3 and 4 respectively.
If k = 6 let D1 and D2 be the sets obtained by removing difference triples
containing the differences s and 1, 2, . . . , h − 1 from D′1 and D′2 respectively.
Then note that {1, w

2
, d} ⊆ S ′, for some d of even order in Zw. If u ≡ 3 (mod 6)

then d = m, if u ≡ 1 (mod 6) and t even then d = 5t+ 3, and if u ≡ 1 (mod 6)
and t odd then d = 5t + 2 (recall that h > 3 when u ≡ 1 (mod 6)). Also note
that 2m− 1 ∈ S∗1 and 2m+ 1 ∈ S∗2 .
If k ∈ {8, 10} let D1 and D2 be the sets obtained by removing difference triples
containing the differences 1, 2, . . . , h from D′1 and D′2 respectively. Note that
{1, w

2
} ⊆ S ′, 6t+ 3 ∈ S∗1 and 2t+ 1 ∈ S∗2 .

• If k ∈ {0, 2, 4} then let D′1 and D′2 be the collection of difference triples given
by Constructions 1 and 2 respectively.
If k = 0 or t is odd and k = 2, we remove the difference triples containing
the differences s and 1, 2, . . . , h − 1, the resulting sets are D1 and D2. Note
that if k = 0 then {1, w

2
, d} ⊆ S ′, for some d of even order in Zw (d = 3t if

u ≡ 1 (mod 6) and d = m if u ≡ 3 (mod 6)), and if k = 2 then {2t−1, w
2
} ⊆ S ′.

Also note that 2m− 1 ∈ S∗1 and 2m+ 1 ∈ S∗2 in each case.
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If t is even and k ∈ {2, 4}, then we obtain D1 and D2 by removing difference
triples containing the difference 1 and s, s− 1, . . . , s− h + 1 from D′1 and D′2.
Note that {1, w

2
} ⊆ S ′, 3t− 1 ∈ S∗1 and 5t+ 1 ∈ S∗2 .

Finally, if k = 4 and t is odd then we remove difference triples containing
1, 2, . . . , h to obtain D1 and D2. Note that {1, w

2
} ⊆ S ′, 6t ∈ S∗1 and 2t ∈ S∗2 .

Step 3. We define the graphs L′ = Circ(w, S ′), and for i ∈ {1, 2}, let L∗i = Circ(w, S∗i ).
Note that, for i ∈ {1, 2}, the edges in Li = Circ(w, S ′ ∪ S∗i ) correspond to pairs in
Zw that are not already in blocks of Ri.
We now define 1-factorisations of the graphs L1 and L2. We will use Lemmas 6 and
7 to show that there exists a 1-factorisation {F1, F2, F3, F4} of L∗1, a 1-factorisation
{G1, G2, G3, G4} of L∗2, and a 1-factorisation {F5, . . . , Fu} of L′.
• When w ≡ 0 (mod 6) we have {1, w

2
, d} ⊆ S ′ where d has even order in Zw,

and otherwise we have {g, w
2
} ⊆ S ′, where gcd(g, w) = 1. Thus, by Lemma 7

there exists a 1-factorisation {F5, . . . , Fu} of L′ so that Fu∪Fu−1 is a Hamilton
cycle on Zw. Furthermore if w ≡ 0 (mod 6) then we specify the following 1-
factors. If u ≡ 1 (mod 6), then Fu−2 =

{{
x, x+ w

2

}
: x ∈ {0, 1, . . . , w

2
− 1}

}
.

If w ≡ 6 (mod 12) and u ≡ 3 (mod 6), then

Fu−2 = {{x, x+m} : x ∈ {0, 2, . . . , w − 2}}

and Fu−3 = {{x, x+m} : x ∈ {1, 3, . . . , w − 1}}. Finally if w ≡ 0 (mod 12)
and u ≡ 3 (mod 6), then Fu−2 = {{x, x+m} : x ∈ X} and

Fu−3 = {{x, x−m} : x ∈ X} ,

where X = {0, 1, . . . ,m− 1} ∪ {2m, . . . , 3m− 1} ∪ {4m, . . . , 5m− 1}. Note
that if w ≡ 0 (mod 6) then we remove these specified 1-factors from the graph
before applying Lemma 7.

• If w − u ∈ {7, 9, 11}, then for S∗i = {ci, di} we define the following 1-factori-
sations. A 1-factorisation of L∗1 is given by

F1 = {{i, i+ c1} : i ∈ {0, 2, . . . , w − 2}},
F2 = {{i, i+ c1} : i ∈ {1, 3, . . . , w − 1}},
F3 = {{i, i+ d1} : i ∈ {0, 2, . . . , w − 2}},
F4 = {{i, i+ d1} : i ∈ {1, 3, . . . , w − 1}}.

A 1-factorisation of L∗2 is given by

G1 = {{i, i+ c2} : i ∈ {0, 2, . . . , w − 2}},
G2 = {{i, i+ c2} : i ∈ {1, 3, . . . , w − 1}},
G3 = {{i, i+ d2} : i ∈ {1, 3, . . . , w − 1}},
G4 = {{i, i+ d2} : i ∈ {0, 2, . . . , w − 2}}.
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• If w− u > 11, then note that for i ∈ {1, 2}, S∗i has an element of even order in
Zw so by Lemma 6 there exists a 1-factorisation of L∗i .

Step 4. We construct blocks of the form F ∨∞, where F ∈ F and ∞ ∈ U .
Add the blocks Fi ∨ ∞i for i ∈ {1, 2, . . . , u} to R1. Also add the following blocks
to R2: Gi ∨ ∞j where (i, j) ∈ {(1, u), (2, 1), (3, 2), (4, 3)} and Fi ∨ ∞i−1 for i ∈
{5, 6, . . . , u}.

Step 5. If w ≡ 0 (mod 6) then we perform the following trades on blocks that were
added to R1 in Steps 1–3.
If u ≡ 1 (mod 6) then, for each i ∈ {0, . . . ,m− 1}, we remove the following blocks
from R1

{i,m+ i, 2m+ i}, {2m+ i, 3m+ i, 4m+ i}, {i, 4m+ i, 5m+ i},
{i, 3m+ i,∞u−2}, {m+ i, 4m+ i,∞u−2}, {2m+ i, 5m+ i,∞u−2},

and replace them with the blocks

{i, 3m+ i, 4m+ i}, {i, 2m+ i, 5m+ i}, {m+ i, 2m+ i, 4m+ i},
{i,m+ i,∞u−2}, {2m+ i, 3m+ i,∞u−2}, {4m+ i, 5m+ i,∞u−2}.

If u ≡ 3 (mod 6) then, for each i ∈ {0, 1, . . . ,m − 1}, we remove the following
blocks from R1 where (j, j′) = (u− 2, u− 3) if m even or if m odd and i even, and
(j, j′) = (u− 3, u− 2) if m odd and i odd

{i, 2m+ i, 4m+ i}, {m+ i, 3m+ i, 5m+ i}, {i,m+ i,∞j}
{2m+ i, 3m+ i,∞j}, {5m+ i, i,∞j′}, {3m+ i, 4m+ i,∞j′}

and replace them with the blocks

{i, 2m+ i,∞j}, {m+ i, 3m+ i,∞j}, {i,m+ i, 5m+ i},
{2m+ i, 3m+ i, 4m+ i}, {4m+ i, i,∞j′}, {3m+ i, 5m+ i,∞j′}.

This concludes Construction 5; (V,R1∪R2) is the required partial TTS(v). We will show
in Subsection 3.2 that its 2-BIG is connected.

3.2 Connected bipartite 2-BIG

We now need some additional results that we will use to prove that the 2-BIG of the
partial TTS(v), (V,R1 ∪R2) given by Construction 5 is connected.

We first make the following observation regarding the difference triples in Construc-
tions 1–4. For a partial TTS(v) generated by difference triples D1, D2, . . . , Dσ, we define
the orbit graph O of the corresponding 2-BIG as follows. Take V (O) = {D1, D2, . . . , Dσ}
and let Di and Dj be adjacent in O if they have at least one element in common.

We are interested in pairs of consecutive difference triples given by Constructions 1
and 2 (or Constructions 3 and 4), by which we mean four triples of the form (a, b, a +
b), (a, c, a+ c), (a+ 1, c− 1, a+ c) and (a+ 1, b, a+ b+ 1).
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Proposition 8. Any two or more consecutive pairs of difference triples given by Con-
structions 1 and 2 (or Constructions 3 and 4) induces a connected orbit graph.

Proof. Difference triples of the form (a, b, a+ b), (a, c, a+ c), (a+ 1, c− 1, a+ c) and (a+
1, b, a+b+1) clearly have a connected orbit graph. As this holds for any a ∈ {1, . . . , s−1},
the result is true of any two or more consecutive pairs of difference triples.

Lemma 9. Suppose a graph G has 1-factorisation F = {F1, . . . , Fn} such that Fi∪Fj is a
Hamilton cycle on G for some i, j ∈ {2, . . . , n}, and let U = {∞1, . . . ,∞n} be a set where
V (G) ∩ U = ∅. Let B = {Fi ∨∞i : i ∈ {1, . . . , n}} ∪ {Fi+1 ∨∞i : i ∈ {1, . . . , n− 1}}.
Then the 2-BIG of the partial TTS given by (V (G) ∪ U,B) is connected and bipartite.

Proof. The 2-BIG of (V (G) ∪ U,B) is bipartite by Lemma 4, so it remains to show
that the 2-BIG is connected. Let w = |V (G)|, and without loss of generality we assume
Fn∪Fn−1 is a Hamilton cycle on G. Then the blocks given by Fn−1∨∞n−1 and Fn∨∞n−1
form a w-cycle in the 2-BIG. Moreover, each block in Fi ∨∞i has an edge to at least one
block in each of Fi ∨∞i−1 and Fi+1 ∨∞i.

Lemma 10. Let w be an even integer. Let D be a set of difference triples that generates
the simple partial TTS(w) (Zw, T ). If there exist distinct a, b, c ∈ {1, 2, . . . , w

2
− 1} such

that {(a, b, a + b), (a, c, a + c), (a + 1, c − 1, a + c), (a + 1, b, a + b + 1)} ⊆ D, then for all
x ∈ Zw there is a path from x+ {0, b, a+ b} to (x+ 1) + {0, b, a+ b} in the 2-BIG of T .

Proof. Taking x = 0, the 2-BIG of T contains the path

[{0, b, a+b}, {0, b, a+b+1}, {b−c+1, b, a+b+1}, {b−c+1, b+1, a+b+1}, {1, b+1, a+b+1}].

Likewise, because blocks of T are cyclically generated from difference triples in D, then
for any x ∈ Zw it is true that the 2-BIG contains a path from x + {0, b, a + b} to x +
{1, b+ 1, a+ b+ 1}.

Lemma 11. Suppose u and v are admissible integers such that v > 2u and u > 13.
The 2-BIG corresponding to the partial TTS(v), (V,R1 ∪ R2) given by Construction 5
is connected and bipartite. Furthermore, (V,R1 ∪ R2) can be completed to a TTS(v) by
adding the blocks of a TTS(u) with vertex set U ⊂ V , and there exist distinct points
α, β, γ ∈ V \ U such that each block in R1 ∪R2 contains at most one of α, β and γ.

Proof. Let T = R1 ∪ R2. Let w = v − u and let k, t and s be integers such that
w = 12t+ k where k ∈ {0, 2, . . . , 10}, s = 2t if k > 6 and s = 2t− 1 if k 6 4.

The partial TTS(v) (V, T ) given by Construction 5 is the union of two partial STS(v)
with block setsR1 andR2 so the 2-BIG is bipartite. Since we remove at least one difference
triple in Step 2 of Construction 5, it follows that there are three points α, β, γ ∈ V \ U
such that each block in R1 ∪R2 contains at most one of α, β and γ. We now show that
(V, T ) has a connected 2-BIG.

We first observe that by Lemma 9 the blocks formed from the 1-factorisation of L′
are all in the same component. If w − u ∈ {1, 3, 5} then these are the only blocks in the
partial TTS(v), and it follows that the 2-BIG is connected. Suppose w − u > 7.
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Case 1. w− u ∈ {7, 9, 11}. The blocks in Fi ∨∞j for 4 6 j 6 i 6 u and G1 ∨∞u are
all in the same component of the 2-BIG by Lemma 9. Furthermore each block {a, b, c} ∈
R1 ∪ R2 is adjacent to a block of the form {a, b,∞i}, and for each x ∈ {0, 2, . . . , w − 2}
the 2-BIG contains the following paths

x+ [{0, c1,∞1}, {0, c1, d1}, {0, d1,∞3}],
x+ [{1, 1 + c1,∞2}, {1, 1 + c1, 1 + d1}, {1, 1 + d1,∞4}],
x+ [{0, c2,∞u}, {0, c2, d2}, {0, d2,∞3}].

Case 2. w > u+ 11. Since D1 and D2 are sets of consecutive difference triples given
by Constructions 1–4, it follows from Proposition 8 that the corresponding orbit graph is
connected.

Finally, we show that there exists a difference triple D ∈ D1∪D2 such that the 2-BIG
contains a path from x + B to (x + 1) + B for x ∈ {0, . . . , w − 1}, where D generates
blocks B, 1 + B, . . . , (w − 1) + B. Since h 6 s − 2, at least two difference triples that
satisfy the conditions of Lemma 10 remain in each of Constructions 1–4. In particular,
for the case where w ≡ 2, 4 (mod 12) and t is even let a = 2, b = 5t − 1 and c = 3t − 1.
When t is odd and w ≡ 4 (mod 6) then let a = 2t− 2, b = 4t + 1 and c = 2t + 1. When
w ≡ 0 (mod 12) or when w ≡ 2 (mod 6) and t is odd then let a = 2t − 3, b = 2t + 1
and c = 4t + 2. If w ≡ 6 (mod 12) then a = 2t − 2, b = 2t + 2 and c = 4t + 4. When
w ≡ 8, 10 (mod 12), let a = 2t− 1, b = 4t+ 3 and c = 2t+ 2. Thus, by Lemma 10 there
is some orbit B, 1 +B, . . . , (w − 1) +B such that the 2-BIG contains a path from x+B
to (x+ 1) +B for x ∈ {0, . . . , w − 1}.

Lemma 11 implies the following result for embedding TTS(u).

Theorem 12. If u > 13 and there exists a TTS(u), (U, T ) whose 2-BIG is a bipartite
connected graph, then for all admissible orders v > 2u, there exists a TTS(v), (V, T ′)
where U ⊂ V and T ⊂ T ′, and whose 2-BIG is bipartite and contains exactly two com-
ponents. Furthermore, there exist three points a, b, c ∈ V \ U such that each block of T ′
contains at most one of a, b and c.

Proof of Theorem 3. Let (U, T ) be the TTS(u), where U = {∞1, . . . ,∞u} and let G be
the 2-BIG of (U, T ). Let w = v − u and let (V, T ′) be the TTS(v) obtained by applying
Theorem 12 to (U, T ) where V = U ∪ Zw.

We then perform the following trade to obtain a TTS(v) whose 2-BIG is connected.
It follows from Theorem 12 that there exist elements a, b and c in Zw and distinct∞i,∞j

and∞k in U so that {a, b, c} is not a block in T ′, but that one of the STS(v) does contain
the following blocks (i.e. the TTS(v) contains these blocks and they are all in the same
part of the bipartite partition):

{a, b,∞i}, {b, c,∞j}, {c, a,∞k}, {∞i,∞j,∞k}.

We remove these blocks from the TTS(v) and replace them with

{∞i,∞j, b}, {∞i,∞k, a}, {∞j,∞k, c}, {a, b, c}.
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Since we performed the trade on blocks in one of the STS(v), the resulting 2-BIG is
still bipartite. Furthermore, it is connected since, for example {∞i,∞j, b} is adjacent to
blocks in each of the two original components.

Suppose toward a contradiction that the 2-BIG of the resulting TTS(v) contains a
Hamilton cycle. Then by reversing the trade given above, G must contain a Hamilton
cycle which is a contradiction.

4 Open Problems

We conclude by discussing some open problems that arise naturally from this paper.
Lemma 2 states that there is no TTS(v) with a connected bipartite non-Hamiltonian 2-
BIG for all admissible v 6 13. This was proved by exhaustive computer search, a task
which becomes impractical for larger orders. We examined several instances of decom-
posable TTS(15) and while each example had a 2-BIG that was either Hamiltonian or
disconnected, many cases remain unknown. This leads us to the following question.

Question 13. What is the smallest admissible integer v such that there exists a TTS(v)
with a connected bipartite non-Hamiltonian 2-BIG?

It is possible that the construction of the TTS(331) in Section 2 could be further opti-
mised. For example, at each splicing step we introduce new points to guarantee that the
resulting partial TTS is simple, however there may exist a relabelling of the configuration
that uses fewer new points. Furthermore, the application of Lindner’s construction (see
Theorem 5) does not necessarily provide a minimal embedding of the partial TTS(55)
given by configuration F. As mentioned when applying this construction, it could also
be possible to embed F in a TTS(v) for admissible v > 331. However there appears to
be no effective way to incorporate into this construction the requirement that the final
2-BIG is connected. These observations suggest that the upper bound in Theorem 1 can
be improved from 663. Another open problem is as follows.

Question 14. What is the smallest integer N such that for all admissible v > N there
exists a TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?

For v < 12 it is known whether a TTS(v) has a Hamiltonian 2-BIG. In particular, for
v ∈ {3, 6} the 2-BIG of a TTS(v) is non-Hamiltonian and for v ∈ {4, 7, 9, 10} the 2-BIG
of a TTS(v) is Hamiltonian. We also note that when v = 13, if the 2-BIG is bipartite
and connected, this is a sufficient condition to guarantee that the 2-BIG is Hamiltonian.
For each order v > 12 such that v ≡ 0 or 1 (mod 3), there exists a TTS(v) whose 2-
BIG is Hamiltonian and another whose 2-BIG is non-Hamiltonian. We therefore offer the
following, somewhat ambitious, open problem.

Question 15. For v > 12 such that v ≡ 0 or 1 (mod 3), find sufficient conditions for a
TTS(v) to have a Hamiltonian 2-BIG.
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Bojan Mohar has asked whether the dual of a triangulation of an orientable surface,
whose underlying graph is the complete graph, is always Hamiltonian [32]. Given the
correspondence between twofold triple systems of order n and triangular embeddings of
the complete graph Kn in generalised pseudosurfaces [2], Mohar’s inquiry translates to
asking whether the 2-BIGs of certain TTSs are Hamiltonian. For a triangulation to be
orientable is equivalent to the blocks of the corresponding TTS being able to be ordered
such that each ordered pair of points occurs in exactly one ordered block; that is, the
blocks of the TTS can be ordered to produce a Mendelsohn triple system. This is not the
case for the TTSs constructed in this paper, as can be determined by attempting to order
the blocks of Table 1 in a consistent manner. It is also evident from this table that the
triangulations arising from our TTSs have pinch points (note that points 5, 6, 7, 8 and 9
each have a 6-cycle within their rotation scheme). Mohar’s inquiry therefore leads to the
following questions.

Question 16. Given a Mendelsohn triple system for which the underlying TTS has a
connected 2-BIG, is this 2-BIG necessarily Hamiltonian? Even more specifically, what
about the case in which the underlying TTS is also decomposable (i.e., the 2-BIG is
bipartite)?

We note that Bonnington et al. have shown that there are exponentially many non-
isomorphic Mendelsohn triple systems for which the underlying TTS is bipartite [8].
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