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1 Introduction

If (an)n>0 is a sequence of combinatorial numbers or polynomials with a0 = 1, it is
often fruitful to seek to express its ordinary generating function as a continued fraction.
The most commonly studied types of continued fractions are Stieltjes-type (S-fractions),

∞∑
n=0

ant
n =

1

1−
α1t

1−
α2t

1− · · ·

, (1.1)

and Jacobi-type (J-fractions),
∞∑
n=0

ant
n =

1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− · · ·

. (1.2)

(Both sides of these expressions are to be interpreted as formal power series in the inde-
terminate t.) This line of investigation goes back at least to Euler [16, 17], but it gained
impetus following Flajolet’s [18] seminal discovery that any S-fraction (resp. J-fraction)
can be interpreted combinatorially as a generating function for Dyck (resp. Motzkin) paths
with suitable weights for each rise and fall (resp. each rise, fall and level step). There
are now literally dozens of sequences (an)n>0 of combinatorial numbers or polynomials for
which a continued-fraction expansion of the type (1.1) or (1.2) is explicitly known.

A less commonly studied type of continued fraction is the Thron-type (T-fraction):
∞∑
n=0

ant
n =

1

1− δ1t−
α1t

1− δ2t−
α2t

1− δ3t−
α3t

1− · · ·

. (1.3)

Clearly the T-fractions are a generalization of the S-fractions, and reduce to them when
δi = 0 for all i. Besides the S-fractions, there are four special types of T-fractions that
are comparatively simple:

1) Euler [15, Chapter 18] (see also [44, pp. 17–18]) showed that an arbitrary sequence
of nonzero real numbers (or finite sequence of nonzero real numbers followed by
zeroes) can be written as a special type of T-fraction, namely, one in which δ1 = 0
and δi = −αi−1 for i > 2:

1

1−
α1t

1 + α1t−
α2t

1 + α2t−
α3t

1− · · ·

=
∞∑
n=0

α1α2 · · ·αn tn . (1.4)
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2) If δn = 0 for all even n, then the T-fraction reduces to a J-fraction via the contraction
formula [39]

γ0 = α1 + δ1 (1.5a)

γn = α2n + α2n+1 + δ2n+1 for n > 1 (1.5b)

βn = α2n−1α2n (1.5c)

(which generalizes a well-known contraction formula [44, p. 21] [43, p. V-31] for
S-fractions).

3) If δ is periodic of period 2 — that is, δ2k−1 = x and δ2k = y — then the sequence
(an)n>0 generated by the T-fraction is a linear transform of the sequence generated
by the S-fraction with the same coefficients α: see [3, Propositions 3 and 15] for
some special cases, and [39] for the general case.

4) If δn = 0 for all n > 2, then the sequence (an)n>0 generated by the T-fraction is a
fairly simple nonlinear transform of the sequence generated by the S-fraction with
the same coefficients α (or alternatively the one with shifted coefficients (αn+1)n>1):
this is a kind of “renewal theory” (see [39]).

But T-fractions not of these four special types are comparatively rare in the combinatorial
literature. It is our purpose here to provide a nontrivial example.

Two decades ago, Roblet and Viennot [36] showed that the general T-fraction (1.3) can
be interpreted combinatorially as a generating function for Dyck paths in which falls from
peaks and non-peaks get different weights. When δ = 0 these two weights coincide, and
the Roblet–Viennot formula reduces to Flajolet’s interpretation of S-fractions in terms
of Dyck paths. More recently, several authors [21, 27, 31, 39] have independently found
an alternate (and simpler) combinatorial interpretation of the general T-fraction (1.3):
namely, as a generating function for Schröder paths with suitable weights for each rise,
fall and long level step. When δ = 0 the long level steps get zero weight, and this formula
again reduces to Flajolet’s interpretation of S-fractions in terms of Dyck paths. We will
review this Schröder-path representation in Section 3.1 below.

Our combinatorial example concerns the Ward polynomials Wn(x), which are defined
as follows. Firstly, the Ward numbers W (n, k) [45] [30, A134991/A181996/A269939] are
defined by the linear recurrence

W (n, k) = (n+ k − 1)W (n− 1, k − 1) + kW (n− 1, k) (1.6)

with initial condition W (0, k) = δ0k. The triangular array of Ward numbers begins as
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n \ k 0 1 2 3 4 5 6 7 8 Row sums

0 1 1
1 0 1 1
2 0 1 3 4
3 0 1 10 15 26
4 0 1 25 105 105 236
5 0 1 56 490 1260 945 2752
6 0 1 119 1918 9450 17325 10395 39208
7 0 1 246 6825 56980 190575 270270 135135 660032
8 0 1 501 22935 302995 1636635 4099095 4729725 2027025 12818912

The row sums are [30, A000311]. It is easy to see that W (n, n) = (2n− 1)!! and that for
n > 1 we have W (n, 0) = 0, W (n, 1) = 1 and W (n, 2) = 2n+1−n− 3. We then define the
Ward polynomials to be the row-generating polynomials of this triangular array:

Wn(x) =
n∑
k=0

W (n, k)xk . (1.7)

For some purposes it is convenient to use instead the reversed Ward polynomials W n(x) =
xnWn(1/x), which satisfy W n(0) = (2n − 1)!!. See [1, 2, 8, 45] for further information on
the Ward numbers and Ward polynomials.

Our first result is:

Theorem 1. The ordinary generating function of the Ward polynomials can be expressed
by the T-fraction

∞∑
n=0

Wn(x) tn =
1

1−
xt

1− t−
2xt

1− 2t−
3xt

1− · · ·

(1.8)

with coefficients αi = ix and δi = i− 1. Equivalently, the ordinary generating function of
the reversed Ward polynomials can be expressed by the T-fraction

∞∑
n=0

W n(x) tn =
1

1−
t

1− xt−
2t

1− 2xt−
3t

1− · · ·

(1.9)

with coefficients αi = i and δi = (i− 1)x.

For the special case x = 1, this T-fraction was known previously, at least empirically [24].
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(a) (b)

Figure 1: (a) A wiggly line in an augmented perfect matching. (b) The two possibilities
for a dashed line in a super-augmented perfect matching.

As preparation for the proof of Theorem 1, let us mention two different combinatorial
interpretations of the Ward numbers. The first one, which is fairly well known, is in terms
of phylogenetic trees [42]1, the study of which goes back to Schröder’s fourth problem [37].
A phylogenetic tree of type (n, k) is a rooted tree that has n+ 1 labeled leaves (numbered
1, . . . , n+ 1) and k unlabeled internal vertices, in which every internal vertex has at least
two children. Thus, a phylogenetic tree of type (0, 0) is just a single vertex labeled 1,
which is both the root and a leaf; and it is easy to see that in all other cases we must
have 1 6 k 6 n. In fact, it is not difficult to see that the number of phylogenetic trees
of type (n, k) is precisely the Ward number W (n, k).2 [Proof. The claim is clear for
n = 0 and n = 1; now we use induction. Leaf number n+ 1 can be connected either to an
internal vertex on a phylogenetic tree of type (n− 1, k), hence in kW (n− 1, k) ways; or
to an edge on a phylogenetic tree of type (n− 1, k− 1), creating a new internal vertex of
out-degree 2, hence in (n+ k − 2)W (n− 1, k − 1) ways; or to a new root, having the old
root of a phylogenetic tree of type (n−1, k−1) as its other child, hence in W (n−1, k−1)
ways. This proves (1.6).] So the Ward polynomial Wn(x) is the generating polynomial for
phylogenetic trees on n+ 1 labeled leaves in which each internal vertex gets a weight x.

The second interpretation, which seems to be new, is in terms of what we shall call

augmented perfect matchings . Recall first that a perfect matching of [2n]
def
= {1, . . . , 2n}

is simply a partition of [2n] into n pairs. We call the smaller (resp. larger) element of each
pair an opener (resp. closer). An augmented perfect matching is then a perfect matching
in which we may optionally also draw a wiggly line on an edge (i, i + 1) whenever i is a
closer and i + 1 is an opener [see Figure 1(a)]. Then the number of augmented perfect
matchings of [2n] with n− k wiggly lines (or equivalently, k closers that are not followed
by a wiggly line) is precisely the Ward number W (n, k). [Proof. Let M(n, `) be the the
number of augmented perfect matchings of [2n] with ` wiggly lines. The number of ways
that the vertex 2n can be connected to a vertex i ∈ [2n−1] that is not incident on a wiggly
line is (2n− 1− `)M(n− 1, `), because the vertex i can be inserted in any of the gaps of

1Also called labelled hierarchies [20, 29] [19, pp. 128–129 and 472–474], Schröder systems [9, 37] [10,
pp. 223–224], Schröder bracketings [35], or total partitions [41, Example 5.2.5 and Exercise 5.43].

2Note that the case k = n corresponds to binary phylogenetic trees, i.e. those in which every internal
vertex has exactly two children. The number of such trees is W (n, n) = (2n− 1)!! [41, Example 5.2.6] [5,
Section 2.5] [11, 33].
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an augmented perfect matching of [2n−2] with ` wiggly lines, where “gap” means a space
between adjacent vertices that are not joined by a wiggly line, or a space at the start or
end. The number of ways that the vertex 2n can be connected to a vertex i ∈ [2n−1] that
is incident on a wiggly line is (n− `)M(n−1, `−1), because the vertex i together with its
incident wiggly line (pointing to the left) can be inserted after any closer of an augmented
perfect matching of [2n− 2] with `− 1 wiggly lines that is not incident on a wiggly line.
Comparing the recurrence M(n, `) = (2n−1− `)M(n−1, `) + (n− `)M(n−1, `−1) with
(1.6), we see that M(n, `) = W (n, n− `).] So the reversed Ward polynomial W n(x) is the
generating polynomial for augmented perfect matchings of [2n] in which each wiggly line
gets a weight x. Equivalently, the Ward polynomial Wn(x) is the generating polynomial
for augmented perfect matchings of [2n] in which each closer that is not incident on a
wiggly line gets a weight x.

In Appendix A we construct a bijection between augmented perfect matchings of [2n]
with ` wiggly lines and phylogenetic trees of type (n, n− `).

But we can go farther: let us define a super-augmented perfect matching of [2n] to
be a perfect matching of [2n] in which we may optionally draw a wiggly line on an edge
(i, i+ 1) whenever i is a closer and i+ 1 is an opener, and also optionally draw a dashed
line on an edge (i, i + 1) whenever i is an opener and i + 1 is a closer; however, it is not
allowed for a wiggly line and a dashed line to be incident on the same vertex. Please
note that for a pair (i, i + 1) connected by a dashed line, there are two possibilities [see
Figure 1(b)]: the opener i and the closer i + 1 could belong to different arches (which
necessarily cross), or they could belong to the same arch.

Let us now say that a vertex is a pure closer if it is a closer that is not incident on
any wiggly or dashed line. And let us say that a closer k has crossing number m (m > 0)
if there are m quadruplets i < j < k < l such that there are arches (i, k) and (j, l).

Now let Wn(x, u, z, w′, w′′) be the generating polynomial for super-augmented perfect
matchings of [2n] in which each pure closer with crossing number 0 gets a weight x, each
pure closer with crossing number > 1 gets a weight u, each dashed line for which the two
endpoints belong to the same arch gets a weight z, each other dashed line gets a weight w′′,
and each wiggly line gets a weight w′. Since each closer corresponds to precisely one of
these five categories, Wn is a homogeneous polynomial of degree n. These five-variable
polynomials have a T-fraction that generalizes (1.8):

Theorem 2. The ordinary generating function of the polynomials Wn(x, u, z, w′, w′′) can
be expressed by the T-fraction

∞∑
n=0

Wn(x, u, z, w′, w′′) tn =
1

1− zt−
xt

1− (z + w′ + w′′)t−
(x+ u)t

1− (z + 2w′ + 2w′′)t−
(x+ 2u)t

1− · · ·
(1.10)

with coefficients αi = x+ (i− 1)u and δi = z + (i− 1)(w′ + w′′).
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In particular, Wn(x, u, z, w′, w′′) depends on w′ and w′′ only via their sum w
def
= w′ +

w′′; so we shall also write it as Wn(x, u, z, w). We call Wn(x, u, z, w) the generalized
Ward polynomials . Note that Wn(x) = Wn(x, x, 0, 1) and W n(x) = Wn(1, 1, 0, x). Let
us also remark that Wn(x, x, 1, 0) is [30, A001498], Wn(x, x, 1, 1) is [30, A112493], and
Wn(1, 1, z, 1) is [30, A298673].

In Appendix B we will show that the sequence of four-variable polynomials
Wn(x, u, z, w) satisfies a nonlinear differential recurrence, and that the specialization to
x = u satisfies a linear differential recurrence.

But we can go much farther: the main result of this paper is a “master T-fraction”
that enumerates super-augmented perfect matchings with an infinite set of independent
statistics (Theorem 3). This master T-fraction includes many combinatorially interesting
polynomials as special cases: see Corollary 4 and the specializations (2.27)–(2.29), (2.30)
and (2.31). By further specialization of (2.30), we obtain Theorem 2, which in turn implies
Theorem 1.

Let us conclude this introduction by mentioning briefly the connection of the Ward
numbers and Ward polynomials with other combinatorial objects and problems:

1) The 2-associated Stirling subset number
{
n
k

}
>2

is the number of partitions of an

n-element set into k blocks, each of which has at least two elements; by convention we set{
0
k

}
>2

= δ0k. It is easy to see that these numbers satisfy the recurrence{
n

k

}
>2

= k

{
n− 1

k

}
>2

+ (n− 1)

{
n− 2

k − 1

}
>2

for n > 1 . (1.11)

The first few
{
n
k

}
>2

are [10, pp. 221–222] [30, A008299/A137375]

n \ k 0 1 2 3 4 5 6 7 8 9 10 Row sums

0 1 1
1 0 0 0
2 0 1 0 1
3 0 1 0 0 1
4 0 1 3 0 0 4
5 0 1 10 0 0 0 11
6 0 1 25 15 0 0 0 41
7 0 1 56 105 0 0 0 0 162
8 0 1 119 490 105 0 0 0 0 715
9 0 1 246 1918 1260 0 0 0 0 0 3425
10 0 1 501 6825 9450 945 0 0 0 0 0 17722

Comparing (1.6) with (1.11), it is easy to see that W (n, k) =
{
n+k
k

}
>2

[9] [7, eqns. (1.7)

and (3.6)] [35, pp. 6–7]. This also has a nice bijective proof [9]: given a phylogenetic tree
of type (n, k), partition its n + k non-root vertices into blocks consisting of the sets of
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children of each of the k internal vertices.3 Note also that, under this bijection, the number
of internal vertices with i children in the phylogenetic tree equals the number of blocks of
size i in the partition, as observed in [14, Theorem 1] [26, Theorem 5] [41, Exercise 5.43,
pp. 92 and 136–137].

2) A Stirling permutation [23] of order n is a permutation σ1 · · ·σ2n of the multiset
{1, 1, 2, 2, . . . , n, n} in which, for all m ∈ [n], all numbers between the two occurrences of m
are larger than m. We say that an index j ∈ [2n] is a descent if σj > σj+1 or j = 2n (so by
our definition the last index is always a descent). The second-order Eulerian number

〈〈
n
k

〉〉
is the number of Stirling permutations of order n with exactly k descents; by convention
we set

〈〈
0
k

〉〉
= δ0k.

4 It is not difficult to see [23, p. 27] that these numbers satisfy the
recurrence 〈〈

n

k

〉〉
= (2n− k)

〈〈
n− 1

k − 1

〉〉
+ k

〈〈
n− 1

k

〉〉
for n > 1 . (1.12)

The first few
〈〈
n
k

〉〉
are [30, A008517/A201637/A112007/A288874]

n \ k 0 1 2 3 4 5 6 7 8 Row sums

0 1 1
1 0 1 1
2 0 1 2 3
3 0 1 8 6 15
4 0 1 22 58 24 105
5 0 1 52 328 444 120 945
6 0 1 114 1452 4400 3708 720 10395
7 0 1 240 5610 32120 58140 33984 5040 135135
8 0 1 494 19950 195800 644020 785304 341136 40320 2027025

It is easy to see from (1.12) that
〈〈
n
n

〉〉
= n! and

∑n
k=0

〈〈
n
k

〉〉
= (2n − 1)!!. Define now the

second-order Eulerian polynomials

E[2]
n (x) =

n∑
k=0

〈〈
n

k

〉〉
xk (1.13)

3Here the leaves are labeled 1, . . . , n + 1, but the internal vertices are a priori unlabeled. Therefore,
in order to make this construction precise, we must first use some algorithm to label the k − 1 non-root
internal vertices as n + 2, . . . , n + k (we can also label the root n + k + 1 if we wish, but this plays no
role). This labeling can be done in several different ways: see [9] [14, Theorem 1] [26, Lemma 5 and
Theorem 5] [41, Exercise 5.43, pp. 92 and 136–137] [22, Theorem 2.1]. In each case one must prove that
this indeed yields a bijection, i.e. that the phylogenetic tree can be reconstructed from the partition of
[n+ k]; this is not completely trivial.

4Warning: Our definition here of the second-order Eulerian numbers agrees with Gessel and Stanley
[23] (who use the notation Bn,k) but disagrees with Graham, Knuth and Patashnik [25, p. 270] because

we define the last index to be a descent while they do not: thus
〈〈
0
k

〉〉ours
=
〈〈
0
k

〉〉GKP
= δ0k but

〈〈
n
k

〉〉ours
=〈〈

n
k−1
〉〉GKP

for n > 1.
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and the reversed polynomials E
[2]

n (x) = xnE
[2]
n (1/x); note that E

[2]

n (0) = n! and E
[2]

n (1) =
(2n − 1)!!. By manipulating the recurrences (1.6) and (1.12), it is not difficult to show
that

W n(x) = E
[2]

n (1 + x) (1.14)

or equivalently

E[2]
n (x) = (1− x)nWn

( x

1− x

)
(1.15a)

Wn(x) = (1 + x)nE[2]
n

( x

1 + x

)
(1.15b)

In particular we have W n(−1) = n! [6, Theorem 3.1 and Section 4].
The identity (1.14) also has a nice combinatorial interpretation and proof. In a perfect

matching of [2n], let us say that a pair (i, i+ 1) is a closer/opener pair if i is a closer and
i+ 1 is an opener. Note that counting augmented perfect matchings with a weight x for
each wiggly line — as W n(x) does — is equivalent to counting perfect matchings with
a weight 1 + x for each closer/opener pair. Now let M ′(n, `) be the number of perfect
matchings of [2n] with ` closer/opener pairs. We claim that M ′(n, `) =

〈〈
n
n−`

〉〉
. [Proof.

Write clop(π) for the number of closer/opener pairs in a perfect matching π. Now consider
a perfect matching π of [2n], and suppose that the vertex 2n is paired with i ∈ [2n− 1];
let π′ be the perfect matching of [2n− 2] obtained from π by deleting the arch (i, 2n) and
renumbering vertices. If i = 1 or i − 1 is an opener, then clop(π′) = clop(π). If i > 2
and i− 1 is a closer, then (i− 1, i) is a closer/opener pair; if also i+ 1 is an opener, then
clop(π′) = clop(π), otherwise clop(π′) = clop(π)− 1. If clop(π) = `, these insertions can
be done in n, ` and n − ` ways, respectively. So M ′(n, `) = (n + `)M ′(n − 1, `) + (n −
`)M ′(n− 1, `− 1), which is equivalent to (1.12).]5 So the reversed second-order Eulerian

polynomial E
[2]

n (x) is the generating polynomial for perfect matchings of [2n] in which
each closer/opener pair gets a weight x. This interpretation seems to be new.

3) There is also a very interesting multivariate generalization of the Ward poly-
nomials. As explained above, the Ward polynomial Wn(x) is the generating polyno-
mial for phylogenetic trees on n + 1 labeled leaves in which each internal vertex gets
a weight x. Now let x = (xi)i>1 be an infinite collection of indeterminates, and let
Wn(x) = Wn(x1, . . . , xn) be the generating polynomial for phylogenetic trees on n + 1
labeled leaves in which each internal vertex with i (> 2) children gets a weight xi−1. We
call this the multivariate Ward polynomial ; it is quasi-homogeneous of degree n when
xi is given weight i. Thus Wn(x) = Wn(x, . . . , x); and from the quasi-homogeneity one
deduces W n(x) = Wn(1, x, x2, . . . , xn−1). The first few Wn are [30, A134685]

W0 = 1 (1.16a)

W1 = x1 (1.16b)

5Note also that M ′(n, 0) = n! has an easy proof: if there are no closer/opener pairs, then the elements
1, . . . , n are openers and n + 1, . . . , 2n are closers, and a perfect matching is obtained by pairing these
elements in one of the n! possible ways.
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W2 = 3x21 + x2 (1.16c)

W3 = 15x31 + 10x1x2 + x3 (1.16d)

W4 = 105x41 + 105x21x2 + 15x1x3 + 10x22 + x4 (1.16e)

A straightforward argument (generalizing [19, pp. 128–129] or [41, Examples 5.2.5 and
5.2.6]) shows that the exponential generating function

W(t; x)
def
=

∞∑
n=0

Wn(x)
tn+1

(n+ 1)!
= t +

∞∑
n=2

Wn−1(x)
tn

n!
(1.17)

satisfies the functional equation

W(t; x) = t +
∞∑
n=2

xn−1
W(t; x)n

n!
, (1.18)

where the term n in the sum corresponds to the case in which the root has n children. In
other words, W(t; x) is the compositional inverse of the generic power series

F (t; x)
def
= t −

∞∑
n=2

xn−1
tn

n!
, (1.19)

which therefore satisfies [substituting t← F (t; x) in (1.17)]

F (t; x) = t −
∞∑
n=2

Wn−1(x)
F (t; x)n

n!
. (1.20)

In this context of series inversion, the polynomials Wn(x1, . . . , xn) can be found in the
books of Riordan [34, p. 181]6 and Comtet [10, p. 151], but without the interpretation
in terms of phylogenetic trees. See also [30, A134685] [26] [12, Theorem 2] for further
information concerning the multivariate Ward polynomials.

Since Wn(x1, . . . , xn) = xn + a polynomial with integer coefficients in x1, . . . , xn−1,
any sequence a = (an)n>0 with a0 = 1 in any commutative ring R can be written as a
specialization of Wn(x1, . . . , xn) with suitable coefficients (xi)i>1 in R. For instance, we
have

x1 = a1 (1.21a)

x2 = −3a21 + a2 (1.21b)

x3 = 15a31 + 10a1a2 + a3 (1.21c)

6With the erratum given by Riordan in [35, p. 7]. Riordan [35, p. 7] also observes (attributing this
remark to Neil Sloane) that the specialization of Wn(x1, . . . , xn) [defined via compositional inverses]
to x1 = . . . = xn = x enumerates phylogenetic trees by number of internal vertices. But his formula
Sn(y) = Zn(y, . . . , y) [his Zn is our Wn] should read Sn(y) = Zn−1(y, . . . , y), since his Sn(y) enumerates
phylogenetic trees on n leaves, not n+ 1.

the electronic journal of combinatorics 27(4) (2020), #P4.6 10



x4 = −105a41 + 105a21a2 − 15a1a3 − 10a22 + a4 (1.21d)

It will be observed that this is identical to (1.16) with some sign changes (namely, a
minus sign on each monomial with an even number of factors ai): that is, −xn =
Wn(−a1, . . . ,−an). This is in fact easy to prove: if we write

A(t)
def
=

∞∑
n=0

an
tn+1

(n+ 1)!
= t +

∞∑
n=2

an−1
tn

n!
, (1.22)

then setting an = Wn(x1, . . . , xn) in (1.18) yields the functional equation

A(t) = t +
∞∑
n=2

xn−1
A(t)n

n!
. (1.23)

Comparing (1.22)/(1.23) with (1.19)/(1.20) and recalling that Wn−1(x) = an−1, we see
that they are related by (an, xn)→ (−xn,−an), which proves the claim.

In particular, taking an equal to the generalized Ward polynomial Wn(x, u, z, w), we
have

x1 = x+ z (1.24a)

x2 = ux+ wx− x2 − 3xz − 2z2 (1.24b)

x3 = 3u2x+ 4uwx− 3ux2 − 5uxz + w2x− 4wx2 − 6wxz + 5x2z + 11xz2 + 6z3

(1.24c)...

We have not yet succeeded in guessing the general formula for these xi; but in the special
case u = x we can show (see Appendix B) that

xn−1 = (−1)n (n− 1)!
(

1 +
x

w

)
zn−1 +

x

w

n−1∏
j=1

(w − jz) (1.25)

(note that this is a polynomial in x, z, w since the terms in 1/w cancel), corresponding to

F (t; x) =
1 + x

w

z
log(1 + zt) − x

w2

[
(1 + zt)w/z − 1

]
. (1.26)

When z = 0 and w = 1 this reduces to xi = x and F (t; x) = t − x(et − 1 − t). It
is curious that the xi in (1.24) and (1.25) are not all nonnegative (even pointwise in
x, u, z, w > 0), even though the output polynomials Wn(x1, . . . , xn) = Wn(x, u, z, w) are
of course coefficientwise nonnegative in x, u, z, w.

It would be interesting to extend our work on the Ward polynomials to this multivari-
ate generalization.

4) Finally, let us comment on the implications of our results for the theory of Hankel-
total positivity [38, 39], which was in fact our original motivation for studying these T-
fractions. If P = (Pn(x))n>0 is a sequence of polynomials with real coefficients in one or
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more indeterminates x, we say that this sequence is coefficientwise Hankel-totally positive
if every minor of the infinite Hankel matrix H∞(P ) = (Pi+j(x))i,j>0 is a polynomial with
nonnegative coefficients. One fundamental result of this theory is [39]: whenever the
ordinary generating function

∑∞
n=0 Pn(x) tn is given by a T-fraction (1.3) where all the

coefficients αi and δi are polynomials in x with nonnegative coefficients, the sequence
P = (Pn(x))n>0 is coefficientwise Hankel-totally positive. It follows from this that all
the T-fractions derived in this paper — including the most general one, Theorem 3 —
are coefficientwise Hankel-totally positive in the appropriate variables. In particular,
the Ward polynomials Wn(x) and the generalized Ward polynomials Wn(x, u, z, w) are
coefficientwise Hankel-totally positive.

But now a mystery arises from the relation (1.14) that connects the (reversed) Ward
polynomials with the (reversed) second-order Eulerian polynomials. It follows from (1.14)
and (1.9) that the ordinary generating function of the reversed second-order Eulerian
polynomials is given by a T-fraction with coefficients δi = (i−1)(x−1) and αi = i.7 Here
δi is not coefficientwise nonnegative (or even pointwise nonnegative when 0 6 x < 1),
so the general theory [39] says nothing about the Hankel-total positivity of the reversed
second-order Eulerian polynomials. And yet, we find empirically that the sequence of
reversed second-order Eulerian polynomials is coefficientwise Hankel-totally positive: we
have tested this through the 13 × 13 Hankel matrix. This total positivity (if indeed it
is true) is, alas, completely unexplained. By (1.14) it implies the coefficientwise Hankel-
total positivity of the reversed Ward polynomials — which we know to be true — but
not conversely. In our opinion, proving the coefficientwise Hankel-total positivity of the
(reversed) second-order Eulerian polynomials is the major problem left open by our work.

Note added: This mystery has now been resolved [32]. The reversed second-order

Eulerian polynomials E
[2]

n (x) are also given by a 2-branched S-fraction [32] with coefficients
α = (αi)i>2 = 1, 1, x, 2, 2, 2x, 3, 3, 3x, . . . . Since these αi are coefficientwise nonnegative,
the general theory of branched S-fractions [32] implies the coefficientwise Hankel-total
positivity.

The plan of this paper is as follows: In Section 2 we state our results on the enu-
meration of super-augmented perfect matchings: these include a very general T-fraction
with infinitely many indeterminates (Theorem 3) as well as numerous special cases that
count statistics of combinatorial interest. In Section 3 we recall some basic facts con-
cerning the combinatorial interpretation of continued fractions and the concept of labeled
Schröder paths. In Section 4 we prove Theorem 3 by constructing a bijection from the set
of super-augmented perfect matchings onto a set of labeled 2-colored Schröder paths. In
Appendix A we construct a bijection between augmented perfect matchings and phyloge-
netic trees. In Appendix B we show that the generalized Ward polynomials Wn(x, u, z, w)
satisfy a nonlinear differential recurrence.

7This T-fraction is also a consequence of [5, Section 5.2, item (7)] together with the Roblet–Viennot [36]
interpretation of T-fractions as a generating function for Dyck paths with special weights for peaks.
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2 Statement of results

We begin by reviewing some S-fractions for perfect matchings that were recently ob-
tained by Zeng and one of us [40]. We then state our generalizations, which are T-fractions
for super-augmented perfect matchings. Let us stress that none of our results in this paper
depend on the results of [40]; we give here self-contained proofs of all our generalizations.

2.1 S-fractions for perfect matchings

Euler showed [16, section 29] that the generating function of the odd semifactorials
can be represented as an S-type continued fraction

∞∑
n=0

(2n− 1)!! tn =
1

1−
1t

1−
2t

1−
3t

1− · · ·

(2.1)

with coefficients αn = n.8 Since (2n− 1)!! enumerates perfect matchings of a 2n-element
set, it is natural to seek polynomial refinements of this sequence that enumerate perfect
matchings of [2n] according to some natural statistic(s). Note that we can regard a perfect
matching either as a special type of set partition (namely, one in which all blocks are of
size 2) or as a special type of permutation (namely, a fixed-point-free involution). We will
adopt here the former interpretation, and write π ∈ M2n ⊆ Π2n. If i, j ∈ [2n] are paired
in the perfect matching π, we write i ∼π j (or just i ∼ j if π is clear from the context).

Inspired by (2.1), let us introduce [40] the polynomials Mn(x, y, u, v) defined by the
continued fraction

∞∑
n=0

Mn(x, y, u, v) tn =
1

1−
xt

1−
(y + v)t

1−
(x+ 2u)t

1−
(y + 3v)t

1−
(x+ 4u)t

1−
(y + 5v)t

1− · · ·

(2.2)

with coefficients

α2k−1 = x+ (2k − 2)u (2.3a)

8See also [5, Section 2.6] for a combinatorial proof of (2.1) based on a counting of height-labeled Dyck
paths.
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α2k = y + (2k − 1)v (2.3b)

Clearly Mn(x, y, u, v) is a homogeneous polynomial of degree n. Since Mn(1, 1, 1, 1) =
(2n− 1)!!, it is natural to expect that Mn(x, y, u, v) enumerates perfect matchings of [2n]
according to some natural trivariate statistic. Let us now explain, following [40], what
this statistic is.

Let π be a perfect matching of [2n]. We recall that a vertex i ∈ [2n] is called an
opener (resp. closer) if it is the smaller (resp. larger) element of its pair. Let us say that
an opener j (with corresponding closer k) is a record if there does not exist an opener
i < j that is paired with a closer l > k. In other words, j is a record if there does not
exist an arch (i, l) that nests above the arch (j, k). Similarly, let us say that a closer k
(with corresponding opener j) is an antirecord if there does not exist a closer l > k that
is paired with an opener i < j. In other words, k is an antirecord if and only if j is a
record.9

Let us now classify the closers of π into four types:

• even closer antirecord (ecar) [i.e. i is even and is an antirecord];

• odd closer antirecord (ocar) [i.e. i is odd and is an antirecord];

• even closer non-antirecord (ecnar) [i.e. i is even and is not an antirecord];

• odd closer non-antirecord (ocnar) [i.e. i is odd and is not an antirecord].

Similarly, we classify the openers of π into four types:

• even opener record (eor) [i.e. i is even and is a record];

• odd opener record (oor) [i.e. i is odd and is a record];

• even opener non-record (eonr) [i.e. i is even and is not a record];

• odd opener non-record (oonr) [i.e. i is odd and is not a record].

Then Sokal and Zeng [40] proved that the polynomials Mn(x, y, u, v) defined by (2.2)/(2.3)
have the combinatorial interpretation

Mn(x, y, u, v) =
∑

π∈M2n

xecar(π)yocar(π)uecnar(π)vocnar(π) (2.4a)

=
∑

π∈M2n

xoor(π)yeor(π)uoonr(π)veonr(π) . (2.4b)

9This terminology of records and antirecords comes from the alternate interpretation of perfect match-
ings as fixed-point-free involutions. In general, for a permutation σ ∈ Sn, an index i ∈ [n] is called a
record (or left-to-right maximum) if σ(j) < σ(i) for all j < i, and is called an antirecord (or right-to-left
minimum) if σ(j) > σ(i) for all j > i. See [40] for further discussion of record-antirecord statistics in
permutations.
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The interpretations (2.4a) and (2.4b) are of course trivially equivalent under the involution
i→ 2n+ 1− i, which preserves the structure of a perfect matching but interchanges even
with odd, opener with closer, and record with antirecord.

Sokal and Zeng [40] also generalized the four-variable polynomial Mn(x, y, u, v) by
adding weights for crossings and nestings. Given a perfect matching π ∈ M2n, we say
that a quadruplet i < j < k < l forms a crossing if i ∼π k and j ∼π l, and a nesting if
i ∼π l and j ∼π k. We write cr(π) and ne(π) for the numbers of crossings and nestings of
π. We now define the six-variable polynomial

Mn(x, y, u, v, p, q) =
∑

π∈M2n

xecar(π)yocar(π)uecnar(π)vocnar(π)pcr(π)qne(π) (2.5a)

=
∑

π∈M2n

xoor(π)yeor(π)uoonr(π)veonr(π)pcr(π)qne(π) . (2.5b)

Here the equality of (2.5a) and (2.5b) follows again from the involution i → 2n + 1 − i,
which preserves the numbers of crossings and nestings. Sokal and Zeng [40] showed that
the ordinary generating function of the polynomials Mn(x, y, u, v, p, q) has an S-fraction
that generalizes (2.2)/(2.3), namely

∞∑
n=0

Mn(x, y, u, v, p, q) tn =
1

1−
xt

1−
(py + qv)t

1−
(p2x+ q [2]p,qu)t

1−
(p3y + q [3]p,qv)t

1− · · ·

(2.6)

with coefficients

α2k−1 = p2k−2x+ q [2k − 2]p,qu (2.7a)

α2k = p2k−1y + q [2k − 1]p,qv (2.7b)

where

[n]p,q
def
=

pn − qn

p− q
=

n−1∑
j=0

pjqn−1−j (2.8)

for an integer n > 0. When p = q = 1 this reduces to (2.2)/(2.3). Note that if u = x
and/or v = y, then the weights (2.7) simplify to α2k−1 = [2k − 1]p,q x and α2k = [2k]p,q y,
respectively. For the special case x = y = u = v, the S-fraction (2.6) was obtained
previously by Kasraoui and Zeng [28] (see also [4, p. 3280]).

But Sokal and Zeng [40] went even farther, by defining statistics that count the number
of quadruplets i < j < k < l that form crossings or nestings with a particular vertex k in
third position:

cr(k, π) = #{i < j < k < l : i ∼π k and j ∼π l} (2.9)
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ne(k, π) = #{i < j < k < l : i ∼π l and j ∼π k} (2.10)

Note that cr(k, π) and ne(k, π) can be nonzero only when k is a closer (and k > 3); in
geometrical terms, cr(k, π) [resp. ne(k, π)] is the number of arches of π that cross (resp.
nest over) the arch whose right endpoint is k. We obviously have

cr(π) =
∑

k∈closers

cr(k, π) (2.11a)

ne(π) =
∑

k∈closers

ne(k, π) (2.11b)

Sokal and Zeng [40] also defined

qne(k, π) = #{i < k < l : i ∼π l} (2.12)

(they call this a quasi-nesting of the vertex k). We will use this statistic only when k is
an opener: in this case qne(k, π) counts the number of times that the opener k occurs
in second position in a crossing or nesting: when (i, l) ∈ Gπ is a pair contributing to
qne(k, π), the quadruplet i < k < l,m [where (k,m) ∈ Gπ] must be either a crossing or
nesting (according as m > l or m < l), but we do not keep track of which one it is.

Now introduce two infinite families of indeterminates a = (a`)`>0 and b = (b`,`′)`,`′>0,
and define the polynomials Mn(a,b) by

Mn(a,b) =
∑

π∈M2n

∏
i∈openers

aqne(i,π)
∏

i∈closers

bcr(i,π), ne(i,π) . (2.13)

Sokal and Zeng [40] showed that the ordinary generating function of the polynomials
Mn(a,b) has the S-fraction

∞∑
n=0

Mn(a,b) tn =
1

1−
a0b00t

1−
a1(b01 + b10)t

1−
a2(b02 + b11 + b20)t

1− · · ·

(2.14)

with coefficients
αn = an−1 b

?
n−1 (2.15)

where

b?n−1
def
=

n−1∑
`=0

b`,n−1−` . (2.16)

This “master S-fraction for perfect matchings” contains (2.2)–(2.4) and (2.5)–(2.7) as
special cases [40].
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Warning: The definitions (2.9)/(2.10) and (2.13) and the S-fraction (2.14)–
(2.16) are taken from an early draft of [40]. The final version of [40] applies
a reversal i 7→ 2n + 1 − i to these definitions and results: that is, crossings
and nestings are defined with a particular vertex j in second rather than third
position; the two-index indeterminate in (2.13) is associated with openers
rather than closers; and the letters a and b are interchanged. But the versions
stated here are of course correct.

2.2 T-fractions for super-augmented perfect matchings

Recall that a super-augmented perfect matching of [2n] is a perfect matching of [2n] in
which we may optionally draw a wiggly line on an edge (i, i+1) whenever i is a closer and
i+ 1 is an opener, and also optionally draw a dashed line on an edge (i, i+ 1) whenever i
is an opener and i+ 1 is a closer; however, it is not allowed for a wiggly line and a dashed
line to be incident on the same vertex. We denote a super-augmented perfect matching
of [2n] by τ ∈ M?

2n, and we write π(τ) ∈ M2n for the underlying perfect matching. Of
course, we say that i is an opener (resp. closer) in τ in case it is an opener (resp. closer)
in π(τ).

For τ ∈M?
2n, we call a vertex i a

• pure opener if it is an opener and not incident on any wiggly or dashed line;

• pure closer if it is a closer and not incident on any wiggly or dashed line;

• wiggly closer if it is a closer that is incident on a wiggly line;

• dashed closer if it is a closer that is incident on a dashed line.

We also call a pair (i, i+ 1) a

• wiggly pair if i is a closer, i + 1 is an opener, and they are connected by a wiggly
line;

• dashed pair if i is an opener, i + 1 is a closer, and they are connected by a dashed
line.

The statistics (2.9)–(2.12) apply equally well to super-augmented perfect matchings
if we evaluate them on π = π(τ). We will generalize (2.13), not by introducing any new
statistics, but simply by refining the distinctions among types of vertices. We introduce
four infinite families of indeterminates a = (a`)`>0, b = (b`,`′)`,`′>0, f = (f`,`′)`,`′>0 and
g = (g`,`′)`,`′>0, and define the polynomials Mn(a,b, f, g) by

Mn(a,b, f, g) =
∑

π∈M?
2n

∏
i∈pureop

aqne(i,π)
∏

i∈purecl

bcr(i,π), ne(i,π)

∏
(i,i+1)∈wiggly

fcr(i,π),ne(i,π)
∏

(i,i+1)∈dashed

gcr(i+1,π), ne(i+1,π) , (2.17)
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where pureop (resp. purecl) denotes the pure openers (resp. pure closers). Our main result
is then the following:

Theorem 3 (Master T-fraction for super-augmented perfect matchings). The ordinary
generating function of the polynomials Mn(a,b, f, g) has the T-type continued fraction

∞∑
n=0

Mn(a,b, f, g) tn =
1

1− g00t−
a0b00t

1− (f00 + g01 + g10)t−
a1(b01 + b10)t

1− · · ·

(2.18)

with coefficients

αn = an−1 b
?
n−1 (2.19a)

δn = f?n−2 + g?n−1 (2.19b)

where

b?n−1
def
=

n−1∑
`=0

b`,n−1−` (2.20)

and likewise for f and g.

When f = g = 0, wiggly and dashed lines are forbidden, and Theorem 3 reduces to the
S-fraction (2.14)/(2.15). We will prove Theorem 3 in Section 4.

Let us now show some specializations of Theorem 3 that generalize the S-fractions
shown in the preceding subsection. We begin by defining a 18-variable polynomial
Mn(x, y, u, v, x′, y′, u′, v′, x′′, y′′, u′′, v′′, p, q, p′, q′, p′′, q′′) that generalizes (2.5a) by distin-
guishing the three types of closers: pure, wiggly and dashed. We let ecar◦(τ), ecar′(τ)
and ecar′′(τ) be the number of even closer antirecords in each of these three classes, and
likewise for ocar, ecnar and ocnar. We also distinguish three types of crossings and nest-
ings, according to the nature of the closer that occurs in third position: we thus let cr◦(τ),
cr′(τ) and cr′′(τ) be the sum of cr(k, π) over vertices k that are, respectively, pure closers,
wiggly closers and dashed closers. We then define:

Mn(x, y, u, v, x′, y′, u′, v′, x′′, y′′, u′′, v′′, p, q, p′, q′, p′′, q′′)

=
∑

τ∈M?
2n

xecar
◦(τ)yocar

◦(τ)uecnar
◦(τ)vocnar

◦(τ)

(x′)ecar
′(τ)(y′)ocar

′(τ)(u′)ecnar
′(τ)(v′)ocnar

′(τ)

(x′′)ecar
′′(τ)(y′′)ocar

′′(τ)(u′′)ecnar
′′(τ)(v′′)ocnar

′′(τ)

pcr
◦(τ)qne

◦(τ)(p′)cr
′(τ)(q′)ne

′(τ)(p′′)cr
′′(τ)(q′′)ne

′′(τ) (2.21)

We have:
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Corollary 4. The ordinary generating function of the polynomials (2.21) has the T-type
continued fraction

∞∑
n=0

Mn(x, y, u, v, x′, y′, u′, v′, x′′, y′′, u′′, v′′, p, q, p′, q′, p′′, q′′) tn

=
1

1− x′′t−
xt

1− (x′ + p′′y′′ + q′′v′′)t−
(py + qv)t

1− (p′y′ + q′v′ + (p′′)2x′′ + q′′ [2]p,1u′′)t−
(p2x+ q [2]p,qu)t

1− · · ·

(2.22)

with coefficients

α2k−1 = p2k−2x+ q [2k − 2]p,qu (2.23a)

α2k = p2k−1y + q [2k − 1]p,qv (2.23b)

δ1 = x′′ (2.23c)

δ2k−1 = (p′)2k−3y′ + q′ [2k − 3]p′,q′v
′ + (p′′)2k−2x′′ + q′′ [2k − 2]p′′,q′′u

′′ for k > 2
(2.23d)

δ2k = (p′)2k−2x′ + q′ [2k − 2]p′,q′u
′ + (p′′)2k−1y′′ + q′′ [2k − 1]p′′,q′′v

′′ (2.23e)

where [n]p,q is defined in (2.8).

When x′ = y′ = u′ = v′ = x′′ = y′′ = u′′ = v′′ = 0 (thereby forbidding wiggly and
dashed lines), Corollary 4 reduces to the S-fraction (2.6)/(2.7).

The proof of Corollary 4 will be based on the following easy combinatorial lemma [40]:

Lemma 5 (Closers in perfect matchings). Let π ∈ M2n be a perfect matching of [2n],
and let k ∈ [2n] be a closer of π. Then:

(a) k has the same parity as cr(k, π) + ne(k, π).

(b) k is an antirecord if and only if ne(k, π) = 0.

Proof. (a) Let j be the opener that is paired with the closer k. For each i < k, let
σ(i) (6= i) be the element with which it is paired. Then the set {i : i < k}, which has
cardinality k − 1, can be partitioned as

{j} ∪ {i < k : σ(i) < k} ∪ {i < j : σ(i) > k} ∪ {j < i < k : σ(i) > k} . (2.24)

The first of these sets has cardinality 1; the second has even cardinality; the third has
cardinality ne(k, π); and the fourth has cardinality cr(k, π).

(b) As explained earlier, a closer k (with corresponding opener j) is an antirecord if
and only if there does not exist a closer l > k that is paired with an opener i < j. But
this is precisely the statement that ne(k, π) = 0.
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Proof of Corollary 4. In (2.17) we set a` = 1 for all ` > 0 and

b`,`′ = p`q`
′ ×


x if `′ = 0 and ` is even

y if `′ = 0 and ` is odd

u if `′ > 1 and `+ `′ is even

v if `′ > 1 and `+ `′ is odd

(2.25a)

f`,`′ = (p′)` (q′)`
′ ×


x′ if `′ = 0 and ` is even

y′ if `′ = 0 and ` is odd

u′ if `′ > 1 and `+ `′ is even

v′ if `′ > 1 and `+ `′ is odd

(2.25b)

g`,`′ = (p′′)` (q′′)`
′ ×


x′′ if `′ = 0 and ` is even

y′′ if `′ = 0 and ` is odd

u′′ if `′ > 1 and `+ `′ is even

v′′ if `′ > 1 and `+ `′ is odd

(2.25c)

By Lemma 5(a,b) and the definitions of cr◦(π), etc., we obtain the polynomial (2.21).
Then

b?n−1
def
=

n−1∑
`=0

b`,n−1−` =

{
pn−1x+ q[n− 1]p,qu if n is odd

pn−1y + q[n− 1]p,qv if n is even
(2.26)

and similarly for f and g. The result then follows from Theorem 3.

If we further specialize (2.21) by setting x = y, u = v, x′ = y′, u′ = v′, x′′ = y′′,
u′′ = v′′, we obtain 12-variable polynomials that count closers of each of three types
(pure, wiggly or dashed) according to whether they are antirecords or not — but now
forgetting whether they are even or odd — and also count crossings and nestings of each
of three types (pure, wiggly or dashed):

Mn(x, x, u, u, x′, x′, u′, u′, x′′, x′′, u′′, u′′, p, q, p′, q′, p′′, q′′)

=
∑

τ∈M?
2n

xcar
◦(τ)ucnar

◦(τ)(x′)car
′(τ)(u′)cnar

′(τ)(x′′)car
′′(τ)(u′′)cnar

′′(τ)

pcr
◦(τ)qne

◦(τ)(p′)cr
′(τ)(q′)ne

′(τ)(p′′)cr
′′(τ)(q′′)ne

′′(τ) (2.27)

Their T-fraction is
∞∑
n=0

Mn(x, x, u, u, x′, x′, u′, u′, x′′, x′′, u′′, u′′, p, q, p′, q′, p′′, q′′) tn

=
1

1− x′′t−
xt

1− (x′ + p′′x′′ + q′′u′′)t−
(px+ qu)t

1− (p′x′ + q′u′ + (p′′)2x′′ + q′′ [2]p′′,q′′u′′)t−
(p2x+ q [2]p,qu)t

1− · · ·

(2.28)
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with coefficients

αn = pn−1x+ q [n− 1]p,qu (2.29a)

δ1 = x′′ (2.29b)

δn = (p′)n−2x′ + q′ [n− 2]p′,q′u
′ + (p′′)n−1x′′ + q′′ [n− 1]p′′,q′′u

′′ for n > 2 (2.29c)

Note that the forms of the coefficients (2.29) are no longer alternating between even and
odd, because we are no longer distinguishing even closers from odd closers.

If we further specialize this to u′ = x′, then the coefficients (2.29) simplify to

αn = pn−1x+ q [n− 1]p,qu (2.30a)

δn = [n− 1]p′,q′x
′ + (p′′)n−1x′′ + q′′ [n− 1]p′′,q′′u

′′ (2.30b)

And if we specialize (2.29) or (2.30) to u = x and/or u′′ = x′′, then the combinations
involving those variables simplify as well:

pn−1x+ q [n− 1]p,qu → [n]p,qx (2.31a)

(p′′)n−1x′′ + q′′ [n− 1]p′′,q′′u
′′ → [n]p′′,q′′x

′′ (2.31b)

When the three specializations u = x, u′ = x′, u′′ = x′′ are made, we are no longer
distinguishing antirecords from non-antirecords.

It is now an easy matter to deduce Theorem 2. We recall that the polynomial
Wn(x, u, z, w′, w′′) was defined in the Introduction to be the generating polynomial for
super-augmented perfect matchings of [2n] in which each pure closer with crossing num-
ber 0 gets a weight x, each pure closer with crossing number > 1 gets a weight u, each
dashed line for which the two endpoints belong to the same arch gets a weight z, each
other dashed line gets a weight w′′, and each wiggly line gets a weight w′. We now observe
that whenever i is an opener and i + 1 is a closer, we have cr(i + 1, π) = 0 if and only if
there is an arch from i to i + 1: for if there is an arch from i to i + 1, then obviously it
is not crossed by any other arch; and if there is not an arch from i to i + 1, then there
must exist j < i < i + 1 < k such that there are arches (j, i + 1) and (i, k). This applies
in particular whenever there is a dashed line from i to i+ 1. So saying that each dashed
line for which the two endpoints belong to the same arch gets a weight z and each other
dashed line gets a weight w′′ is equivalent to saying that each dashed closer with crossing
number 0 (resp. > 1) gets a weight z (resp. w′′). In other words, we are evaluating (2.17)
at

a` = 1 (2.32a)

b`,`′ =

{
x if ` = 0

u if ` > 1
(2.32b)

f`,`′ = w′ (2.32c)
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g`,`′ =

{
z if ` = 0

w′′ if ` > 1
(2.32d)

Then (2.19) becomes

αn = x+ (n− 1)u (2.33a)

δn = z + (n− 1)(w′ + w′′) (2.33b)

as claimed in Theorem 2.

3 Preliminaries for the proofs

Our proof of Theorem 3 will be based on Flajolet’s [18] combinatorial interpretation
of continued fractions in terms of Dyck and Motzkin paths, adapted slightly to handle
Schröder paths, together with a bijection that maps super-augmented perfect matchings
to labeled Schröder paths. We begin by reviewing briefly these two ingredients.

3.1 Combinatorial interpretation of continued fractions

Recall that a Motzkin path of length n > 0 is a path ω = (ω0, . . . , ωn) in the right
quadrant N × N, starting at ω0 = (0, 0) and ending at ωn = (n, 0), whose steps sj =
ωj − ωj−1 are (1, 1) [“rise”], (1,−1) [“fall”] or (1, 0) [“level”]. We writeMn for the set of
Motzkin paths of length n, and M =

⋃∞
n=0Mn. A Motzkin path is called a Dyck path

if it has no level steps. A Dyck path always has even length; we write D2n for the set of
Dyck paths of length 2n, and D =

⋃∞
n=0D2n.

Let a = (ai)i>0, b = (bi)i>1 and c = (ci)i>0 be indeterminates; we will work in the
ring Z[[a,b, c]] of formal power series in these indeterminates. To each Motzkin path ω
we assign a weight W (ω) ∈ Z[a,b, c] that is the product of the weights for the individual
steps, where a rise starting at height i gets weight ai, a fall starting at height i gets
weight bi, and a level step at height i gets weight ci. Flajolet [18] showed that the
generating function of Motzkin paths can be expressed as a continued fraction:

Theorem 6 (Flajolet’s master theorem). We have

∑
ω∈M

W (ω) =
1

1− c0 −
a0b1

1− c1 −
a1b2

1− c2 −
a2b3

1− · · ·

(3.1)

as an identity in Z[[a,b, c]].
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In particular, if ai−1bi = βit
2 and ci = γit (note that the parameter t is conjugate to

the length of the Motzkin path), we have

∞∑
n=0

tn
∑
ω∈Mn

W (ω) =
1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− · · ·

, (3.2)

so that the generating function of Motzkin paths with height-dependent weights is given
by the J-type continued fraction (1.2). Similarly, if ai−1bi = αit and ci = 0 (note that t is
now conjugate to the semi-length of the Dyck path), we have

∞∑
n=0

tn
∑
ω∈D2n

W (ω) =
1

1−
α1t

1−
α2t

1− · · ·

, (3.3)

so that the generating function of Dyck paths with height-dependent weights is given by
the S-type continued fraction (1.1).

Let us now show how to handle Schröder paths within this framework. A Schröder
path of length 2n (n > 0) is a path ω = (ω0, . . . , ω2n) in the right quadrant N×N, starting
at ω0 = (0, 0) and ending at ω2n = (2n, 0), whose steps are (1, 1) [“rise”], (1,−1) [“fall”]
or (2, 0) [“long level”]. We write sj for the step starting at abscissa j− 1. If the step sj is
a rise or a fall, we set sj = ωj − ωj−1 as before. If the step sj is a long level step, we set
sj = ωj+1 − ωj−1 and leave ωj undefined; furthermore, in this case there is no step sj+1.
We write hj for the height of the Schröder path at abscissa j whenever this is defined, i.e.
ωj = (j, hj). Please note that ω2n = (2n, 0) and h2n = 0 are always well-defined, because
there cannot be a long level step starting at abscissa 2n− 1. We write S2n for the set of
Schröder paths of length 2n, and S =

⋃∞
n=0 S2n.

There is an obvious bijection between Schröder paths and Motzkin paths: namely,
every long level step is mapped onto a level step. If we apply Flajolet’s master theorem
with ai−1bi = αit and ci = δi+1t to the resulting Motzkin path (note that t is now conjugate
to the semi-length of the underlying Schröder path), we obtain

∞∑
n=0

tn
∑
ω∈S2n

W (ω) =
1

1− δ1t−
α1t

1− δ2t−
α2t

1− · · ·

, (3.4)

so that the generating function of Schröder paths with height-dependent weights is given
by the T-type continued fraction (1.3). More precisely, every rise gets a weight 1, every
fall starting at height i gets a weight αi, and every long level step at height i gets a
weight δi+1. This combinatorial interpretation of T-fractions in terms of Schröder paths
was found recently by several authors [21,27,31,39].
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3.2 Labelled Schröder paths

Many authors, starting with Flajolet [18], have used bijections from combinatorial
objects onto labeled Motzkin or Dyck paths in order to prove J-fraction or S-fraction
expansions for the (weighted) ordinary generating functions of those objects. Here we
will do the same with labeled Schröder paths in order to prove T-fraction expansions.
The definitions are as follows:

Let A = (Ak)k>0, B = (Bk)k>1 and C = (Ck)k>0 be sequences of nonnegative integers.
An (A,B,C)-labeled Schröder path of length 2n is a pair (ω, ξ) where ω = (ω0, . . . , ω2n)
is a Schröder path of length 2n, and ξ = (ξ1, . . . , ξ2n) is a sequence of integers satisfying

1 6 ξi 6


A(hi−1) if step si is a rise (starting at height hi−1)

B(hi−1) if step si is a fall (starting at height hi−1)

C(hi−1) if step si is a long level step (at height hi−1)

(3.5)

[For typographical clarity we have here written A(k) as a synonym for Ak, etc.] If step
si is undefined (because step si−1 was a long level step), then ξi is also undefined. We
denote by S2n(A,B,C) the set of (A,B,C)-labeled Schröder paths of length 2n.

Let us stress that the numbers Ak, Bk and Ck are allowed to take the value 0. Whenever
this happens, the path ω is forbidden to take a step of the specified kind at the specified
height.

We shall also make use of multicolored Schröder paths. A k-colored Schröder path is
simply a Schröder path in which each long level step has been given a “color” from the
set {1, 2, . . . , k}. In other words, we distinguish k different types of long level steps. An
(A,B,C(1), . . . ,C(k))-labeled k-colored Schröder path of length 2n is then defined in the
obvious way, where we use the sequence C(j) to bound the label ξi when step i is a long level
step of type j. We denote by S2n(A,B,C(1), . . . ,C(k)) the set of (A,B,C(1), . . . ,C(k))-
labeled k-colored Schröder paths of length 2n.

4 Proof of Theorem 3

We will prove Theorem 3 by constructing a bijection from the set M?
2n of super-

augmented perfect matchings of [2n] onto the set of (A,B,C(1),C(2))-labeled 2-colored
Schröder paths of length 2n, where

Ak = 1 for k > 0 (4.1a)

Bk = k for k > 1 (4.1b)

C
(1)
k = k for k > 0 (4.1c)

C
(2)
k = k + 1 for k > 0 (4.1d)

When restricted to ordinary perfect matchings of [2n] (i.e. super-augmented perfect match-
ings with no wiggly or dashed lines), our bijection maps onto labeled Dyck paths and
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coincides with the bijection used by Flajolet [18] and Kasraoui–Zeng [28].10

We will begin by explaining how the Schröder path ω is defined; then we will explain
how the labels ξ are defined; next we will prove that the mapping is indeed a bijection;
next we will translate the various statistics fromM?

2n to our labeled Schröder paths; and
finally we will sum over labels ξ to obtain the weight W (ω) associated to a Schröder path
ω, which upon applying (3.4) will yield Theorem 3.

Step 1: Definition of the Schröder path. Given a super-augmented perfect
matching τ ∈M?

2n, we define a path ω = (ω0, . . . , ω2n) starting at ω0 = (0, 0) and ending
at ω2n = (2n, 0), with steps s1, . . . , s2n ending at locations ωi = (i, hi), as follows:

• If i is a pure opener, then si is a rise, so that hi = hi−1 + 1.

• If i is a pure closer, then si is a fall, so that hi = hi−1 − 1.

• If (i, i+1) is a wiggly pair, then si is a long level step of type 1 (and si+1 is undefined).
In this case the height hi is undefined, but we have hi+1 = hi−1.

• If (i, i + 1) is a dashed pair, then si is a long level step of type 2 (and si+1 is
undefined). In this case the height hi is undefined, but we have hi+1 = hi−1.

(See Figure 2 for an example.) The interpretation of the heights hi is almost immediate
from this definition:

Lemma 7. For i ∈ {0, . . . , 2n}, whenever the height hi is defined it equals the number of
arches that are “started but unfinished” after stage i (or equivalently, before stage i+ 1),
i.e.

hi = #{j 6 i < k : j ∼π(τ) k} . (4.2)

In particular, it follows that ω is indeed a Schröder path, i.e. all the heights hi are
nonnegative (when they are defined) and h2n = 0.

Step 2: Definition of the labels ξi.

• If i is a pure opener, we set ξi = 1 as required by (4.1).

• If i is a pure closer, we look at the hi−1 arches that are “started but unfinished”
after stage i− 1 (note that we must have hi−1 > 1); let the openers of these arches
be x1 < x2 < . . . < xhi−1

. Then the vertex i is paired with precisely one of these
openers; if it is xj, we set ξi = j. Obviously 1 6 ξi 6 hi−1 as required by (4.1).

10More precisely, Flajolet [18] and Kasraoui–Zeng [28] defined bijections of set partitions of [n] onto
labeled Motzkin paths of length n. When restricted to perfect matchings of [2n] (i.e. set partitions of
[2n] in which every block has cardinality 2), their bijections map onto labeled Dyck paths of length 2n.
The Flajolet and Kasraoui–Zeng bijections for set partitions are slightly different, but they coincide when
restricted to perfect matchings.
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1

1
1 2

1 1
3

2

1

Figure 2: A super-augmented perfect matching of [2n] with n = 6, together with corre-
sponding labeled Schröder path (the label ξi is written above the step si). The long level
steps of type 2 are shown by double lines.

• If (i, i + 1) is a wiggly pair, then we look at the hi−1 arches that are “started but
unfinished” after stage i−1, and we define ξi exactly as in the preceding case. Again
1 6 ξi 6 hi−1.

• If (i, i + 1) is a dashed pair, then there are two possibilities [see Figure 1(b)]: the
opener i and the closer i + 1 could belong to different arches (which necessarily
cross), or they could belong to the same arch. In the former case we look at the
hi−1 arches that are “started but unfinished” after stage i − 1, and we define ξi as
before (except that it is now vertex i + 1 rather than i that is paired with one of
these openers). In the latter case we set ξi = hi−1 + 1. Obviously 1 6 ξi 6 hi−1 + 1
as required by (4.1).

See again Figure 2.

Step 3: Proof of bijection. It is easy to describe the inverse map from labeled
Schröder paths (ω, ξ) to super-augmented perfect matchings. Successively for i = 1, . . . , n,
we use the 2-colored Schröder path ω to read off the type associated to step si (opener
with no wiggly or dashed line, etc.).11 And then, if step si corresponds to anything other
than an opener with no wiggly or dashed line attached, we use the label ξi to decide to
which opener the vertex i (or i+ 1) should be attached.

Step 4: Translation of the statistics.

11It is a slight abuse of language here to call the 2-colored Schröder path ω, since by ω we mean here
the sequence of steps si, i.e. including also the type (1 or 2) of the long level steps. We trust that there
will be no confusion.

the electronic journal of combinatorics 27(4) (2020), #P4.6 26



Lemma 8.

(a) If i is a pure opener, then
qne(i, π) = hi−1 . (4.3)

(b) If i is a pure closer, then

cr(i, π) = hi−1 − ξi (4.4a)

ne(i, π) = ξi − 1 (4.4b)

(c) If (i, i+ 1) is a wiggly pair, then also (4.4) holds.

(d) If (i, i+ 1) is a dashed pair, then

cr(i+ 1, π) = hi−1 + 1− ξi (4.5a)

ne(i+ 1, π) = ξi − 1 (4.5b)

Proof. (a) Each of the hi−1 arches that are “started but unfinished” after stage i− 1 will
either cross or nest the arch that starts at i; so this is an immediate consequence of the
definition (2.12).

(b,c) Look at the hi−1 arches that are “started but unfinished” after stage i− 1, and
let the openers of these arches be x1 < x2 < . . . < xhi−1

; by definition the vertex i is
paired with xξi . Then each arch starting at a point xj with j < ξi must nest with (and
lie above) the arch from xξi to i, while each arch starting at a point xj with j > ξi must
cross the arch from xξi to i.

(d) Let x1 < x2 < . . . < xhi−1
be as before; and let xhi−1+1 = i. By definition the

vertex i + 1 is paired with xξi . Then the counting of nestings and crossings is exactly as
in (b,c), but with hi−1 replaced by hi−1 + 1.

Step 5: Computation of the weights (2.19). Using the bijection, we transfer the
weights (2.17) from the super-augmented perfect matching τ to the labeled Schröder path
(ω, ξ) and then sum over ξ to obtain the weight W (ω). This weight is factorized over the
individual steps si, as follows:

• If si is a rise starting at height hi−1 = k (so that i is a pure opener), then from (4.3)
the weight is

ak = ak . (4.6)

• If si is a fall starting at height hi−1 = k (so that i is a pure closer), then from (4.4)
the weight is

bk =
k∑

ξi=1

bk−ξi, ξi−1 = b?k−1 (4.7)

where b?k−1 was defined in (2.20).
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• If si is a long level step of type 1 at height hi−1 = k (so that (i, i + 1) is a wiggly
pair and k > 1), then from (4.4) the weight is

c
(1)
k =

k∑
ξi=1

fk−ξi, ξi−1 = f?k−1 . (4.8)

• If si is a long level step of type 2 at height hi−1 = k (so that (i, i + 1) is a dashed
pair), then from (4.5) the weight is

c
(2)
k =

k+1∑
ξi=1

gk+1−ξi, ξi−1 = g?k . (4.9)

Setting αi = ai−1bi and δi = c
(1)
i−1+c

(2)
i−1 as instructed in (3.4), we obtain the weights (2.19).

This completes the proof of Theorem 3.

A Bijection between augmented perfect matchings

and phylogenetic trees

We will now describe a bijection between augmented perfect matchings of [2n] con-
taining ` wiggly lines and phylogenetic trees with n+ 1 leaves and n− ` internal vertices.
This bijection is illustrated in Figure 3.

Given an augmented perfect matching P of [2n], we construct an arch system P ′ on
[2n+ 1] as follows: For each arch (i, j) in P , we draw the arch (i, j + 1) in P ′ as well as a
horizontal line (i, i+ 1). If j and j + 1 are joined by a wiggly line in P , we make the arch
(i, j + 1) wiggly in P ′. Now each vertex i > 2 in P ′ is joined to exactly one vertex on its
left: if i − 1 is an opener in P , then i is joined to i − 1 by a horizontal line; whereas if
i− 1 is a closer in P , then i is the closer of an arch in P ′. Hence the graph formed by P ′

is a tree. Moreover, each opener in P ′ is joined to exactly two vertices on its right: one
by an arch and one by a horizontal edge. And each non-opener in P ′ is not joined to any
vertices on its right.

We now label the vertices in P ′ that are not openers by using the numbers 1, . . . , n+1
in order from left to right (shown in black roman font in Figure 3). Each labeled vertex
in P ′ is not joined to any vertices on its right. Hence we can define a planar rooted
binary tree T2 that is isomorphic as a labeled graph to P ′, such that horizontal edges in
P ′ correspond to left edges in T2, while arches in P ′ correspond to right edges of T2 (which
are wiggly whenever the corresponding arch is wiggly). Since wiggly edges in the perfect
matching join closers to openers, the child of a wiggly edge in T2 cannot be a leaf.

Finally, to construct the phylogenetic tree T , we simply contract all wiggly edges of
T2. Since the child of a wiggly edge in T2 cannot be a leaf, each internal vertex in T has
at least two children, so T is indeed a phylogenetic tree.

To show that this is a bijection, we will describe the reverse transformation. Given a
phylogenetic tree T , we start by labeling each internal vertex of T with the minimum label
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Figure 3: An augmented perfect matching P (top row) and the corresponding phyloge-
netic tree T (bottom row), along with the intermediate steps in the bijection: the arch
system P ′ (second row) and the planar rooted binary tree T2 (third row). In the forward
direction of the bijection, only the black parts are used. The extra labels used in the
reverse bijection are shown in red italic.
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amongst its descendants (shown in red italic in Figure 3). We then order the children
of each vertex from left to right in increasing order of their label. It is easy to see that
the tree T constructed from an augmented perfect matching will always be drawn in this
way. Now we will describe how to construct the tree T2 from T . For each vertex v with
degree at least 3, let c1, c2, . . . , ck be the children of v in order from left to right (that is,
in increasing order of labels). Then we split v into a sequence of vertices v1, . . . , vk−1 of
out-degree 2 so that the left child of vi is ci and the right child of vi is vi+1 if i < k − 1,
while the right child of vk−1 is ck. Moreover, each edge joining vi to its right child vi+1 is
wiggly. We then label each new vertex with the same label as its left child. To construct
P ′ from T2, we just have to order the vertices from left to right. If u and v are vertices
of T2 such that u has a lower label than v, then we say u < v, and if v is the left child of
u (so they have the same label) then we also say u < v. We construct P ′ by placing the
vertices in increasing order according to <. Finally P is constructed from P ′ by creating
an arch (i, j) for each arch (i, j+ 1) in P ′, and a wiggly line (j, j+ 1) for each wiggly arch
(i, j + 1) in P ′.

Since the transformations between P and T are inverses, each transformation is a
bijection.

B Recurrence for polynomials defined by the general

linear T-fraction

Consider the T-fraction with coefficients αi = x+ (i− 1)u and δi = z + (i− 1)w, and
let Wn(x, u, z, w) be the polynomials that it generates:

f(t;x, u, z, w)
def
=

∞∑
n=0

Wn(x, u, z, w) tn (B.1a)

def
=

1

1− zt−
xt

1− (z + w)t−
(x+ u)t

1− (z + 2w)t−
(x+ 2u)t

1− · · ·

. (B.1b)

We will prove:

Proposition 9. The ordinary generating function f(t;x, u, z, w) satisfies the nonlinear
partial differential equation

f = 1 + (u+ z)tf + ut2ft + (u+ w)t(ufu + xfx) + (x− u)tf 2 . (B.2)

Equivalently, the polynomials Wn(x, u, z, w) satisfy the nonlinear differential recurrence

Wn = δn0 + (z+nu)Wn−1 + (u+w)
(
u
∂Wn−1

∂u
+x

∂Wn−1

∂x

)
+ (x−u)

n−1∑
j=0

WjWn−1−j (B.3)
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where W−1
def
= 0.

In particular, when we restrict to u = x, we obtain a linear partial differential equation
and a linear differential recurrence:

Corollary 10. The ordinary generating function g(t;x, z, w)
def
= f(t;x, x, z, w) satisfies

the linear partial differential equation

g = 1 + (x+ z)tg + xt2gt + x(x+ w)tgx . (B.4)

Equivalently, the polynomials Pn(x, z, w)
def
= Wn(x, x, z, w) satisfy the linear differential

recurrence

Pn = δn0 + (z + nx)Pn−1 + x(x+ w)
∂Pn−1
∂x

(B.5)

where P−1
def
= 0. Equivalently, if we write Wn(x, x, z, w) =

n∑
k=0

Wn,k(z, w)xk, then the

polynomials Wn,k(z, w) satisfy the linear recurrence

Wn,k = (n+ k − 1)Wn−1,k−1 + (z + kw)Wn−1,k for n > 1 (B.6)

with initial condition W0,k = δk0.

When z = 0 and w = 1, the recurrence (B.6) reduces to (1.6).
On the other hand, when we restrict to w = −u, the ordinary generating function

satisfies a nonlinear ordinary differential equation of Riccati type:

Corollary 11. The ordinary generating function h(t;x, u, z)
def
= f(t;x, u, z,−u) satisfies

the Riccati equation

h = 1 + (u+ z)th + ut2h′ + (x− u)th2 (B.7)

where ′ denotes ∂/∂t. Equivalently, the polynomials Qn(x, u, z)
def
= Wn(x, u, z,−u) satisfy

the nonlinear recurrence

Qn = δn0 + (z + nu)Qn−1 + (x− u)
n−1∑
j=0

QjQn−1−j (B.8)

where Q−1
def
= 0.

And finally, when we restrict to u = 0, the ordinary generating function satisfies a
nonlinear ordinary differential equation of Riccati type, but in the variable x rather than
t:

Corollary 12. The ordinary generating function H(x; t, z, w)
def
= f(t;x, 0, z, w) satisfies

the Riccati equation
H = 1 + ztH + wxtHx + xtH2 . (B.9)
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Figure 4: The five cases in the proof of Proposition 9.

Proof of Proposition 9. A combinatorial interpretation of the polynomials Wn(x, u, z, w)
was given in Theorem 2: namely, Wn(x, u, z, w) is the generating polynomial for super-
augmented perfect matchings of [2n] in which each pure closer with crossing number 0 gets
a weight x, each pure closer with crossing number > 1 gets a weight u, each dashed line
for which the two endpoints belong to the same arch gets a weight z, each other dashed
line gets a weight w′′, and each wiggly line gets a weight w′, whenever w = w′+w′′. Here
we use the interpretation with w′ = 0, so that wiggly lines are forbidden.

The contribution to f from the case with no arches (n = 0) is clearly 1. Otherwise,
let the arch whose opener is vertex 1 be called α, and call the closer of this arch cα. Let
A′ be the perfect matching that remains when α, its incident vertices and their incident
dashed lines are removed, and let ta+b+c+dxaubzcwd be the contribution of A′ to f . We
will proceed by considering five cases for the type of α, as illustrated in Figure 4.

Case (i) is when vertex 1 is incident on a dashed line. Then vertex 2 is a closer, so
it must close α, i.e. cα = 2. Then A′ can be any dash-augmented arch system, so the
contribution from this case is ztf .

In the remaining four cases, vertex 1 is a pure opener. Case (ii) is when cα is incident on
a dashed line. Then α contributes the weight wt. The closer cα can be placed immediately
after any pure opener in A′, of which there are a + b. Hence the contribution to f from
arch systems corresponding to the smaller arch system A′ is (a+ b)ta+b+c+d+1xaubzcwd+1.
Summing this over all possible arch systems A′ yields the contribution wt(ufu+xfx) from
this case.

In the remaining three cases, cα is a pure closer. Case (iii) is when cα immediately
follows the opener of a different arch (then cα necessarily has crossing number > 1). This
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is identical to Case (ii) except that we do not attach a dashed line to cα, so α contributes
the weight ut instead of wt. Hence the contribution from this case is ut(ufu + xfx).

Case (iv) is when α has crossing number 0. Then the arch system A′ separates into
two sections A′1 and A′2, as shown in Figure 4, where A′1 is the section contained under
α and A′2 is the section which follows cα. The arch α contributes the weight xt, so the
contribution from this case is xtf 2.

Case (v) is when α has crossing number > 1 and cα immediately follows another closer.
If we remove the condition that α has crossing number > 1, then cα can follow any closer
in A′, so there are a+ b+ c+ d possible positions for cα. Ignoring the weight contributed
by α, these are counted by tft. Now we subtract f 2 from this to remove the cases where α
has crossing number 0 (namely, Case (iv)); however, we add back f to account for the case
in which cα is vertex 2. Multiplying all this by the weight ut of α yields the contribution
ut(tft − f 2 + f) for this case.

Adding the contributions from all five cases yields the desired result.

Finally, let us use Corollary 10 to prove the formula (1.25)/(1.26) corresponding to
the case u = x:

Proof of (1.25)/(1.26). Multiply (B.5) by tn/n! and sum over n > 0: this shows that the
exponential generating function

W(t;x, z, w)
def
=

∞∑
n=0

Wn(x, x, z, w)
tn+1

(n+ 1)!
(B.10)

[cf. (1.17)] satisfies the linear partial differential equation

Wt = 1 + zW + xtWt + x(x+ w)Wx . (B.11)

Now let F (t;x, z, w) be the compositional inverse ofW(t;x, z, w) with respect to t, which
satisfies

W
(
F (t;x, z, w); x, z, w

)
= t . (B.12)

Differentiation of (B.12) yields Wt = 1/Ft and Wx = −Fx/Ft (where of course W is
evaluated at t← F (t;x, z, w)). Evaluating (B.11) at t← F (t;x, z, w) then shows that F
satisfies the linear partial differential equation

Ft = 1 − xF − ztFt + x(x+ w)Fx . (B.13)

The function F (t;x, z, w) is uniquely determined by this partial differential equation to-
gether with the initial condition F (0;x, z, w) = 0. And it is straightforward to verify that
the expression (1.26) indeed satisfies (B.13).
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