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Abstract

We define a d-balanced equi-n-square L = (lij), for some divisor d of n, as an
n×n matrix containing symbols from Zn in which any symbol that occurs in a row or
column, occurs exactly d times in that row or column. We show how to construct a
d-balanced equi-n-square from a partition of a Latin square of order n into d×(n/d)
subrectangles. In design theory, L is equivalent to a decomposition of Kn,n into d-
regular spanning subgraphs of Kn/d,n/d. We also study when L is diagonally cyclic,
defined as when l(i+1)(j+1) = lij + 1 for all i, j ∈ Zn, which corresponds to cyclic
such decompositions of Kn,n (and thus α-labellings).

We identify necessary conditions for the existence of (a) d-balanced equi-n-
squares, (b) diagonally cyclic d-balanced equi-n-squares, and (c) Latin squares of
order n which partition into d× (n/d) subrectangles. We prove the necessary con-
ditions are sufficient for arbitrary fixed d > 1 when n is sufficiently large, and we
resolve the existence problem completely when d ∈ {1, 2, 3}.

Along the way, we identify a bijection between α-labellings of d-regular bipartite
graphs and what we call d-starters: matrices with exactly one filled cell in each top-
left-to-bottom-right unbroken diagonal, and either d or 0 filled cells in each row and
column. We use d-starters to construct diagonally cyclic d-balanced equi-n-squares,
but this also gives new constructions of α-labellings.

Mathematics Subject Classifications: 05B15, 05C51, 05C78
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1 Introduction

An n× n matrix containing exactly n copies of each symbol from a set of size n is called
an equi-n-square (or gerechte framework [9, 11], or gerechte skeleton [33]). We typically
use Zn as the symbol set. We call an equi-n-square d-balanced if any symbol that occurs
in a row or column, occurs exactly d times in that row or column. The question we focus
on in this paper is:

For what parameters d and n do there exist d-balanced equi-n-squares?

Examples of balanced equi-n-squares are given in Figure 1. Balanced equi-n-squares are
a generalization of Latin squares: Latin squares are precisely 1-balanced equi-n-squares.

0 0 1 1 2 2

0 2 0 3 3 2

3 0 0 1 3 1

3 4 4 3 5 5

4 2 4 5 2 5

4 4 1 5 5 1

0 0 0 3 3 3 6 6 6

7 1 1 1 4 4 4 7 7

8 8 2 2 2 5 5 5 8

0 0 0 3 3 3 6 6 6

7 1 1 1 4 4 4 7 7

8 8 2 2 2 5 5 5 8

0 0 0 3 3 3 6 6 6

7 1 1 1 4 4 4 7 7

8 8 2 2 2 5 5 5 8

Figure 1: An example of a 2-balanced equi-6-square and a 3-balanced equi-9-square.

A square matrix L = (lij) on the symbol set Zn, with rows and columns indexed by
Zn, which satisfies the property

l(i+1)(j+1) = lij + 1 (1)

is called diagonally cyclic. The 3-balanced equi-9-square in Figure 1 is a diagonally cyclic
matrix. Diagonally cyclic equi-n-squares are a generalization of diagonally cyclic Latin
squares [34] (which are diagonally cyclic equi-1-squares).

We observe that: (a) diagonally cyclic n× n matrices on the symbol set Zn are equi-
n-squares (since each of the n broken diagonals contains each symbol exactly once), and
(b) diagonally cyclic matrices L = (lij) are uniquely determined by their first row.

A subrectangle (resp. subsquare) of a Latin square is a rectangular (resp. square)
submatrix in which the number of distinct symbols equals the number of columns. The
following lemma gives necessary conditions for the existence of d-balanced equi-n-squares,
and describes a relationship between d-balanced equi-n-squares and Latin squares of order
n which decompose into d× (n/d) subrectangles.
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Lemma 1 (Necessary conditions).

1. For a d-balanced equi-n-square to exist, d must be a divisor of n, and d2 6 n.

2. If d is even, for a diagonally cyclic d-balanced equi-n-square to exist, d must be a
divisor of n/2.

3. For a diagonally cyclic 1-balanced equi-n-square (i.e., a diagonally cyclic Latin
square) to exist, n must be odd.

4. For d > 1, a Latin square of order n that decomposes into d × (n/d) subrectangles
exists only if a d-balanced equi-n-square exists.

Proof. The symbols in the first row of a d-balanced matrix induce a partition of the
n column indices into parts of size d, so d must divide n. A d-balanced equi-n-square
L = (lij) has > d rows in which the symbol 0 occurs, and in each of those rows the
symbol 0 occurs d times. Thus, since the symbol 0 occurs n times, we must have d2 6 n.
This proves the first claim.

Now suppose L is diagonally cyclic and d is even. The sum of the symbols in any row
or column of L must be divisible by d (as each symbol which occurs, occurs exactly d
times). In particular, the first column of L contains the multiset of symbols {l0j − j}n−1

j=0 ,
from which we obtain

n−1∑
j=0

(
l0j − j

)
︸ ︷︷ ︸

sum of first column
=⇒ divisible by d

=
n−1∑
j=0

l0j︸ ︷︷ ︸
sum of first row

=⇒ divisible by d

+
n(n− 1)

2
.

If d = 1 the first row and first column have the same sum, implying n(n − 1)/2 ≡ 0
(mod n) which is satisfied only if n is odd, which implies the third claim; now assume
d > 2. As d divides n and d > 2, we know d is coprime to n − 1, so the above equation
implies that d divides n/2, proving the second claim.

We defer the proof of the fourth claim to Lemma 8.

This paper proves, for d ∈ {1, 2, 3} the necessary conditions in Lemma 1 are sufficient
(with some small exceptions), and for all d > 1 the necessary conditions in Lemma 1 are
sufficient except for finitely many n. Specifically, we prove the following two theorems.

Theorem 1. For n > 1,

1. • a 1-balanced equi-n-square exists for all n,

• a diagonally cyclic 1-balanced equi-n-square exists if and only if n is odd, and

• there exists a Latin square of order n which decomposes into 1×n subrectangles
for all n;

2. • a 2-balanced equi-n-square exists if and only if n is even and n 6= 2,
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• a diagonally cyclic 2-balanced equi-n-square exists if and only if 4 divides n,
and

• there exists a Latin square of order n which decomposes into 2 × (n/2) sub-
rectangles for all even n 6∈ {2, 6}; and

3. • a 3-balanced equi-n-square exists if and only if 3 divides n and n > 9,

• a diagonally cyclic 3-balanced equi-n-square exists if and only if 3 divides n
and n > 9, and

• there exists a Latin square of order n which decomposes into 3 × (n/3) sub-
rectangles if and only if 3 divides n and n > 9.

Theorem 2. For sufficiently large n,

1. a d-balanced equi-n-square exists if and only if d divides n,

2. a diagonally cyclic 1-balanced equi-n-square exists if and only if n is odd,

3. for odd d > 3, a diagonally cyclic d-balanced equi-n-square exists if and only if d
divides n,

4. for even d > 2, a diagonally cyclic d-balanced equi-n-square exists if and only if 2d
divides n, and

5. there exists a Latin square of order n which partitions into d× (n/d) subrectangles
if and only if d divides n.

When d = 1, we are working with Latin squares of order n, which exist for all n > 1
(e.g. the Cayley table of Zn); the rows of a Latin square of order n partition it into 1× n
subrectangles. It is well known that diagonally cyclic Latin squares exist for odd n > 1
and do not exist for even n (an early proof was given by Euler [16]; the d = 1 case of
Lemma 1 is essentially the same proof). This proves Theorem 1 for d = 1. The rest of
this paper is primarily devoted to proving the remaining cases.

Except for 2-balanced equi-6-squares (which exist; see Figure 1), constructing the
d-balanced equi-n-squares required to prove Theorems 1 and 2 is achieved through con-
structing Latin squares of order n that decompose into d × (n/d) subrectangles, then
applying the construction in Section 3.

An equi-n-square that is orthogonal to a Latin square (i.e., like symbols in the equi-
n-square correspond to n distinct symbols in the Latin square) are together called a
gerechte design (attributed to [5] by [2]). When re-using a field after an agricultural
experiment, a gerechte design can be used to balance the carry-over effects from the
previous experiment [2]. Vaughan [33] showed the NP-completeness of deciding if an
equi-n-square is orthogonal to some Latin square. A Latin square with a decomposition
into d× (n/d) subrectangles differs from gerechte designs: in a d-balanced equi-n-square
(a) each symbol in the equi-n-square corresponds to a set of n cells in the Latin square that
contains exactly d copies of n/d distinct symbols, and (b) we insist on the subrectangles
being d× (n/d) rectangular matrices.
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2 Diagonally cyclic balanced equi-n-squares and α-labellings

A d-balanced equi-n-square is equivalent to a decomposition of Kn,n into d-regular n-edge
spanning subgraphs of Kn/d,n/d (the k-th component has a biadjacency matrix correspond-
ing to the occurrences of symbol k in the d-balanced equi-n-square). The decomposition
equivalent to the 2-balanced equi-6-square in Figure 1 is given in Figure 2.

Figure 2: The decomposition of K6,6 corresponding to the 2-balanced equi-6-square in
Figure 1.

A decomposition G of Kn,n with vertex partition {1, . . . , n} ∪ {n+ 1, . . . , 2n} is cyclic
if mapping each vertex to its next highest integer (except where n is mapped to 1 and
2n is mapped to n + 1) is a permutation of the decomposition G. Diagonally cyclic d-
balanced equi-n-squares L = (lij) are equivalent to cyclic decompositions of Kn,n into
d-regular spanning subgraphs of Kn/d,n/d as follows. We assume Kn,n has the vertex
bipartition {ui}i∈Zn ∪ {vi}i∈Zn . We construct a d-regular spanning subgraph from L for
each k by taking the set of edges uivj when lij = k. In particular, the starter is this d-
regular spanning subgraph when k = 0. Note that by construction, each of the d-regular
spanning subgraph can be obtained by cyclically rotating the starter.

We identify a particular type of starter (in matrix form) which is helpful in constructing
diagonally cyclic d-balanced equi-n-squares. For d > 1, we call an r × s matrix A a
d-starter if:

• every row either contains 0 or d filled cells,

• every column either contains 0 or d filled cells,

• every top-left to bottom-right (unbroken) diagonal contains exactly one filled cell,
and

• the number of filled cells in A is r + s− 1.

Actually, the third condition above implies the fourth, but it is useful to make it explicit.
Figure 3 depicts some 3-starters.

A d-starter A with n filled cells gives rise to a starter for Kn,n with an edge uivj
whenever cell (i, j) is filled. A starter for Kn,n arising from a d-starter has three special
properties: it has n edges, vertices have degree d or 0, and each value of i− j (mod n) is
used exactly once. (Actually, this last property holds for all starters.)
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Figure 3: Examples of 3-starters.

A d-starter with n filled cells also describes the placement of zeroes in a diagonally
cyclic d-balanced equi-n-square, with an example depicted in Figure 4.

Lemma 2. If a d-starter with n filled cells exists, then a diagonally cyclic d-balanced
equi-n-square exists.

Proof. We embed the d-starter in an n×n diagonally cyclic matrix L over Zn. The filled
cells in the d-starter form the 0s in L. The requirement that each unbroken diagonal in
a d-starter has exactly one filled cell implies this process indeed generates a diagonally
cyclic matrix. The diagonally cyclic property ensures L is an equi-n-square.

Suppose L is not d-balanced, and some row (resp. column) i contains x 6∈ {0, d} copies
of some symbol k. The diagonally cyclic property implies row (resp. column) i−k contains
x zeroes, contradicting the d-starter property.

Not all diagonally cyclic d-balanced equi-n-squares arise from d-starters; Figure 4
(right) gives a non-trivial example of a diagonally cyclic 2-balanced equi-12-squares which
does not arise from a 2-starter. There are also 1-balanced equi-n-squares for all odd n,
but not 1-starters as we note in the following lemma. However, 1-starters are a special
case.

Lemma 3. The only 1-starters have dimensions 1× 1.

Lemma 3 can be proved by considering entries closest to the top-right corner; a full
proof is neither challenging nor enlightening, so we omit it. Lemma 3 excludes some
possibilities in applying the following lemma (Lemma 4).
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9 0 0 0 4 4 4 7 7 9 7 9

10 10 1 1 1 5 5 5 8 8 10 8

9 11 11 2 2 2 6 6 6 9 9 11

0 10 0 0 3 3 3 7 7 7 10 10

11 1 11 1 1 4 4 4 8 8 8 11

0 0 2 0 2 2 5 5 5 9 9 9

10 1 1 3 1 3 3 6 6 6 10 10

11 11 2 2 4 2 4 4 7 7 7 11

0 0 0 3 3 5 3 5 5 8 8 8

9 1 1 1 4 4 6 4 6 6 9 9

10 10 2 2 2 5 5 7 5 7 7 10

11 11 11 3 3 3 6 6 8 6 8 8

0 0 7 7 9 9 4 4 6 6 10 10

11 1 1 8 8 10 10 5 5 7 7 11

0 0 2 2 9 9 11 11 6 6 8 8

9 1 1 3 3 10 10 0 0 7 7 9

10 10 2 2 4 4 11 11 1 1 8 8

9 11 11 3 3 5 5 0 0 2 2 9

10 10 0 0 4 4 6 6 1 1 3 3

4 11 11 1 1 5 5 7 7 2 2 4

5 5 0 0 2 2 6 6 8 8 3 3

4 6 6 1 1 3 3 7 7 9 9 4

5 5 7 7 2 2 4 4 8 8 10 10

11 6 6 8 8 3 3 5 5 9 9 11

Figure 4: Depicting how d-starters (blue cells, which contain symbol 0) gives rise to
diagonally cyclic d-balanced equi-n-squares (which are equivalent to cyclic decompositions
of Kn,n). Right: A diagonally cyclic 2-balanced equi-12-square that does not come from
a 2-starter.

We make use of d-starters because of their simplicity, and because they admit the fol-
lowing direct product construction. We illustrate how this construction works in Figure 5.
Also, we feel d-starters are interesting combinatorial matrices in their own right.

Lemma 4. Given a d1-starter A with n1 zeroes and a d2-starter B with n2 zeroes, then
there exists a d1d2-starter A⊗B with n1n2 zeroes.

Proof. We embed B in the top-right corner of an n2×n2 matrix B∗. There are n2 unbroken
diagonals of B∗ which contain a cell in the top row, and each of them contains exactly
one filled cell.

We blow up A, replacing each filled cell with a copy of B∗, and each empty cell with
an n2 × n2 all-empty matrix (this is the direct product of A and B∗, also known as the
Kronecker product). We then delete any boundary rows and columns that do not contain
a zero. The result is what we call A⊗B.

Suppose A is an r1× s1 matrix, and B is an r2× s2 matrix. In this process, we delete
the bottom n2 − r2 empty rows and left-most n2 − s2 empty columns. Thus we end up
with an (r1n2 − n2 + r2)× (s1n2 − n2 + s2) matrix. The number of unbroken diagonals is

(r1n2 − n2 + r2) + (s1n2 − n2 + s2)− 1 = (r1 + s1 − 1)n2 − n2 + r2 + s2 − 1

= n1n2

since n1 = r1 + s1 − 1 and n2 = r2 + s2 − 1. Since the number of filled cells is n1n2, to
prove that A⊗B is a d1d2-starter, we check there are no empty unbroken diagonals.

Prior to deleting empty boundary rows and columns, the direct product is composed
of n2×n2 blocks: some empty, and some containing the d2-starter. Shrinking the blocks to
a single cell regains the d1-starter. Moreover, any unbroken diagonal of the direct product
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(after deleting the empty boundary rows and columns) maps to an unbroken diagonal of
the d1-starter corresponding to the n2 × n2 blocks it intersects in their top rows. This
unbroken diagonal of the d1-starter contains exactly one filled cell, which corresponds to
the only non-empty n2×n2 block that the original unbroken diagonal of the direct product
intersects in its top row. Thus, any unbroken diagonal in the direct product intersects the
top row of some non-empty n2 × n2 block. Since each non-empty n2 × n2 block contains
a copy of the d2-starter in the top-right corner, this unbroken diagonal has a filled cell.

It is clear from the construction that each row and each column contain either 0 or
d1d2 filled cells.

a 3-starter

a 2-starter

their direct product: a 6-starter

Figure 5: The direct product of a 3-starter with a 2-starter.

Lemma 1 implies that for a diagonally cyclic d-balanced equi-n-square to exist when
d > 2, we must have either

• d is odd, and d divides n, or

• d is even, and 2d divides n.

Thus, for the purposes of proving Theorem 2 in the diagonally cyclic case, we need only
consider prime d, then take direct products according to Lemma 4.

Since diagonally cyclic d-balanced equi-n-squares are equivalent to cyclic decomposi-
tions of Kn,n into isomorphic copies of a d-regular graph with n edges (ignoring isolated
vertices), we begin by looking at constructions in the graph-decomposition literature.
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For the d = 2 case, we require n ∈ {4, 8, 12, . . .} for a diagonally cyclic d-balanced equi-
n-square to exist (by Lemma 1). Rosa [27] and Huang and Rosa [22] showed that when
n is a multiple of 4, the complete bipartite graph Kn,n can be cyclically decomposed into
copies of Cn (see also [14]), which proves the d = 2 diagonally cyclic case of Theorem 1.
The constructions of [22, 27] are effectively the 2-starters depicted in Figure 6, in the
present paper’s terminology.

4 zeroes
8 zeroes 12 zeroes 16 zeroes

Figure 6: Small 2-starters which generate the 2-balanced equi-n-squares in [22, 27] (after
permuting the rows).

For the d = 3 case, we require n ∈ {3, 6, 9, . . .}. Constructions of d-balanced equi-n-
squares arise from α-labellings (attributed to Rosa [27] in Gallian’s dynamic survey [19]).
A graceful labelling of an n-edge graph G is an injection f from V (G) to {0, 1, . . . , n}
such that when each edge xy is assigned the label |f(x)− f(y)|, the resulting edge labels
are distinct. An α-labelling is a graceful labelling with the additional property that there
exists an integer k so that for each edge xy either f(x) 6 k < f(y) or f(y) 6 k < f(x).
An example of an α-labelling is given in Figure 7.

0 7 6 8 5 15 4

16 3 11 2 20 1 21

7 1 2 3 10 11

13 8 9 18 19 20

12

2116 4 5 6 15 14 17

Figure 7: The α-labelling (blue) of the 14-vertex 21-edge Möbius ladder given in [24],
with parameter k = 6.

El-Zanati and Vanden Eynden [12] showed that if an n-edge graph G admits an α-
labelling, then Kn,n cyclically decomposes into subgraphs isomorphic to G as follows.
Suppose Kn,n has the vertex bipartition {ui}i∈Zn ∪ {vi}i∈Zn . Given an α-labelling f of G,
we map edges as follows:

xy 7→
{
uf(x)vf(y) if f(x) 6 k

vf(x)uf(y) otherwise.

The distinct values of |f(x) − f(y)| ensure edges are used exactly once when cyclically
rotated. If G is a d-regular graph with n edges, then this decomposition is equivalent to
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a diagonally cyclic d-balanced equi-n-square. Figure 8 depicts the biadjacency matrix of
the Möbius ladder in Figure 7 arising from its given α-labelling.

7 16 21

14 19 20

6 9 18

4 8 13

11 12 17

3 10 15

1 2 5

0

1

2

3

4

5

6

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 8: The biadjacency matrix of the Möbius ladder that cyclically decomposes K21,21

derived from the α-labelling in Figure 7, with rows {0, 1, . . . , 6} and columns {7, 8, . . . , 21}.
The filled cells form a 3-starter. We number the filled cells from bottom-left to top-right
using the numbers 1 to 21 sequentially; they correspond to the edge labels arising from
the α-labelling in Figure 7.

A technicality for α-labellings is that we treat n and 0 distinctly in the α-labelling
(since we require |n − 0| = n), but when constructing the bipartite graph or diagonally
cyclic d-balanced equi-n-square, these represent the same index (since indices are in Zn).

Pasotti [24] described an α-labelling of the Möbius ladder on 2k vertices for odd k > 3
(and Figure 7 is one example). Frucht and Gallian [18] gave α-labellings for the prism
Ck�K2 for even k > 4, and we give an example in Figure 9. In either case, the graphs
have 3k edges, and thus give rise to diagonally cyclic 3-balanced equi-n-squares for all
n ∈ {3k : odd k > 3} ∪ {3k : even k > 4} = {9, 12, . . .}. Wannasit and El-Zanati [35]
later showed that bipartite prisms, bipartite Möbius ladders, and connected bipartite
graphs with at most 14 vertices admit “free” α-labellings (excluding C4), which relates to
Lemma 7.

12 1 9 6

0 10 5 7

11 8 3

10 5 2

7

6

12 9 4 1

7 10 12

8 9 11

2 4 5

1 3 6

0

1

2

3

4

5

6

7 8 9 10 11 12

Figure 9: Left: The α-labelling of the 8-vertex 12-edge prism C4�K2 given in [18], with
parameter k = 6. Right: its 3-starter with rows {0, 1, . . . , 6} and columns {7, 8, . . . , 12}.
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The following theorem establishes that d-starters are equivalent to α-labellings of d-
regular bipartite graph.

Theorem 3. For d > 1, a d-starter A is equivalent to an α-labelling of the d-regular
bipartite graph with biadjacency matrix corresponding to A. Thus, a d-starter exists if
and only if some d-regular bipartite graph admits an α-labelling.

Proof. Suppose A = (aij) is an r × s d-starter. We construct a bipartite graph with
biadjacency matrix B = (bij) with bij = 1 if and only if aij is filled. The rows of
B correspond to vertices labeled {0, 1, . . . , r − 1} and the columns of B correspond to
vertices labeled {r, r + 1, . . . , r + s − 1}. We delete vertices corresponding to an empty
row or column. We observe the labelling is a graceful labelling: (a) if there is a filled
cell in row i and column j, then by definition we have an edge from vertex j to vertex i
labelled j − i, and this label is unique since A is a d-starter, and (b) the number of edges
is r + s− 1. It is an α-labelling with parameter k = r − 1.

Now suppose we have an α-labelling f of a d-regular bipartite graph G, with parameter
k and vertex labels belonging to {0, 1, . . . , h} (where a vertex labelled h exists). We
construct a k × (h − k + 1) d-starter A = (aij), with rows {0, 1, . . . , k − 1} and columns
{k, k + 1, . . . , h} with a filled cell aij whenever there is an edge between vertex i and
vertex j. Since G is d-regular, we have either d or 0 filled cells per row and column.
By definition of a graceful labelling, each value of |f(x)− f(y)| occurs exactly once; this
implies each unbroken diagonal in A contains exactly one filled cell. This verifies that A
is a d-starter.

The zeroes in Figure 4 (right) form the biadjacency matrix of the graph 3C4 (i.e.,
), which does not admit an α-labelling, so Theorem 3 implies it does not come

from a 2-starter (even after cyclically permuting its rows and columns). Thus not all
diagonally cyclic d-balanced equi-n-squares arise from d-starters, or equivalently from
α-labellings.

In light of Theorem 3, Lemma 4 implies that if bipartite graphs with biadjacency
matrices A and B both admit α-labellings, then so does the bipartite graph which has
the biadjacency matrix A ⊗ B, where ⊗ denotes the Kronecker product of matrices. In
general, this graph product is not the same as the Cartesian product for which there are
many known constructions of α-labellings: it is essentially a “half-Kronecker product” of
the graphs.

We turn our attention to proving the existence of d-starters with n filled cells when d
and n satisfy the necessary conditions (Lemma 1) for sufficiently large n.

Lemma 5. For d > 1, there exists a d-starter with d2 filled cells.

Proof. A d-starter is given by the (d2 − d + 1) × d matrix where all the cells in rows
{0, d, 2d, . . . , d2− d} are filled, and all other cells are empty. These matrices are depicted
below for d ∈ {1, 2, 3, 4}:
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By design, each column contains exactly d filled cells, and each row contains either 0
or d filled cells. For all i ∈ {1, 2, . . . , d} and j ∈ {0, 1, . . . , d − 1}, the unbroken diag-
onal containing cell (di − j, 0) contains exactly one filled cell, which is in row di. The
diagonal containing cell (0, i) contains exactly one filled cell, which is in row 0, for all
i ∈ {0, 1, . . . , d− 1}. Thus, all diagonals contain exactly one filled cell.

Theorem 3 implies Lemma 5 is equivalent to Kd,d having an α-labelling, thus Lemma 5
also follows from work in [3, 27], which [19] claims contain α-labellings of Kd,d.

Lemma 6. For d > 2, there exists a d-starter with 2d2 − 2d filled cells.

Proof. Define ri = (d−1)i and r̂i = d2−d+(d−1)i for i ∈ {0, 1, . . . , d−2}. We construct
a (2d2 − 4d+ 3)× (2d− 2) matrix with cells filled as tabulated below:

color filled cell whenever. . .
blue (ri, j) i ∈ {0, 1, . . . , d− 2} and j ∈ {0, . . . , i}
green (ri, j) i ∈ {0, 1, . . . , d− 2} and j ∈ {d+ i− 1, . . . , 2d− 3}
red (r̂i, j) i ∈ {0, 1, . . . , d− 2} and j ∈ {d− 2− i, . . . , 2d− 3− i}

We color the filled cells blue, green, and red. This matrix is depicted for d ∈ {2, 3, 4, 5} in
Figure 10. We claim this is a d-starter. We first note that (2d2− 4d+ 3) + (2d− 2)− 1 =
2d2 − 2d, i.e., the required number of filled cells in a d-starter with these dimensions.

Check I : no monochromatic clashes. Cells in the same row cannot clash (i.e., belong
to the same unbroken diagonal). If two cells (a, b) and (a′, b′) with a > a′ clash, then
a − a′ = b − b′. Thus, since indices of distinct non-empty rows differ by at least d − 1,
we must have b − b′ > d − 1. Thus, monochromatic clashes are not possible due to the
restrictions on column indices j. For example, red-red clashes are excluded since if a = r̂i
then b 6 2d− 3− i and b′ > d− 2− i′ for some i′ 6 i− 1, implying b− b′ 6> d− 1.

Check II : no blue-red and green-red clashes. For blue cells (a, b), the maximum dif-
ference a − b is d2 − 3d + 2, and for green cells (a, b), the maximum difference a − b is
d2 − 5d + 5. For red cells (a, b), the minimum difference a − b is d2 − 3d + 3. Then the
difference a− b for a red cell is always larger than the difference for a blue cell or a green
cell. As each cell in an unbroken diagonal has the same difference between its row and
column, this means that any unbroken diagonal containing a red cell cannot also contain
a blue or green cell. Thus there are no blue-red and green-red clashes.

Check III : no blue-green clashes. Since indices of rows containing blue and green cells
differ by a multiple of d− 1, if blue cell (ri, j) and green cell (ri′ , j

′) clash, then ri′ − ri =
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r0

r̂0

r0
r1

r̂0

r̂1

r0

r1

r2

r̂0

r̂1

r̂2

r0

r1

r2

r3

r̂0

r̂1

r̂2

r̂3

d = 2 d = 3 d = 4 d = 5

Figure 10: A d-starter in the proof of Lemma 6.

j′− j ≡ 0 (mod d− 1). Further j < j′ 6 2d− 3, so we have j′ = j + d− 1, which implies
ri′ = ri + d− 1, i.e., i′ = i + 1. The blue cells in row ri belong to columns {0, . . . , i} 3 j
and the green cells in row ri′ = ri+1 belong to columns {d + i, . . . , 2d − 3} 3 j + d − 1,
which is impossible.

Check IV : non-empty rows and columns contain d filled cells. By design, each row
contains either 0 or d filled cells. Also by design, each non-empty row is a cyclic shift of
the other non-empty rows in the array, where all possible cyclic shifts occur in some row;
this suffices to show each column contains d filled cells.

The graph G corresponding to the d-starter in Lemma 6 is the d-regular bipartite
graph with vertex bipartition {xi}i∈Zn ∪ {yi}i∈Zn , where n = 2d − 2, and edges between
each xi with each vertex in {yi, yi+1, . . . , yi+d−1}. Theorem 3 therefore implies G admits
an α-labelling.

The following lemma describes a way to “adjoin” special types of d-starters. It is
equivalent to the d-regular case of [13, Th. 1] by El-Zanati and Vanden Eynden which
adjoins “left-free” and “right-free” α-labellings of bipartite graphs.

Lemma 7. If there exists a d-starter with n1 filled cells with an empty second row and
a d-starter with n2 filled cells and an empty second-last row, then there exists a d-starter
with n1 + n2 filled cells.

The basic idea behind adjoining d-starters in Lemma 7 is depicted in Figure 11. We
can use Lemma 7 recursively: if {Ai}i>1 is a set of d-starters, where Ai has ni filled cells,
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where each Ai has at least 4 rows, and both the second row and second-last row of each
Ai is empty, then there exists a d-starter with n1 + · · ·+ nk filled cells, for all k > 1. We
use this idea to prove the following theorem.

A

B

Figure 11: An example of adjoining d-starters A and B in Lemma 7.

Theorem 4. If d > 1 is odd, a d-starter with n filled cells exists for all sufficiently large n
divisible by d; it does not exist if d does not divide n.

If d is even, a d-starter with n filled cells exists for all sufficiently large n divisible by
2d; it does not exist if 2d does not divide n.

Proof. When d > 3, Lemma 5 gives a d-starter with n1 := d2 filled cells, and Lemma 6
gives a d-starter with n2 := 2d2 − 2d filled cells: these both have more than 4 rows and
both have empty second rows and second-last rows. Thus, we recursively use Lemma 7
on these two d-starters.

Since

gcd(n1, n2) =

{
d if d is odd,

2d if d is even,

d-starters exist for all sufficiently large n that satisfy the necessary conditions in Lemma 1.

Theorem 4 implies diagonally cyclic d-balanced equi-n-squares exist for all sufficiently
large admissible n.

3 Decompositions into subrectangles

The following lemma gives a method for using a Latin square of order n which has been
partitioned into d × (n/d) subrectangles, for some divisor d of n, to obtain a d-balanced
equi-n-square. Figure 12 illustrates Lemma 8 where n = 10 and d = 2.

Lemma 8. Suppose for some divisor d of n there exists a Latin square L = (lij) of order n
whose entries can be partitioned into d×(n/d) subrectangles. If we index the subrectangles
0, 1, . . . , n− 1, and define an n× n matrix M where cell (lij, j) contains the index of the
subrectangle of L containing the cell (i, j), then M is a d-balanced equi-n-square.
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Proof. For each of the d copies of symbol k occurring in the t-th subrectangle of L, the
symbol t occurs in row k of M . Hence any row of M containing t contains exactly d copies
of t.

Similarly, for each of the entries in the j-th column of the t-th subrectangle of L, the
symbol t occurs in column j of M . Hence any column of M containing t contains exactly
d copies of t.

partitioned Latin square

0 1 2 3 4 5 6 7 8 9

1 4 0 2 3 6 7 8 9 5

9 7 4 0 5 2 8 3 1 6

2 0 6 4 8 3 9 5 7 1

6 2 3 1 7 4 5 9 0 8

8 9 7 5 0 1 4 2 6 3

5 6 9 8 2 7 3 1 4 0

4 3 1 9 6 8 2 0 5 7

7 8 5 6 9 0 1 4 3 2

3 5 8 7 1 9 0 6 2 4

map entry (i, j, lij)
to cell (lij , j)−−−−−−−−−−−−−−−→

2-balanced equi-10-square

Figure 12: Illustrating how a Latin square of order 10 partitioned into 2×5 subrectangles
gives rise to a 2-balanced equi-10-square as per Lemma 8. To avoid cluttering the figure,
we only show two symbols from the 2-balanced equi-10-square.

Thus, in this section, we describe constructions of Latin squares of order n which de-
compose into d×(n/d) subrectangles. We streamline the proofs by using König’s Theorem
which states that regular spanning subgraphs of Kn,n have 1-factorizations (although it
appears in a variety of forms). The following lemma is how we use König’s Theorem
throughout the paper.

Lemma 9 (König’s Theorem; variant). Let M be an n×n matrix containing symbols in Zn
and possibly some empty cells, in which any symbol s ∈ Zn occurs exactly as ∈ {0, 1, . . .}
times in every row and every column. Choose a set {As}s∈Zn of disjoint subsets of Zn,
where each |As| = as. Then there exists an n × n Latin square L whose cells contain a
symbol in As if and only if the corresponding cell in M contains the symbol s.

Furthermore, any as × as all-s submatrix in M corresponds with an as × as subsquare
in L on the symbols As.

For any a > 1 and b > a, we define the b× b matrix Ba,b(x) as having symbol x in cell
(i, j) whenever i + j (mod b) ∈ {0, 1, . . . , a − 1}, and the remaining cells empty. Some
examples are given in Figure 13.
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Figure 13: The matrix Ba,b(x) when a = 4 and b ∈ {4, 5, 6, 7}. Cells colored red contain
x.

We further define Aa,m(x) as the m × m block-diagonal matrix with main-diagonal
blocks

bm/ac−1 times︷ ︸︸ ︷
Ba,a(x), . . . , Ba,a(x), Ba,a+r(x),

where r = a (mod m). Some examples are given in Figure 14.

Figure 14: The matrix Aa,m(x) when a = 4 and m ∈ {12, 13, 14, 15}. Cells colored red
contain x.

For t ∈ Zm, let A
(t)
a,m(x) denote Aa,m(x) after mapping the contents of row i ∈ Zm to

row i+ t ∈ Zm. Finally, we define Ma,m,k as the union of the matrices

Aa,m(0), A(a+r)
a,m (1), . . . , A(k−1)(a+r)

a,m (k − 1),

where r = m (mod a), provided their non-empty cells do not overlap. By inspection, we
see that they do not overlap if and only if (k− 1)(a+ r) 6 m− (a+ r), that is, Ma,m,k is
defined provided m > k(a+ r). Some examples of matrices M4,m,3 are given in Figure 15
(we do not have an m = 19 example, since m > k(a+ r) is not satisfied in this case). In
Figure 15, it is important to note that each row intersects an a× a all-i block in M , for
some i.

The proofs in this section have a general theme:

1. We begin with the m×m matrix Ma,m,k for k ∈ {2, 3}.

2. We use König’s Theorem to turn it into an order-m Latin square.

3. We blow up this order-m Latin square using a direct product with a d × d Latin
square.
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16 17

18 23

Figure 15: The matrix M4,m,3 for m ∈ {16, 17, 18, 23}. Red cells contain 0, blue cells
contain 1, and green cells contain 2.

4. We replace the da × da subsquares that arise from the all-i blocks in Ma,m,k by
da × da subsquares which decompose into d × (d + 1) subrectangles (or something
similar). This gives an md ×md Latin square in which consecutive sets of d rows
{di, di+1, . . . , di+d−1} decompose into a small number of d×(d+1) subrectangles
and a large number of d× d subsquares.

5. We identify a partition of dm into d partitions of m, such that each partition of m
only has parts of sizes d and d+ 1. We group together the d× (d+ 1) subrectangles
and d×d subsquares in rows {di, di+1, . . . , di+d−1} accordingly in order to obtain
a decomposition of those rows into d×m subrectangles. For example, if d = 2 and
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m = 11 and the partition is

2× 11 = (3 + 3 + 3 + 2) + (3 + 2 + 2 + 2 + 2), (2)

then one 2 × 11 subsquare is formed from grouping three 2 × 3 subrectangles with
one 2× 2 subsquare (i.e., an intercalate), and the other 2× 11 subsquare is formed
from grouping one 2× 3 subrectangle with four intercalates.

We require some modifications to this general approach in individual cases. For brevity,
we use standard partition notation such as

2× 11 = (33, 2) + (3, 24)

to represent (2).

3.1 Case d = 2

When d = 2, for a 2-balanced equi-n-square to exist (and for a Latin square of order n
that can be partitioned into 2× (n/2) subrectangles to exist), Lemma 1 implies n must be
even. When n ≡ 0 (mod 4) there is an easy construction: a direct product gives a Latin
square of order n which decomposes into four (n/2) × (n/2) subsquares, each of which
decomposes into 2× (n/2) subrectangles. So we consider n ≡ 2 (mod 4).

An exhaustive computer search reveals that no 6×6 Latin square decomposes into 2×3
subrectangles. Figure 12 gives an example of order 10 and Figure 16 gives an example of
order 14. The next smallest case is 18.

We get close to decomposing a Latin square of order 6 into 2 × 3 subrectangles with
the following:

0 1 2 3 4 5
1 2 0 4 5 3
3 4 5 0 1 2
4 5 3 1 2 0
2 0 1 5 3 4
5 3 4 2 0 1

3 4 5 0 1 2
4 5 3 1 2 0
2 0 1 5 3 4
5 3 4 2 0 1
0 1 2 3 4 5
1 2 0 4 5 3

2 0 1 5 3 4
5 3 4 2 0 1
0 1 2 3 4 5
1 2 0 4 5 3
3 4 5 0 1 2
4 5 3 1 2 0

(3)

Here, the unhighlighted pairs of rows decompose into three 2× 2 subsquares.
We find larger Latin squares containing many 6 × 6 subsquares, and replace them

by the Latin squares in (3) (after relabelling the symbols), to ensure pairs of rows in
the larger Latin square contain odd-length cycles. This is the main idea of the following
construction.

Theorem 5. Let m > 9 be odd. Suppose there exists an m × m matrix M containing
symbols in {0, 1, 2} and empty cells with the properties:

• every row and every column contains exactly 3 copies of each symbol,
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1 2 3 4 5 6 7 8 9 10 11 12 13 0

2 1 5 6 7 4 3 9 10 11 8 13 0 12

8 4 6 11 2 1 9 13 3 5 12 0 7 10

11 7 8 3 12 5 0 6 13 9 10 2 4 1

12 9 11 7 0 13 1 10 4 8 3 5 6 2

3 12 13 1 10 11 2 4 5 0 7 8 9 6

13 8 1 10 9 3 5 0 12 6 2 4 11 7

6 13 12 8 4 0 11 3 2 7 9 1 10 5

4 11 0 5 3 8 6 12 7 1 13 10 2 9

10 5 9 0 8 2 12 11 1 4 6 7 3 13

9 0 7 13 6 12 10 1 11 2 4 3 5 8

5 6 4 2 1 10 13 7 8 3 0 9 12 11

0 3 10 9 13 7 8 2 6 12 5 11 1 4

7 10 2 12 11 9 4 5 0 13 1 6 8 3

0 1 2 3 4 5 14 15 18 19 20 21 8 6 7 11 9 10 12 13 16 17

1 2 0 4 5 3 15 14 19 18 21 20 11 9 10 8 6 7 13 12 17 16

3 4 5 0 1 2 20 21 16 17 18 19 6 7 8 9 10 11 14 15 12 13

4 5 3 1 2 0 21 20 17 16 19 18 7 8 6 10 11 9 15 14 13 12

2 0 1 5 3 4 18 19 20 21 12 13 9 10 11 6 7 8 16 17 14 15

5 3 4 2 0 1 19 18 21 20 13 12 10 11 9 7 8 6 17 16 15 14

12 13 14 15 16 17 8 6 7 11 9 10 20 21 0 1 2 3 4 5 18 19

13 14 12 16 17 15 11 9 10 8 6 7 21 20 1 0 3 2 5 4 19 18

15 16 17 12 13 14 6 7 8 9 10 11 18 19 20 21 0 1 2 3 4 5

16 17 15 13 14 12 7 8 6 10 11 9 19 18 21 20 1 0 3 2 5 4

14 12 13 17 15 16 9 10 11 6 7 8 4 5 18 19 20 21 0 1 2 3

17 15 16 14 12 13 10 11 9 7 8 6 5 4 19 18 21 20 1 0 3 2

6 7 18 19 20 21 0 1 2 3 4 5 14 12 13 17 15 16 10 11 8 9

7 6 19 18 21 20 1 2 0 4 5 3 17 15 16 14 12 13 11 10 9 8

8 9 6 7 18 19 3 4 5 0 1 2 12 13 14 15 16 17 20 21 10 11

9 8 7 6 19 18 4 5 3 1 2 0 13 14 12 16 17 15 21 20 11 10

10 11 8 9 6 7 2 0 1 5 3 4 15 16 17 12 13 14 18 19 20 21

11 10 9 8 7 6 5 3 4 2 0 1 16 17 15 13 14 12 19 18 21 20

20 21 10 11 8 9 12 13 14 15 16 17 2 3 4 5 18 19 6 7 0 1

18 19 20 21 10 11 16 17 12 13 14 15 0 1 2 3 4 5 8 9 6 7

21 20 11 10 9 8 13 12 15 14 17 16 3 2 5 4 19 18 7 6 1 0

19 18 21 20 11 10 17 16 13 12 15 14 1 0 3 2 5 4 9 8 7 6

Figure 16: Latin squares of order n ∈ {14, 22} partitioned into 2× (n/2) subrectangles.

• there exists a set {Ut} of non-overlapping 3× 3 submatrices in which

– Ut is an all-i matrix for some i ∈ {0, 1, 2}, and

– we can choose 1 or 2 rows from the submatrices Ut such that every row of M
is represented exactly once.

Then there exists a 2m×2m Latin square that can be partitioned into 2×m subrectangles.

Proof. We prove the theorem with the aid of a running example for m = 13, beginning
with the matrix in Figure 17 (left). We highlight how to select 1 or 2 rows from the 3× 3
submatrices Ut.

Lemma 9 implies that we can construct an m × m Latin square L, with symbols in
{0, 1, 2} wherever the symbol 0 occurs in M , symbols in {3, 4, 5} wherever the symbol
1 occurs in M , symbols in {6, 7, 8} wherever the symbol 2 occurs in M , and symbols in
{9, 10, . . . ,m− 1} wherever an empty cell occurs in M . Moreover, the chosen rows of the
3 × 3 submatrices Ut in M map to rows of 3 × 3 subsquares of L. This is depicted in
Figure 17 (right); we highlight the subsquares we subsequently discuss in this proof.

We next take a direct product of L with a 2× 2 Latin square, giving a 2m× 2m Latin
square. Consequently, we also blow up the selected rows of the 3× 3 subsquares of L to
2× 6 subrectangles. Denote these subrectangles Si for i ∈ {0, 1, . . . ,m− 1}.

We next replace each of the 6 × 6 subsquares arising from the submatrices Ut (and
only those) with one of the Latin squares in (3). This requires relabelling the symbols so
that each replacement subsquare has the same set of symbols as the subsquare it replaced.
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0 0 0 2 2 2 1 1 1

0 0 0 1 1 1 2 2 2

0 0 0 1 1 1 2 2 2

2 2 2 0 0 0 1 1 1

2 2 0 0 0 1 1 1 2

1 1 0 0 0 2 2 2 1

1 2 1 0 0 0 2 2 1

1 1 2 0 0 0 2 2 1

1 1 1 0 0 0 2 2 2

2 2 1 1 1 0 0 0 2

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

1 1 1 2 2 2 0 0 0

0 1 2 9 10 11 6 7 8 3 4 5 12

1 2 0 3 4 5 7 8 6 12 11 10 9

2 0 1 4 5 3 9 12 11 6 10 7 8

7 8 6 0 1 2 10 9 12 4 5 3 11

6 12 8 1 2 0 11 10 9 5 3 4 7

10 5 4 2 0 1 8 6 7 11 9 12 3

3 6 5 10 11 12 0 1 2 7 8 9 4

4 3 7 11 12 9 1 2 0 10 6 8 5

12 11 9 5 3 4 2 0 1 8 7 6 10

8 7 11 12 9 10 3 4 5 2 1 0 6

9 10 12 6 7 8 4 5 3 1 0 11 2

11 9 10 7 8 6 5 3 4 0 12 2 1

5 4 3 8 6 7 12 11 10 9 2 1 0

Figure 17: Left: A matrix satisfying the conditions of Theorem 5. Right: A Latin square
derived from it via König’s Theorem (Lemma 9).

We choose the 6 × 6 subsquares so that each submatrix Si decomposes into two 2 × 3
subrectangles. This is possible since we choose only 1 or 2 rows from Ut. We also select
one 2× 3 subrectangle from each Si after it has been replaced in this way.

By design, the 2m × 2m Latin square has row pairs {2i, 2i + 1} that decompose
according to one of the following cases:

• Case I : Two 2 × 3 subrectangles and m − 3 intercalates. In this case, one 2 ×
m subrectangle is formed by the union of one 2 × 3 subrectangle and (m − 3)/2
intercalates. The other 2×m subrectangle is formed from the remaining entries in
those rows. We write this as the sum of two partitions of m:

2m = (3, 2(m−3)/2) + (3, 2(m−3)/2)

(and similarly for the subsequent cases).

• Case II : Four 2× 3 subrectangles and m− 6 intercalates. We have the partition

2m = (33, 2(m−9)/2) + (3, 2(m−3)/2).

• Case III : Six 2× 3 subrectangles and m− 9 intercalates. We have the partition

2m = (33, 2(m−9)/2) + (33, 2(m−9)/2).

The hypothesis m > 9 and m is odd imply (m − 9)/2 and (m − 3)/2 are non-negative
integers, and so these partitions (and the corresponding 2×m subrectangles) exist.
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0 1 2 3 4 5 18 19 20 21 22 23 15 16 17 12 13 14 6 7 8 9 10 11 24 25

1 2 0 4 5 3 19 18 21 20 23 22 16 17 15 13 14 12 7 6 9 8 11 10 25 24

3 4 5 0 1 2 8 6 7 11 9 10 14 12 13 17 15 16 24 25 22 23 20 21 18 19

4 5 3 1 2 0 11 9 10 8 6 7 17 15 16 14 12 13 25 24 23 22 21 20 19 18

2 0 1 5 3 4 6 7 8 9 10 11 18 19 24 25 22 23 12 13 20 21 14 15 16 17

5 3 4 2 0 1 7 8 6 10 11 9 19 18 25 24 23 22 13 12 21 20 15 14 17 16

14 15 16 17 12 13 0 1 2 3 4 5 20 21 18 19 24 25 8 9 10 11 6 7 22 23

15 14 17 16 13 12 1 2 0 4 5 3 21 20 19 18 25 24 9 8 11 10 7 6 23 22

12 13 24 25 16 17 3 4 5 0 1 2 22 23 20 21 18 19 10 11 6 7 8 9 14 15

13 12 25 24 17 16 4 5 3 1 2 0 23 22 21 20 19 18 11 10 7 6 9 8 15 14

20 21 10 11 8 9 2 0 1 5 3 4 12 13 14 15 16 17 22 23 18 19 24 25 6 7

21 20 11 10 9 8 5 3 4 2 0 1 13 14 12 16 17 15 23 22 19 18 25 24 7 6

6 7 12 13 10 11 20 21 22 23 24 25 0 1 2 3 4 5 14 15 16 17 18 19 8 9

7 6 13 12 11 10 21 20 23 22 25 24 1 2 0 4 5 3 15 14 17 16 19 18 9 8

8 9 6 7 14 15 22 23 24 25 18 19 3 4 5 0 1 2 20 21 12 13 16 17 10 11

9 8 7 6 15 14 23 22 25 24 19 18 4 5 3 1 2 0 21 20 13 12 17 16 11 10

24 25 22 23 18 19 9 10 11 6 7 8 2 0 1 5 3 4 16 17 14 15 12 13 20 21

25 24 23 22 19 18 10 11 9 7 8 6 5 3 4 2 0 1 17 16 15 14 13 12 21 20

16 17 14 15 22 23 24 25 18 19 20 21 6 7 8 9 10 11 4 5 2 3 0 1 12 13

17 16 15 14 23 22 25 24 19 18 21 20 7 8 6 10 11 9 5 4 3 2 1 0 13 12

18 19 20 21 24 25 14 12 13 17 15 16 9 10 11 6 7 8 2 3 0 1 22 23 4 5

19 18 21 20 25 24 17 15 16 14 12 13 10 11 9 7 8 6 3 2 1 0 23 22 5 4

22 23 18 19 20 21 12 13 14 15 16 17 8 6 7 11 9 10 0 1 24 25 4 5 2 3

23 22 19 18 21 20 13 14 12 16 17 15 11 9 10 8 6 7 1 0 25 24 5 4 3 2

10 11 8 9 6 7 15 16 17 12 13 14 24 25 22 23 20 21 18 19 4 5 2 3 0 1

11 10 9 8 7 6 16 17 15 13 14 12 25 24 23 22 21 20 19 18 5 4 3 2 1 0

Figure 18: The Latin square formed from taking a direct product of the Latin square in
Figure 17 with a 2× 2 Latin square, then replacing its chosen 6× 6 subsquares using (3).
We highlight a 2×3 subrectangle in each pair of consecutive rows {2i, 2i+1}. This enables
us to decompose each pair of consecutive rows {2i, 2i+ 1} into 2× 13 subrectangles.

Browning, Vojtěchovský, and Wanless [10, Lemma 4] classified when there exists a
Latin square containing two non-overlapping subsquares. In the case of two 6 × 6 sub-
squares with 2 rows in common in a Latin square of order 2m, we must have 2m > 18,
implying the technique in the proof of Theorem 5 could not work in smaller cases.

The matrix M3,m,3 exists when m ∈ {9} ∪ {13, 15, . . .}. When m = 9 we choose the
block rows according to Figure 19 to satisfy the conditions of Theorem 5. Figure 16
contains an example of a Latin square of order 22 which decomposes into 2× 11, thereby
resolving the m = 11 case.

We next check for m > 13 that it is possible to choose block rows of M = M3,m,3

to satisfy the conditions of Theorem 5. We use r = m (mod 3), so 3bm/3c = m − r.
The all-i blocks of M3,m,3 are denoted Ji,σ where σ ∈ {0, 1, . . . , bm/3c − 2} (ignoring the
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0 0 0 1 1 1 2 2 2

0 0 0 1 1 1 2 2 2

0 0 0 1 1 1 2 2 2

1 1 1 2 2 2 0 0 0

1 1 1 2 2 2 0 0 0

1 1 1 2 2 2 0 0 0

2 2 2 0 0 0 1 1 1

2 2 2 0 0 0 1 1 1

2 2 2 0 0 0 1 1 1

Figure 19: A matrix and a selection of rows which satisfies the conditions of Theorem 5.

additional all-i block when r = 0).
We find Ji,σ intersects rows {i(3 + r) + 3σ, i(3 + r) + 3σ + 1, i(3 + r) + 3σ + 2} for all

i ∈ {0, 1, 2} and σ ∈ {0, 1, . . . , bm/3c − 2}.

• We choose the rows 3σ and 3σ + 1 from J0,σ for all σ ∈ {0, 1, . . . , bm/3c − 2}.

• We choose row 3σ + 5 from J1,σ for all σ ∈ {0, 1, . . . , bm/3c − 3}.

This selection covers all but a few boundary rows. We still need to choose rows for indices
{2} ∪ {m− r − 3,m− r − 2, . . . ,m− 1}.

• We choose row 2 from J2,bm/3c−2.

• If r ∈ {1, 2}, we choose row m− 4 from J2,bm/3c−4.

• If r = 2, we choose row m−5 from J1,bm/3c−3. (Since r = 2, the row we have already
chosen from this block is 3σ + 5 = m− 6, so this second choice is different.)

• We choose rows m− 2 and m− 3 from J1,bm/3c−2.

• We choose row m− 1 from J2,bm/3c−3.

Examples of this construction are given in Figure 20. We conclude that this construction
satisfies the conditions of Theorem 5. Finally, combining the results in this section (i.e.,
a direct product for m ≡ 0 (mod 2); explicit examples for m ∈ {5, 7, 11}; a special
case of Theorem 5 for m = 9; and this construction for odd m > 13), we completely
resolve the existence problem for Latin squares of order n which decompose into 2× (n/2)
subrectangles.
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0 0 0 2 2 2 1 1 1

0 0 0 2 2 2 1 1 1

0 0 0 2 2 2 1 1 1

1 1 1 0 0 0 2 2 2

1 1 1 0 0 0 2 2 2

1 1 1 0 0 0 2 2 2

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

0 0 0 2 2 2 1 1 1

0 0 0 2 2 2 1 1 1

0 0 0 2 2 2 1 1 1

0 0 0 2 2 2 1 1 1

1 1 1 0 0 0 2 2 2

1 1 1 0 0 0 2 2 2

1 1 1 0 0 0 2 2 2

1 1 1 0 0 0 2 2 2

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

0 0 0 2 2 2 1 1 1

0 0 0 2 2 2 1 1 1

0 0 0 2 2 2 1 1 1

0 0 0 2 2 2 1 1 1

0 0 0 2 2 2 1 1 1

1 1 1 0 0 0 2 2 2

1 1 1 0 0 0 2 2 2

1 1 1 0 0 0 2 2 2

1 1 1 0 0 0 2 2 2

1 1 1 0 0 0 2 2 2

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

2 2 2 1 1 1 0 0 0

Figure 20: Examples of m × m matrices which satisfy the conditions of Theorem 5 for
m ∈ {15, 13, 17}.

3.2 Case d = 3

The construction we give for decomposing Latin squares of order n into 3× (n/3) subrect-
angles is similar to the 2× (n/2) construction, so we only explain the differences. In fact,
the construction is made easier in this case because there exist Latin squares of order 12
which decompose into 3× 4 subrectangles (as opposed to Latin squares of order 6 which
do not decompose into 2×3 rectangles); we include one example in Figure 21 (left) found
by computer search.

0 8 6 4 3 10 7 5 1 9 11 2

4 0 8 6 5 3 10 7 2 11 1 9

6 4 0 8 7 5 3 10 9 1 2 11

1 3 9 5 0 4 11 2 6 8 10 7

3 5 1 9 2 11 0 4 7 10 6 8

5 9 3 1 4 0 2 11 8 6 7 10

2 11 5 7 9 1 4 6 10 3 8 0

9 1 7 10 11 2 6 8 3 5 0 4

11 2 10 3 1 9 8 0 5 7 4 6

7 10 2 11 8 6 5 9 4 0 3 1

8 6 4 0 10 7 9 1 11 2 5 3

10 7 11 2 6 8 1 3 0 4 9 5

0 1 2 3 4 5 6 7 8 9 10 11

1 2 3 0 5 6 7 4 9 10 11 8

2 3 0 1 6 7 4 5 10 11 8 9

8 9 10 11 0 1 2 3 4 5 6 7

9 10 11 8 1 2 3 0 5 6 7 4

10 11 8 9 2 3 0 1 6 7 4 5

4 5 6 7 8 9 10 11 0 1 2 3

5 6 7 4 9 10 11 8 1 2 3 0

6 7 4 5 10 11 8 9 2 3 0 1

3 0 1 2 7 4 5 6 11 8 9 10

7 4 5 6 11 8 9 10 3 0 1 2

11 8 9 10 3 0 1 2 7 4 5 6

Figure 21: Left: A Latin square of order 12 where consecutive sets of 3 rows decompose
into three 3× 4 subrectangles. Right: A Latin square of order 12 where consecutive sets
of 3 rows decompose into three 3× 4 subrectangles, except for the last three rows, which
decomposes into four 3× 3 subsquares.
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10 2 4 6 8 5 12 14 1 3 0 7 9 11 13

2 4 6 8 10 12 14 1 3 5 7 9 11 13 0

4 6 8 10 2 14 1 3 5 12 9 11 13 0 7

12 14 11 3 5 7 9 6 13 0 2 4 1 8 10

14 1 3 5 7 9 11 13 0 2 4 6 8 10 12

1 8 5 7 9 11 3 0 2 4 6 13 10 12 14

9 11 13 0 12 4 6 8 10 7 14 1 3 5 2

11 13 0 2 4 6 8 10 12 14 1 3 5 7 9

13 0 2 9 6 8 10 12 4 1 3 5 7 14 11

6 3 10 12 14 1 13 5 7 9 11 8 0 2 4

8 10 12 14 1 3 5 7 9 11 13 0 2 4 6

0 12 14 1 3 10 7 9 11 13 5 2 4 6 8

3 5 7 4 11 13 0 2 14 6 8 10 12 9 1

5 7 9 11 13 0 2 4 6 8 10 12 14 1 3

7 9 1 13 0 2 4 11 8 10 12 14 6 3 5

11 6 1 17 12 0 2 18 13 8 3 19 7 9 4 20 15 10 5 14 16

2 11 6 1 17 12 0 9 18 13 8 3 19 7 16 4 20 15 10 5 14

0 2 11 6 1 17 12 7 9 18 13 8 3 19 14 16 4 20 15 10 5

17 12 7 2 18 13 1 3 19 14 9 4 20 8 10 5 0 16 11 6 15

15 3 12 7 2 18 13 1 10 19 14 9 4 20 8 17 5 0 16 11 6

6 1 3 12 7 2 18 13 8 10 19 14 9 4 20 15 17 5 0 16 11

16 18 13 8 3 19 14 2 4 20 15 10 5 0 9 11 6 1 17 12 7

7 16 4 13 8 3 19 14 2 11 20 15 10 5 0 9 18 6 1 17 12

12 7 2 4 13 8 3 19 14 9 11 20 15 10 5 0 16 18 6 1 17

8 17 19 14 9 4 20 15 3 5 0 16 11 6 1 10 12 7 2 18 13

13 8 17 5 14 9 4 20 15 3 12 0 16 11 6 1 10 19 7 2 18

18 13 8 3 5 14 9 4 20 15 10 12 0 16 11 6 1 17 19 7 2

14 9 18 20 15 10 5 0 16 4 6 1 17 12 7 2 11 13 8 3 19

19 14 9 18 6 15 10 5 0 16 4 13 1 17 12 7 2 11 20 8 3

3 19 14 9 4 6 15 10 5 0 16 11 13 1 17 12 7 2 18 20 8

20 15 10 19 0 16 11 6 1 17 5 7 2 18 13 8 3 12 14 9 4

4 20 15 10 19 7 16 11 6 1 17 5 14 2 18 13 8 3 12 0 9

9 4 20 15 10 5 7 16 11 6 1 17 12 14 2 18 13 8 3 19 0

5 0 16 11 20 1 17 12 7 2 18 6 8 3 19 14 9 4 13 15 10

10 5 0 16 11 20 8 17 12 7 2 18 6 15 3 19 14 9 4 13 1

1 10 5 0 16 11 6 8 17 12 7 2 18 13 15 3 19 14 9 4 20

7 30 2 28 0 14 31 27 26 1 32 29 19 24 17 22 3 20 16 15 23 21 18 8 13 6 11 25 9 5 4 12 10

32 7 30 2 28 0 14 31 27 26 1 21 29 19 24 17 22 3 20 16 15 23 10 18 8 13 6 11 25 9 5 4 12

1 32 7 30 2 28 0 14 31 27 26 23 21 29 19 24 17 22 3 20 16 15 12 10 18 8 13 6 11 25 9 5 4

12 9 32 4 30 2 16 0 29 28 3 1 31 21 26 19 24 5 22 18 17 25 23 20 10 15 8 13 27 11 7 6 14

14 1 9 32 4 30 2 16 0 29 28 3 23 31 21 26 19 24 5 22 18 17 25 12 20 10 15 8 13 27 11 7 6

6 3 1 9 32 4 30 2 16 0 29 28 25 23 31 21 26 19 24 5 22 18 17 14 12 20 10 15 8 13 27 11 7

16 14 11 1 6 32 4 18 2 31 30 5 3 0 23 28 21 26 7 24 20 19 27 25 22 12 17 10 15 29 13 9 8

8 16 3 11 1 6 32 4 18 2 31 30 5 25 0 23 28 21 26 7 24 20 19 27 14 22 12 17 10 15 29 13 9

9 8 5 3 11 1 6 32 4 18 2 31 30 27 25 0 23 28 21 26 7 24 20 19 16 14 22 12 17 10 15 29 13

10 18 16 13 3 8 1 6 20 4 0 32 7 5 2 25 30 23 28 9 26 22 21 29 27 24 14 19 12 17 31 15 11

11 10 18 5 13 3 8 1 6 20 4 0 32 7 27 2 25 30 23 28 9 26 22 21 29 16 24 14 19 12 17 31 15

15 11 10 7 5 13 3 8 1 6 20 4 0 32 29 27 2 25 30 23 28 9 26 22 21 18 16 24 14 19 12 17 31

13 12 20 18 15 5 10 3 8 22 6 2 1 9 7 4 27 32 25 30 11 28 24 23 31 29 26 16 21 14 19 0 17

17 13 12 20 7 15 5 10 3 8 22 6 2 1 9 29 4 27 32 25 30 11 28 24 23 31 18 26 16 21 14 19 0

0 17 13 12 9 7 15 5 10 3 8 22 6 2 1 31 29 4 27 32 25 30 11 28 24 23 20 18 26 16 21 14 19

19 15 14 22 20 17 7 12 5 10 24 8 4 3 11 9 6 29 1 27 32 13 30 26 25 0 31 28 18 23 16 21 2

2 19 15 14 22 9 17 7 12 5 10 24 8 4 3 11 31 6 29 1 27 32 13 30 26 25 0 20 28 18 23 16 21

21 2 19 15 14 11 9 17 7 12 5 10 24 8 4 3 0 31 6 29 1 27 32 13 30 26 25 22 20 28 18 23 16

4 21 17 16 24 22 19 9 14 7 12 26 10 6 5 13 11 8 31 3 29 1 15 32 28 27 2 0 30 20 25 18 23

23 4 21 17 16 24 11 19 9 14 7 12 26 10 6 5 13 0 8 31 3 29 1 15 32 28 27 2 22 30 20 25 18

18 23 4 21 17 16 13 11 19 9 14 7 12 26 10 6 5 2 0 8 31 3 29 1 15 32 28 27 24 22 30 20 25

25 6 23 19 18 26 24 21 11 16 9 14 28 12 8 7 15 13 10 0 5 31 3 17 1 30 29 4 2 32 22 27 20

20 25 6 23 19 18 26 13 21 11 16 9 14 28 12 8 7 15 2 10 0 5 31 3 17 1 30 29 4 24 32 22 27

27 20 25 6 23 19 18 15 13 21 11 16 9 14 28 12 8 7 4 2 10 0 5 31 3 17 1 30 29 26 24 32 22

22 27 8 25 21 20 28 26 23 13 18 11 16 30 14 10 9 17 15 12 2 7 0 5 19 3 32 31 6 4 1 24 29

29 22 27 8 25 21 20 28 15 23 13 18 11 16 30 14 10 9 17 4 12 2 7 0 5 19 3 32 31 6 26 1 24

24 29 22 27 8 25 21 20 17 15 23 13 18 11 16 30 14 10 9 6 4 12 2 7 0 5 19 3 32 31 28 26 1

31 24 29 10 27 23 22 30 28 25 15 20 13 18 32 16 12 11 19 17 14 4 9 2 7 21 5 1 0 8 6 3 26

26 31 24 29 10 27 23 22 30 17 25 15 20 13 18 32 16 12 11 19 6 14 4 9 2 7 21 5 1 0 8 28 3

3 26 31 24 29 10 27 23 22 19 17 25 15 20 13 18 32 16 12 11 8 6 14 4 9 2 7 21 5 1 0 30 28

28 0 26 31 12 29 25 24 32 30 27 17 22 15 20 1 18 14 13 21 19 16 6 11 4 9 23 7 3 2 10 8 5

5 28 0 26 31 12 29 25 24 32 19 27 17 22 15 20 1 18 14 13 21 8 16 6 11 4 9 23 7 3 2 10 30

30 5 28 0 26 31 12 29 25 24 21 19 27 17 22 15 20 1 18 14 13 10 8 16 6 11 4 9 23 7 3 2 32

Figure 22: Latin squares of orders n ∈ {15, 21, 33} partitioned into 3×(n/3) subrectangles.
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Theorem 6. Let m ∈ {12, 15, 16} ∪ {18, 19, . . .}. Suppose there exists an m ×m matrix
M containing symbols in {0, 1, 2} and empty cells with the two properties:

• every row and every column contains exactly 4 copies of each symbol, and

• every row intersects at least two 4× 4 all-i matrices, where i ∈ {0, 1, 2}.
Then there exists a 3m×3m Latin square that can be partitioned into 3×m subrectangles.

Proof. Lemma 9 (König’s Theorem) implies that there exists an m × m Latin square
L, with symbols in {0, 1, 2, 3} wherever the symbol 0 occurs in M , symbols in {4, 5, 6, 7}
wherever the symbol 1 occurs in M , symbols in {8, 9, 10, 11} wherever the symbol 2 occurs
in M , and symbols in {12, 13, . . . , n− 1} wherever an empty cell occurs in M . We use Ut
to denote the t-th 4× 4 subsquare that arises from the all-i blocks in M for i ∈ {0, 1, 2}.

We take a direct product of L with a 3 × 3 Latin square, giving a 3m × 3m Latin
square. The subsquares Ut blow up to 12× 12 subsquares, and we replace them with the
12×12 Latin square in Figure 21 (left), after adjusting the symbol set appropriately. This
results in consecutive row triples {3i, 3i + 1, 3i + 2} of L having subrectangles as in one
of the following cases. (Note that the theorem assumes m ∈ {12, 15, 16} ∪ {18, 19, . . .}.)

• Case I : Six 3× 4 subrectangles and (3m− 24)/3 subsquares of order 3. In this case,
we have the partitions of 3m into three partitions of m as follows: when m ≡ 0
(mod 3),

3m = (43, 3(m−12)/3) + (43, 3(m−12)/3) + (3m/3);

when m ≡ 1 (mod 3),

3m = (44, 3(m−16)/3) + (4, 3(m−4)/3) + (4, 3(m−4)/3);

and when m ≡ 2 (mod 3),

3m = (42, 3(m−8)/3) + (42, 3(m−8)/3) + (42, 3(m−8)/3).

• Case II : Nine 3 × 4 subrectangles and (3m − 36)/3 subsquares of order 3. In this
case, we have the partitions of 3m into three partitions of m as follows: when m ≡ 0
(mod 3),

3m = (43, 3(m−12)/3) + (43, 3(m−12)/3) + (43, 3(m−12)/3);

when m ≡ 1 (mod 3),

3m = (44, 3(m−16)/3) + (44, 3(m−16)/3) + (4, 3(m−4)/3);

and when m ≡ 2 (mod 3),

3m = (45, 3(m−20)/3) + (42, 3(m−8)/3) + (42, 3(m−8)/3).

Thus, since m ∈ {12, 15, 16} ∪ {18, 19, . . .}, it is possible to partition the rows in {3i, 3i+
1, 3i + 2} into 3 ×m subrectangles by grouping together 3 × 4 subrectangles and 3 × 3
subsquares.
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We have designed M4,m,3 (which exists when m ∈ {12, 16, 17, 18} and m > 20) so that
it satisfies the two matrix conditions in Theorem 6. (We omit the details of a formal check
of these properties; they are straightforward to prove, and are apparent from Figure 15).
Thus the conditions of Theorem 6 are satisfied when m ∈ {12, 16, 18} ∪ {20, 21, . . .},
in which case there exists a 3m × 3m Latin square that can be partitioned into 3 × m
subrectangles.

We still need to resolve the m ∈ {3, 4, . . . , 11} ∪ {13, 14, 15, 17, 19} cases. If m is
divisible by 3, we take a direct product of a Latin square of order 3 and a Latin square
of order m to obtain a Latin square of order 3m which can be partitioned into 3 × 3
subsquares, which we group together to give a decomposition into 3 ×m subrectangles.
When m ∈ {4, 5, 7, 11} the existence problem is settled by examples in Figure 21 and
Figure 22. By taking a direct product of a Latin square in Figure 21 or Figure 22 with
a Latin square of order 2, we obtain 24 × 24, 30 × 30, and 42 × 42 Latin squares which
decompose into 3×8, 3×10, and 3×14 subrectangles, respectively, thereby resolving the
m ∈ {8, 10, 14} cases. This leaves the m ∈ {13, 17, 19} cases.

Case m = 19. We use M4,m,2, in which each row only intersects either one or two 4×4
all-i matrices for i ∈ {0, 1}. We blow it up (taking a direct product with a 3 × 3 Latin
square), and replace the resulting 12× 12 subsquares by one that decomposes into 3× 4
subrectangles. We have the partitions

3× 19 = (4, 35) + (4, 35) + (4, 35)

and
3× 19 = (44, 3) + (4, 35) + (4, 35).

of 3m into three partitions of m. Thus regardless of whether the three consecutive rows
{3i, 3i+ 1, 3i+ 2} decomposes into three 3× 4 subrectangles and 15 subsquares of order
3, or six 3 × 4 subrectangles and 11 subsquares of order 3, it is possible to group them
into 3× 19 subrectangles.

Case m = 13. We begin with the matrix on the left in Figure 23. We apply Lemma 9
(König’s Theorem) to obtain a Latin square of order 13 with subsquares marked A, B,
C, and D. We take a direct product with a 3× 3 Latin square, to obtain a Latin square
of order 39 with four subsquares of order 12 arising from A, B, C, and D. We make the
replacements tabulated below:

after blowing up. . . we replace it with. . .
A, C Figure 21 (right) rotated 180◦

B Figure 21 (right)
D Figure 21 (left)

. . .after adjusting the symbols

We have designed this construction so that in the resulting Latin square of order 39, sets
of 3 consecutive rows decompose into exactly three 3× 4 subrectangles, and exactly nine
3× 3 subsquares. Since

3× 13 = (4, 33) + (4, 33) + (4, 33)
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is a partition of 39 into three partitions of 13, it is possible to group these subrectangles
and subsquares together to obtain three 3× 13 subrectangles.

A

BC

D

R

S

U

VX

Y

Figure 23: Left: Used to construct a Latin square of order 39 which decomposes into 3×13
subrectangles. Right: Used to construct a Latin square of order 51 which decomposes
into 3× 17 subrectangles.

Case m = 17. This is similar to the m = 13 case, so we just highlight the differences.
We blow up the matrix on the right in Figure 23. We make the replacements tabulated
below:

after blowing up. . . we replace it with. . .
R, S Figure 22 (top left)
U , V , X, Y Figure 21 (left)

. . .after adjusting the symbols

In the resulting Latin square of order 51, sets of 3 consecutive rows decompose into one
of the following:

• exactly three 3× 5 subrectangles, and exactly twelve 3× 3 subsquares;

• exactly three 3 × 5 subrectangles, exactly three 3 × 4 subrectangles, and exactly
eight 3× 3 subsquares; or

• exactly six 3× 4 subrectangles, and exactly nine 3× 3 subsquares.

Since

3× 17 = (5, 34) + (5, 34) + (5, 34)

= (52, 4, 3) + (5, 34) + (42, 33)

= (42, 33) + (42, 33) + (42, 33)

describes partitions of 51 into three partitions of 17, in every case, it is possible to group
these subrectangles and subsquares together to obtain three 3× 17 subrectangles.
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3.3 Sufficiently large n

We begin with the following Latin square where sets of d consecutive rows can be parti-
tioned into one d× x subrectangle and one d× y subrectangle, where x ≡ 1 (mod d) and
y ≡ −1 (mod d).

Theorem 7. For d > 3, there exists a Latin square of order n := d(d + 1) where, for any
k ∈ {0, 1, . . . , d}, the d rows {kd, kd + 1, . . . , kd + d − 1} partition into one d × (d + 1)
subrectangle and one d× (d2 − 1) subrectangle.

Proof. We define an n× n matrix containing symbols 0 and 1 (and some empty cells) in
which every row and every column has exactly d+ 1 occurrences of symbol 0 and exactly
d+ 1 occurrences of symbol 1. The construction is illustrated in Figure 24 for d ∈ {3, 4}.
We add all-i blocks according to the table below (all other cells are empty; we “mark”
the submatrices to match Figure 24):

dimensions top-left corner symbol mark

(d+ 1)× (d+ 1)
((d+ 1)σ + d+ 2, (d+ 1)σ)

for all σ ∈ {0, 1, . . . , d− 1}
(Note: indices are in Zn)

1 A

d× (d+ 1)
(dσ, (d+ 1)σ)

for all σ ∈ {0, 1, . . . , d− 3} 0 B

1× (d+ 1)
(n− 1− σ, (d+ 1)σ)

for all σ ∈ {0, 1, . . . , d− 3} 0 C

(d+ 1)× (d+ 1) (n− 3d, n− 2(d+ 1)) 0 D
(d+ 1)× (d+ 1) (n− 2d+ 1, n− (d+ 1)) 0 E

The d × (d + 1) and 1 × (d + 1) all-1 blocks combine to form (d + 1) × (d + 1) all-1
submatrices.

Applying Lemma 9 (König’s Theorem) to this matrix gives a Latin square L, which
has (d+ 1)× (d+ 1) subsquares wherever an all-i submatrix occurs.

From these, we select contiguous d×(d+1) subrectangles (also depicted in Figure 24):
we choose subrectangles with top-left corner (dσ, (d+ 1)σ) for all σ ∈ {0, 1, . . . , d− 2} (in
the blocks marked B and D) and top-left corner (d(d − 1), (d + 1)(d − 3)) and (d2, (d +
1)(d−2)) (in two of the blocks marked A). This divides the d rows {dσ, . . . , dσ+d−1}, for
any σ ∈ {0, 1, . . . , d}, into a d×(d+1) subrectangle and a d×(n−d−1) subrectangle.

By taking a direct product of the Latin square of order d(d+ 1) in Theorem 7 with a
Latin square of order (d − 1)2, we let Sd be a Latin square of order d(d + 1)(d − 1)2 in
which sets of d consecutive rows {di, di + 1, . . . , di + d − 1} contain > (d − 1)2 distinct
d× (d+ 1) subrectangles.

We define the m×m matrix P = Mp,m,2 where p := (d+ 1)(d− 1)2 and observe that
every row of P intersects a p× p all-0 block and/or a p× p all-1 block. We use Lemma 9
(König’s Theorem) to show that there exists an m×m Latin square L with p×p subsquares
occurring whenever a p× p all-1 block occurs in P . We take a direct product of L with a
Latin square of order d and replace the dp× dp subsquares which arise due to all-i blocks
in P with copies of Sd after relabelling the symbols appropriately. This gives an n × n
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B
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C

D
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d = 4; n = 20

Figure 24: The construction in Theorem 7 for d ∈ {3, 4}. Red cells contain 0, and blue
cells contain 1.

Latin square (where n := dm) which can be partitioned into sets of d consecutive rows
containing at least (d − 1)2 distinct d × (d + 1) subrectangles. Moreover, the remainder
of every set of d consecutive rows decomposes into d × d subsquares, implying there are
m−O(1) such subsquares (as m→∞).

For each set of d consecutive rows, we identify d − 1 disjoint d × m subrectangles
by combining exactly r := m (mod d) distinct d × (d + 1) subrectangles with exactly
(m − r)/d − r distinct d × d subsquares. (The remaining d ×m subrectangle is formed
from what is outside these d− 1 subrectangles.) This requires m(d− 1)/d+O(1) distinct
d× d subsquares in those rows, and we have m−O(1), which is enough when m is large.
This gives a construction for Latin squares of order n which decompose into d × (n/d)
subrectangles for all sufficiently large n divisible by d.

We note that “sufficiently large n” in this construction is at least asymptotically d4,
which likely far exceeds the actual minimum n.

4 Concluding remarks

We tabulate the answers to the existence problems for small n in Table 1. Some values are
determined as follows: if a Latin square of order n decomposes into 2×(n/2) subrectangles,
then taking a direct product with a Latin square of order 2 yields a Latin square of order
2n which decomposes into 4× n subrectangles.
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The smallest unresolved case is the existence of a 4-balanced equi-20-square, and a
20× 20 Latin square that decomposes into 4× 5 subrectangles. An exhaustive computer
search rules out the existence of a 5-starter with 30 filled cells (and thus K6,6 − I, where
I is a 1-factor, does not admit an α-labelling).

n some Latin square of or-
der n can be partitioned
into d×(n/d) subrectan-
gles (and d 6 n/d)

a diagonally
cyclic d-balanced
equi-n-square
exists

a d-balanced
equi-n-square
exists

4 2 2 2
6 �2 �2 2
8 2 2 2
9 3 3 3

10 2 �2 2
12 2, 3 2, 3 2, 3
14 2 �2 2
15 3 3 3
16 2, 4 2, 4 2, 4
18 2, 3 �2, 3 2, 3
20 2 [4] 2, �2 2 [4]
21 3 3 3
22 2 �2 2
24 2, 3, 4 2, 3, 4 2, 3, 4
25 5 5 5
26 2 �2 2
27 3 3 3
28 2 [4] 2, �4 2 [4]
30 2, 3 [5] �2, 3 [5] 2, 3 [5]

Table 1: For a given n, the divisors d 6= 1 with d2 6 n for which there exists (a) a
Latin square that can be partitioned into d× (n/d) subrectangles (second column), (b) a
diagonally cyclic d-balanced equi-n-square (third column), and (b) a d-balanced equi-n-
square (fourth column). Numbers that are canceled are d values where a construction is
impossible. Numbers in square brackets indicate d values which are unresolved.

The proof of Theorem 3 also works for α-labellings of bipartite graphs in general (after
dropping the condition that there are “d filled cells in each row and column”), which we
illustrate in Figure 25. While we do not need this generality in this paper, it would be
interesting to explore α-labellings from this perspective in future research. Moreover, the
proof of the product construction in Lemma 4 holds for this generalization of d-starters,
which implies the following lemma.

Lemma 10. If two bipartite graphs with the biadjacency matrices A and B admit α-
labellings, then the graph with biadjacency matrix A⊗B, where ⊗ is the matrix Kronecker
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product, also admits an α-labelling.

Brankovic and Wanless [8] found a relation between α-labellings of a path and partial
transversals of the Cayley table of the cyclic group, which has a similar style to this
construction. Graceful labelings of paths give rise to cyclic oriented triangular embeddings
of complete graphs [20].

4 5 7 8
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2 3

1
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1

2

3

4 5 6 7 8

0 1 2 3

4 5 7 8

4 5

7

8

6

2

3

1

Figure 25: Left: A matrix with exactly one filled cell in each unbroken (top-left to bottom-
right) diagonal. Middle: Illustrating how we convert to (and from) an α-labelling. Right:
The α-labelling (parameter k = 3) and the bipartite graph determined from the matrix
on the left.

It is straightforward to construct α-labellings (and hence graceful labelings) of all
caterpillars via these matrices: if the main path has degree sequence (di)

n
i=1, we start at the

bottom right, fill d1 = 1 cells vertically, then d2 cells horizontally, then d3 cells vertically,
and so on. This is depicted in Figure 26. Graceful labellings of caterpillars in particular
are studied in connection with multi-protocol label switching in IP networks [1, 4].
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Figure 26: An α-labelling of a caterpillar.

We observe that if we take a d-starter with n zeroes, rotate it by 90◦, then superimpose
it on the multiplication table of Zn, we obtain a kind of generalized transversal. In this
way, 1-starters correspond to transversals of the multiplication table of Zn. For example,
a 24-element 4-starter embeds in the multiplication table of Z24 as in Figure 27. This
selection of entries has a unique copy of each symbol in Zn, and each row and each column
is either unrepresented, or is represented exactly d times.

A long-standing problem is if all equi-n-squares have a near-transversal [29], i.e., a
selection of n−1 entries which do not have a common row, column, nor symbol. Pokrovskiy
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8

Figure 27: A 4-starter embedded in the multiplication table of Z24. Not all rows are
shown; the omitted rows do not involve the 4-starter.

and Sudakov [25] recently obtained a breakthrough on this problem: a construction of
(non-Latin) equi-n-squares without near-transversals. The same problem for Latin squares
[15] is yet to be resolved. The current best answer to “how close we can get” to a
transversal in a Latin square is by Keevash, Pokrovskiy, Sudakov and Yepremyan [23],
improving older results by Hatami and Shor [21,28] (see also [6]); similar questions arise for
the aforementioned generalized transversals, which is a possible future research direction.

In this paper, we also describe decomposing a Latin square into subrectangles. This
leads to a range of interesting problems, where many problems related to graph decomposi-
tion have analogues with Latin squares. The subrectangles we consider are not necessarily
structurally equivalent (isotopic), so we have not resolved the problem of decomposing
Latin squares into isotopic copies of a subrectangle. In fact, we might consider dropping
the constraint that the subrectangles be horizontally aligned. Moreover, we need not limit
ourselves to rectangular submatrices: it is interesting to ask when there exists a Latin
square that decomposes into isotopic copies of a given partial Latin square.

Along these lines, the existence of a Latin square that decomposes into d × (n/d)
submatrices containing all n symbols was resolved in [11]: it is possible for all divisors d
of n. In [6], the authors observe that all Latin squares of order n have an O(n1/2+ε) ×
O(n1/2+ε) submatrix containing n−O(n1/2+ε) distinct symbols, which raised the existence
problem for Latin squares of order n2 which cannot decompose into n × n submatrices
which contain all n symbols.

Diagonally cyclic equi-n-squares are equivalent to equi-n-squares that admit an n-cycle
automorphism. Latin squares that admit automorphisms are used in secret sharing [32],
and the Latin square could easily be replaced by an equi-n-square, and interpreted as
a graph decomposition [7] (see [30] for a broad and detailed treatment). In abstract
algebra, diagonally cyclic equi-n-squares correspond to n-element magmas (sometimes
called groupoids) that admit n-cycle automorphisms.

Diagonally cyclic equitable rectangles [17] are another kind of generalization of diago-
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nally cyclic Latin squares. Equitable rectangles are studied in connection with generalized
mix functions [26,31]. Like diagonally cyclic d-balanced equi-n-squares, they admit a com-
pact description, where we need only store one entry from each diagonal.
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