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Abstract

We consider, for every positive integer a, probability distributions on subsets
of vertices of a graph with the property that every vertex belongs to the random
set sampled from this distribution with probability at most 1/a. Among other
results, we prove that for every positive integer a and every planar graph G, there
exists such a probability distribution with the additional property that for any
set X in the support of the distribution, the graph G − X has component-size
at most (∆(G) − 1)a+O(

√
a), or treedepth at most O(a3 log2(a)). We also provide

nearly-matching lower bounds.
Mathematics Subject Classifications: 05C72, 05C75, 05C85, 05C83, 05C10

1 Introduction

Planar graphs “almost” have bounded treewidth, in the following sense: For every as-
signment of weights to vertices and for every positive integer a, it is possible to delete
vertices of at most 1/a fraction of the total weight so that the resulting subgraph has
treewidth at most 3a− 3. Equivalently, there exists a probability distribution on subsets
of vertices whose complement induces a subgraph of treewidth at most 3a− 3, such that
each vertex belongs to a set sampled from this distribution with probability at most 1/a.
This property is the key ingredient of a number of approximation algorithms for planar
graphs [1]. To study this phenomenon more generally, Dvořák [5] introduced the notion of
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fractional fragility of a graph class with respect to a graph parameter. Let us give the
definitions we need to speak about this notion.

For ε > 0, we say that a probability distribution on the subsets of vertices of a
graph G is ε-thin if for each vertex v, the probability that v belongs to a set sampled from
this distribution is at most ε. For example, we commonly use the following (1/a)-thin
probability distribution. Suppose that sets X1, . . . , Xa ⊆ V (G) are pairwise disjoint, and
that t of these sets are empty. We give to each non-empty set Xi the probability 1/a and
to the empty set the probability t/a. All other sets are given probability 0. We call this
distribution the uniform distribution on {X1, . . . , Xa}.

Let f be a graph parameter, that is, a function assigning to every graph a non-negative
real number such that isomorphic graphs are assigned the same value. We will generally
consider parameters that are monotone (satisfying that f(H) 6 f(G) whenever H is
a subgraph of G), or at least hereditary (satisfying f(H) 6 f(G) whenever H is an
induced subgraph of G). For a real number b and a graph G, let Gf6b be the set of all
subsets X ⊆ V (G) such that f(G[X]) 6 b, and let Gf↓b be the set of all subsets Y ⊆ V (G)
such that f(G−Y ) 6 b; thus Y ∈ Gf↓b if and only if V (G) \Y ∈ Gf6b. For example, if tw
is the function that to every graph assigns its treewidth, then Gtw↓3a−3 is the set of vertex
sets whose complement induces a subgraph of treewidth at most 3a− 3.

Let r : N → R+
0 be a non-decreasing function. A graph G is fractionally f-fragile at

rate r if for every positive integer a, there exists a (1/a)-thin probability distribution
on Gf↓r(a). Of course, every graph is fractionally f -fragile at rate given by the constant
function r(a) := f(G); so the notion is more interesting for graph classes. We say that a
class of graphs is fractionally f -fragile at rate r if each graph from the class is, and we say
that the class is fractionally f -fragile if it is fractionally f -fragile at some rate. Coming
back to the introductory example, the class of planar graphs is known to be fractionally
tw-fragile at rate r(a) := 3a− 3; see Corollary 11 below for details.

Graphs from fractionally f -fragile classes can be viewed as being close to graphs for
which the parameter f is bounded, and this proximity can be useful when reasoning
about their structural and quantitative properties. There are also natural links to the
theory classes of bounded expansion [5]. Furthermore, as we already mentioned in
the introduction, the notion has algorithmic applications, especially in the design of
approximation algorithms. Let us give an example of such an application, which was
already presented before [5] along with other applications. Consider a property π(G,X)
of a graph G and a subset X of its vertices. We say the property is downward-hereditary
if π(G,X) being true implies that π(H, V (H) ∩X) is true for every induced subgraph H
of G, and upward-hereditary if π(G,X) being true implies that π(G′, X) is true for every
graph G′ such that G is an induced subgraph of G′. As an example, the property “X is
an independent set in G” is both downward- and upward-hereditary. Let απ(G) be the
largest size of a set X ⊆ V (G) such that π(G,X) is true.

Observation 1. Let f be a graph parameter and let r, t : N → R+
0 be non-decreasing

functions. Suppose that a class G of graphs is fractionally f -fragile at rate r and, moreover,
that there exists an algorithm that for a graph G ∈ G and a positive integer a returns a set
sampled from a (1/a)-thin probability distribution on Gf↓r(a) in polynomial time. Let π be a
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downward- and upward-hereditary property, and suppose that απ(H) can be determined in
time t(f(H)) · poly(|H|) for any graph H. Then there exists a randomized algorithm that
for a graph G ∈ G and a positive integer a returns in time t(r(a)) · poly(|G|) an integer
b 6 απ(G) such that E[b] > (1− 1/a)απ(G).

Proof. Sample a set X from a (1/a)-thin probability distribution on Gf↓r(a), so that
f(G−X) 6 r(a), and let b = απ(G−X). Since π is upward-hereditary, we have b 6 απ(G).

Moreover, consider a set Y ⊆ V (G) such that π(G, Y ) is true and |Y | = απ(G). Since X
is sampled from a (1/a)-thin probability distribution, we have E[|Y \ X|] > (1− 1/a)|Y |.
Since π is downward-hereditary, π(G− X, Y \ X) is true, and thus

E[b] = E[απ(G− X)] > E[|Y \ X|] > (1− 1/a)|Y | = (1− 1/a)απ(G).

For example, the independence number is hard to approximate within a polynomial
factor [2] in general, but can be determined in time 3tw(H) · poly(|H|) for any graph H.
Consequently, for any class of graphs that is fractionally tw-fragile at rate r (efficiently in
the sense of Observation 1), the independence number can be approximated in an n-vertex
graph from the class up to the factor of (1− 1/a) in time 3r(a) · poly(n). Let us remark
that in essentially all known cases of fractionally fragile classes, it is possible to find a
probability distribution as described in Observation 1 with support of polynomial size,
and thus the algorithm can be derandomized by trying all sets from the support rather
than sampling one of them.

Fractional fragility is also related to generalizations of the (fractional) chromatic number
arising from the following scheme introduced by Wood [16, Section 10]. An (f, b)-coloring
of a graph G is an assignment ϕ of colors to the vertices such that f(G[ϕ−1(c)]) 6 b for
every color c, that is, such that each color class belongs to Gf6b. We can now define χf,b(G)
as the least number of colors in an (f, b)-coloring of G. For a class of graphs G, we
naturally define χf (G) as the smallest integer s such that for some positive integer b, all
graphs G ∈ G satisfy χf,b(G) 6 s. For example, let ?(G) be the maximum of the orders
of the components of the graph G. Then χ?,1(G) is just the ordinary chromatic number
of G, while in general, the parameter χ?,b(G) has been studied as the clustered chromatic
number [16].

Similarly to the way the fractional chromatic number is derived from the ordinary
chromatic number [15], we can also derive the fractional variant of this generalization. A
fractional (f, b)-coloring of a graph G is a function κ : Gf6b → [0, 1] such that for each
vertex v ∈ V (G), ∑

Y ∈Gf6b,v∈Y
κ(Y ) > 1;

the number of colors |κ| used by this coloring is ∑Y ∈Gf6b
κ(Y ). We define χfrac

f,b (G) to be
the infimum of |κ| over all fractional (f, b)-colorings κ of G. For a class G of graphs, we
define χfrac

f (G) as the infimum of the real numbers s such that for some positive integer b,
all graphs G ∈ G satisfy χfrac

f,b (G) 6 s.
Note that unlike the ordinary fractional chromatic number case, this can indeed be

a proper infimum: as b increases, the fractional (f, b)-coloring may need fewer colors,

the electronic journal of combinatorics 27(4) (2020), #P4.9 3



converging to but never reaching χfrac
f (G). This motivates the following definition that

captures the rate of the convergence. For a real number c and a function r : N→ R+
0 , we

say that a class of graphs G is fractionally f-colorable by c colors at rate r if for every
integer a > 1, every graph G ∈ G satisfies χfrac

f,r(a)(G) 6 c + 1/a. As we will see below
(Lemma 2), fractional f -fragility is equivalent to fractional f -colorability by 1 color, at a
matching rate.

1.1 Main results

The previous treatment of fractional fragility [5] was mostly qualitative. In this paper,
we focus on the quantitative aspect: the rate of fractional fragility for various parameters
and graph classes. Note that the rate is important in the applications, as it determines,
e.g., the multiplicative constant in the complexity of the approximation algorithm from
Observation 1.

In Section 3, we consider the parameter ?, the maximum component size. By Lemma 5,
only classes of graphs with bounded maximum degree can be fractionally ?-fragile.

• In Theorem 16, we prove that the fractional ?-fragility rate r of any class of graphs
containing all trees of maximum degree ∆ > 3 is exponential, more precisely
r(a) > (∆− 1)a−3.

• Conversely, we show that graphs of bounded treewidth (Corollary 22) and planar
graphs (Theorem 23) of maximum degree ∆ are fractionally ?-fragile at a nearly
matching rate r(a) = (∆− 1)a+O(

√
a).

In Section 4, we turn our attention to another graph parameter, treedepth. This
parameter naturally generalizes the component size, but fractional td-fragility does not
require bounded maximum degree.

• In Theorem 31, we show that graphs of treewidth at most t are fractionally td-fragile
at a polynomial rate r(a) = O(at). We also give a matching lower bound. In
particular, in Theorem 26, we prove that planar graphs of treewidth at most two
have fractional td-fragility rate r(a) = Ω(a2).

• For outerplanar graphs (an important subclass of graphs of treewidth at most two),
we show that the fractional td-fragility rate is r(a) = Θ(a log a), in Theorems 33
and 29.

• In Corollary 35, we show that planar graphs are fractionally td-fragile at rate
r(a) = O(a3 log a), in contrast to the lower bound Ω(a2 log a) for this class.

2 Preliminaries

In this section, we show some basic properties of the fractional f -fragility, and present
several auxiliary results we need in the rest of the paper.
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2.1 Basic properties of fractional fragility

The relationship between fractional f -colorability and fractional f -fragility is given by the
following lemma.

Lemma 2. Let r : N→ R+
0 be a non-decreasing function, and let r′ : N→ R+

0 be defined
by setting r′(a) := r(a+ 1) for every a ∈ N. Let f be a graph parameter whose value is at
most r(1) on the empty graph. A class G of graphs is fractionally f -fragile at rate r if and
only if it is fractionally f -colorable by 1 color at rate r′.

Proof. Suppose first that G is fractionally f -fragile at rate r. Hence, for any positive
integer a and any graph G ∈ G, there exists a 1

a+1 -thin probability distribution on Gf↓r(a+1).
Recall that a subset of V (G) belongs to Gf↓r(a) if and only if its complement belongs
to Gf6r(a). For Y ∈ Gf6r′(a), let κ(Y ) := a+1

a
Pr(V (G) \ Y ). For each vertex v ∈ V (G)

and a set X sampled from the probability distribution, we have
∑

Y ∈Gf6r′(a),v∈Y
κ(Y ) =

∑
Z∈Gf↓r′(a),v 6∈Z

κ(V (G) \ Z) = a+ 1
a

∑
Z∈Gf↓r′(a),v 6∈Z

Pr(Z)

= a+ 1
a

Pr[v 6∈ X] > a+ 1
a

(
1− 1

a+ 1

)
= 1,

and thus κ is a fractional (f, r′(a))-coloring of G using |κ| = a+1
a

= 1 + 1/a colors. Since
this holds for every positive integer a and for all graphs in G, the class G is f -colorable
by 1 color at rate r′.

Conversely, suppose that G is f -colorable by 1 color at rate r′. Consider a positive
integer a and a graph G ∈ G. Note that setting Pr(V (G)) := 1 and Pr(Z) := 0 for
all Z ( V (G) gives a 1-thin probability distribution on Gf↓r(1), since r(1) > f(G− V (G)).
Hence, we can assume that a > 2. Then there exists a fractional (f, r′(a− 1))-coloring κ
with |κ| = 1 + 1

a−1 , from which one can obtain a (1/a)-thin probability distribution
on Gf↓r(a) by setting Pr(Z) := a−1

a
κ(V (G) \ Z) for each Z ∈ Gf↓r(a). Indeed, for any

vertex v ∈ V (G) and a set X sampled from this distribution, we have

Pr[v ∈ X] = 1−Pr[v 6∈ X] = 1−
∑

Z∈Gf↓r(a),v 6∈Z
Pr(Z)

= 1− a− 1
a

∑
Z∈Gf↓r(a),v 6∈Z

κ(V (G) \ Z)

= 1− a− 1
a

∑
Y ∈Gf6r′(a−1),v∈Y

κ(Y ) 6 1− a− 1
a

= 1
a
.

This shows that G is fractionally f -fragile at rate r.

Let us note the following necessary condition for fractional f -fragility. We say that a
graph G is f -breakable at rate r if for every positive integer a, there exists a set X ∈ Gf↓r(a)
of size at most |V (G)|/a. The next observation readily follows from the definitions by
using the linearity of expectation.
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Observation 3. If a graph G is fractionally f -fragile at rate r, then it is also f -breakable
at rate r.

A seminal result on ?-breakability dates back to the work of Lipton and Tarjan [10];
they proved it in the special case of planar graphs, however, they proof directly generalizes
to any class with sufficiently small balanced separators. A separation in a graph G is a
pair (A,B) of subsets of vertices of G such that V (G) = A ∪ B and no edge of G has
one end in A \B and the other end in B \ A; that is, A \B and B \ A are unions of the
vertex sets of the components of G− (A∩B). The order of the separation is |A∩B|. The
separation is balanced if |A \B| 6 2

3 |V (G)| and |B \ A| 6 2
3 |V (G)|. Let s : N→ R+

0 be a
non-decreasing function. A graph G has balanced s-separators if every induced subgraph H
of G has a balanced separator of order at most s(|V (H)|).

Theorem 4 (Lipton and Tarjan [10]). Let β be a positive real number in (0, 1]. For every
function s(n) = O(n1−β), there exists a function r(a) = O(a1/β) such that every graph
with balanced s-separators is ?-breakable at rate r.

We should also note the following property, already observed in an earlier work [5].

Lemma 5. Suppose that f is a monotone graph parameter that is unbounded on stars.
Then every fractionally f -fragile class of graphs has bounded maximum degree.

Proof. Suppose that a class G of graphs is fractionally f -fragile at rate r. Since f is
unbounded on stars, there exist an integer k such that f(K1,k) > r(3). We show that
all graphs in G have maximum degree at most 3k − 3. Suppose, on the contrary, that a
graph G ∈ G contains a vertex v of degree at least 3k − 2. Choose a set X ∈ Gf↓r(3) at
random from a (1/3)-thin probability distribution. Consider the random variable R :=
deg(v) · [v ∈ X] + |N(v) ∩ X|, where [v ∈ X] is 1 if v ∈ X and 0 otherwise. The linearity of
expectation ensures that E[R] 6 2

3 deg(v), and hence there exists a set Z ∈ Gf↓r(3) such that
deg(v) · [v ∈ Z] + |N(v) ∩ Z| 6 2

3 deg(v). Consequently, v 6∈ Z and |N(v) ∩ Z| 6 2
3 deg(v),

and thus degG−Z(v) > ddeg(v)/3e > k. It follows that K1,k is a subgraph of G−Z. As f is
monotone, we deduce that f(G−Z) > f(K1,k) > r(3), in contradiction to Z ∈ Gf↓r(3).

A linear programming dual formulation of fragility leads to the following observation.
For an assignment w : V (G)→ R+

0 of weights to vertices and a set Z ⊆ V (G), let w(Z) :=∑
v∈Z w(v).

Lemma 6. Let G be a graph that is fractionally f-fragile at rate r. Let a be a positive
integer and w : V (G) → R+

0 an assignment of weights to the vertices of G. Then there
exists Z ⊆ V (G) such that w(Z) 6 w(V (G))/a and f(G− Z) 6 r(a).

Proof. Choose a set X ∈ Gf↓r(a) at random from a (1/a)-thin probability distribution. By
the linearity of expectation, E[w(X)] 6 w(V (G))/a, and thus there exists a set Z ∈ Gf↓r(a)
such that w(Z) 6 w(V (G))/a; i.e., there exists Z ⊆ V (G) such that w(Z) 6 w(V (G))/a
and f(G− Z) 6 r(a).
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2.2 Chordal graphs

Due to the following well-known observation, when considering graphs of bounded treewidth,
it is often convenient to work in the setting of chordal graphs, that is, graphs not containing
any induced cycles other than triangles.

Observation 7. Every graph has a chordal supergraph with the same set of vertices and
the same treewidth. Moreover, if G is chordal, then tw(G) = ω(G)− 1.

Indeed, this equivalent characterization of treewidth can be taken as its definition, and
thus we do not provide its usual (somewhat technical) definition, which can be found, e.g.,
in [14].

Each chordal graph G has an elimination ordering: an ordering of the vertices of G
such that the neighbors of each vertex that precede it in the ordering induce a clique. By
Observation 7, in an elimination ordering of G, each vertex is preceded by at most tw(G) of
its neighbors. Moreover, for every induced path P in G, the last vertex of V (P ) according
to the elimination ordering must be an end-vertex of P . In particular, this implies the
following property.

Observation 8. Let G be a connected chordal graph and let v be the first vertex in an
elimination ordering L of G. For each vertex u ∈ V (G) \ {v}, the vertex preceding u on
any shortest path from v to u also precedes u in L.

The next observation is also based on this fact.

Lemma 9. Let G be a connected chordal graph, let v be the first vertex in an elimination
ordering of G, let i be a non-negative integer, and let H be a connected subgraph of G, all
vertices of which are at distance greater than i from v. Let K be the set of vertices of G at
distance exactly i from v that have a neighbor in V (H). Then K induces a clique in G.

Proof. Suppose for a contradiction that K does not induce a clique in G, and thus K
contains distinct non-adjacent vertices x and y. In particular, this implies that |K| > 2,
and thus i > 0, since only v is at distance 0 from v. Since both x and y are at distance i > 0
from v, we have x 6= v 6= y.

Since H is connected and every vertex in K has a neighbor in H, there exists a path
between x and y in G with all internal vertices in H; let Q be a shortest such path. It
follows that Q is an induced path. Consequently, the last vertex of Q in the elimination
ordering is one of its end-points, say y. Let u be the neighbor of y in Q; since xy 6∈ E(G),
we have u ∈ V (H). Since the distance from v to y is i and the distance to u is greater
than i, there exists a shortest path P from v to u passing through y. But both v and u
precede y in the elimination ordering, and thus the last vertex of P in the elimination
ordering is neither of the ends of P . This is a contradiction, since P is an induced path.

2.3 Planar graphs and treewidth

As we have mentioned in the introduction, planar graphs are fractionally tw-fragile. This is
a well-known consequence of the fact that the treewidth of planar graphs is at most linear
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in their radius, which follows from ideas of Robertson and Seymour [13] and Baker [1].
The version we use, together with a short proof, can be found in a work by Eppstein [6,
Lemma 4].

Theorem 10. Every planar graph of radius at most d has treewidth at most 3d.

The fractional tw-fragility now follows by a standard layering argument [1, 7], which
we restate in our notation.

Corollary 11. The class of planar graphs is fractionally tw-fragile at rate r(a) = 3a− 3.

Proof. Let G be a planar graph, without loss of generality connected, and let a be a
positive integer, at least 2 since the statement is trivial for a = 1. Let v be an arbitrary
vertex of G and for every non-negative integer i, let Li be the set of vertices of G at distance
exactly i from v. For i ∈ {0, . . . , a − 1}, set Xi := Li ∪ Li+a ∪ Li+2a ∪ · · · and consider
any component C of the graph G−Xi. There is some integer j such that C contains only
vertices at distance between i+ja+1 and i+ja+a−1 from v. Let G′ be the graph obtained
from G by deleting all vertices at distance at least i+ ja+ a from v and by contracting
all vertices at distance at most max(i + ja, 0) from v to a single vertex x. Clearly, G′
is a minor of G, and thus G′ is planar. Moreover, every vertex of G′ is at distance at
most a− 1 from x and C ⊆ G′. Consequently, tw(C) 6 tw(G′) 6 3a− 3 by Theorem 10.
Since this is the case for every component of G−Xi, we have tw(G−Xi) 6 3a− 3, and
thus Xi ∈ Gtw↓3a−3. Since the uniform distribution on {X0, . . . , Xa−1} is (1/a)-thin, planar
graphs are fractionally tw-fragile at rate r(a) = 3a− 3.

Pilipczuk and Siebertz [12] demonstrated another relationship between planar graphs
and graphs of bounded treewidth. Given a partition P of vertices of a graph G, let G/P
be the graph obtained from G by contracting each part of P to a single vertex and
suppressing the arising loops and parallel edges. A path P in a graph G is geodesic if for
every x, y ∈ V (P ), the distance between x and y in G is the same as their distance in P .
Pilipczuk and Siebertz [12] proved that every planar graph G admits a partition P of its
vertices such that G/P has treewidth at most 8 and each part of P induces a geodesic
path in G.

We need a variation which follows from a result proved by Dujmović et al.[4]. In a
rooted tree T , a vertical path is an initial segment of a path from a vertex of T to the root;
the lower endpoint of a vertical path is its vertex farthest from the root. Suppose T is a
spanning tree of a graph G. Then a tripod is the union of the vertex sets of up to three
pairwise disjoint vertical paths in T whose lower endpoints induce a clique in G.

Theorem 12 (Dujmović et al. [4, Theorem 16]). For every plane triangulation G and
every rooted spanning tree T of G, there exists a partition P of G into tripods such that
G/P has treewidth at most 3.

We can in fact say a bit more; note that the minor G/P of G is again a plane
triangulation (after suppressing faces of length 1 and 2, but keeping non-facial loops and
parallel edges), and thus by the following lemma, it is actually chordal.
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Lemma 13. Let H be a multigraph triangulating the plane. If H has treewidth at most 3,
then the underlying simple graph of H is chordal.

Proof. Suppose for a contradiction that C is an induced cycle in H of length at least four.
By contracting all but four edges of C if necessary, we can assume C to have length exactly
four. For each 2-cycle K in H, delete the vertices contained in the face of K disjoint
from C and suppress the resulting 2-face, so that we can assume H does not have parallel
edges. Since H is a triangulation, it does not have loops, either, and thus H is a simple
graph. Consequently, H − C has exactly two components (one drawn in each face of C),
and contracting each of these components to a single vertex, we deduce from the fact
that H triangulates the plane that H contains the octahedron graph as a minor. However,
this graph has treewidth four, which is a contradiction.

If T is a rooted breadth-first search spanning tree in some graph G, then all vertical
paths in T are geodesic in G. Hence, applying Theorem 12 to such a spanning tree and
using Lemma 13, we obtain the following result. We say that a partition P of the vertices
of G is trigeodesic if every part of P induces in G a connected subgraph whose vertex set
is covered by at most three geodesic paths of G.

Theorem 14. For every plane triangulation G, there exists a trigeodesic partition P
of V (G) such that G/P is chordal and has treewidth at most 3.

3 Maximum component size

Recall that ?(G) is the maximum of the orders of the components of the graph G. The
parameter χ?,b has been intensively studied under the name clustered chromatic number [16],
and is among the most natural relaxations of the chromatic number. Clustered coloring
specializes to the usual notion of vertex coloring, in the sense that χ?,1(G) = χ(G).

In the special case of planar graphs, clustered chromatic number is in general no better
than ordinary chromatic number: for every integer b, there exists a planar graph Gb such
that χ?,b(Gb) = 4. These graphs Gb necessarily have unbounded maximum degree: Esperet
and Joret [8] proved that for every ∆, there exists b such that every planar graph G of
maximum degree at most ∆ satisfies χ?,b(G) 6 3. Moreover, the Hex lemma implies that
this bound cannot be improved. The situation is different in the fractional setting due to
Lemma 2, since planar graphs of bounded maximum degree are fractionally ?-fragile (the
assumption of bounded maximum degree is necessary by Lemma 5). In fact, Dvořák [5]
proved fractional ?-fragility in much greater generality, for all classes of bounded maximum
degree with strongly sublinear separators.

Theorem 15 (Dvořák [5]). Let β be a real number in (0, 1]. For every function s(n) =
O(n1−β) and every integer ∆, there exists a function r such that every graph with balanced
s-separators and maximum degree at most ∆ is fractionally ?-fragile at rate r.

the electronic journal of combinatorics 27(4) (2020), #P4.9 9



Let us remark that the argument used to prove Theorem 15 gives a very bad bound on
the rate r, especially compared to the polynomial ?-breakability bound from Theorem 4. As
shown by Lipton and Tarjan [9], planar graphs have balanced s-separators for s(n) = 3

√
n,

and thus they are ?-breakable at rate O(a2). Considering Observation 3, it is natural to ask
whether (subject to a bound on the maximum degree) planar graphs are also fractionally
?-fragile at quadratic rate O(a2). As our first result, we show that this is not the case,
even for much more restricted graph classes.
Theorem 16. Let ∆ > 3 be an integer and let G be a class of graphs that contains all trees
of maximum degree at most ∆. If G is fractionally ?-fragile at rate r, then r(a) > (∆− 1)a−3

for every integer a > 4.
Proof. Fix an integer a > 4. Let T be the complete rooted (∆− 1)-ary tree of depth d
(the root has depth 0 and the leaves have depth d, every non-leaf vertex has exactly ∆− 1
children), where d > 3a − 1. We aim to use Lemma 6. For every vertex v ∈ V (T )
at depth k, let w(v) := (∆ − 1)−k, so w(V (T )) = d + 1. We prove that, for every
set X ⊆ V (T ) with w(X) 6 (d + 1)/a, the forest T −X contains a component with at
least (∆− 1)a/(1+a/(d+1))−3 vertices.

Consider any set X ⊆ V (T ) such that w(X) 6 (d + 1)/a. Let X ′ consist of X and
the root of T ; we have w(X ′) 6 1 + (d + 1)/a. For a vertex v ∈ X ′, let Cv be the set
of all descendants of v in T (including v itself) that can be reached without passing
through another vertex of X ′. Then {Cv : v ∈ X ′} is a partition of V (T ). For v ∈ X ′,
set ρ(v) := w(Cv)/w(v). We have∑

v∈X′ w(v)ρ(v)
w(X ′) =

∑
v∈X′ w(Cv)
w(X ′) = w(V (T ))

w(X ′)

>
d+ 1

(d+ 1)/a+ 1 = 1
1 + a/(d+ 1) · a.

Let a′ := 1
1+a/(d+1) · a, and note that a′ > 3

4a > 3 because d > 3a− 1 and a > 4. Since the
left side of the above inequality is a weighted average of the values ρ(v) for v ∈ X ′, there
exists v ∈ X ′ such that ρ(v) > a′, and thus w(Cv) > a′w(v).

For each non-negative integer i, let ni be the number of vertices in Cv whose depth is
by i larger than the depth of v, so that w(Cv) = w(v)∑i>0(∆− 1)−i · ni, and thus a′ 6∑
i>0(∆ − 1)−i · ni. Subject to this inequality and to the constraints ni 6 (∆ − 1)i for

every i, the value |Cv| =
∑
i>0 ni is minimized when ni = (∆− 1)i for i ∈ {0, . . . ,m− 1}

and ni = 0 for i > m+ 1 where m = ba′c > 3 (as can be seen by a standard weight-shifting
argument). It follows that

|Cv| >
m−1∑
i=0

(∆− 1)i = (∆− 1)m − 1
∆− 2 >

(∆− 1)a′−1 − 1
∆− 2 > (∆− 1)a′−2 + 1.

Consequently, T [Cv]−v has a component with at least (∆−1)a′−3 vertices (since v has ∆−1
children in T ), giving the same lower bound on ?(T − X). By Lemma 6, we conclude
that r(a) > (∆−1)a′−3. Because this inequality holds for all d > 3a−1 and limd→∞ a

′ = a,
the statement of the lemma follows.
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Conversely, many interesting graph classes, including planar graphs, nearly match the
lower bound provided by Theorem 16. We start by an argument for graphs with bounded
treewidth. We use the following well-known fact [14, (2.6)].

Observation 17. Let k be an integer. If G is a graph of treewidth less than k and Z
a subset of vertices of G, then G has a separation (D,B) of order at most k such that
|Z \D| 6 2

3 |Z| and |Z \B| 6
2
3 |Z|.

Iterating this splitting procedure, we obtain the following generalization.

Lemma 18. Let k, s and p be positive integers such that s > 12k. If G is a graph of
treewidth less than k and W a subset of vertices of G of order at most ps, then there exists
a set C ⊆ V (G) and non-empty sets A1, . . . , At ⊆ V (G) for some t < 6p such that

(i) |C| < 6pk;

(ii) |Ai ∩ (C ∪W )| 6 s for each i ∈ {1, . . . , t};

(iii) G = G[A1] ∪ · · · ∪G[At]; and

(iv) Ai ∩ Aj ⊆ C if 1 6 i < j 6 t.

Proof. We inductively define Ai and Ci for i ∈ {0, . . . , t − 1}. Let A0 := {V (G)}
and C0 := ∅. For i > 0, if there exists Xi ∈ Ai such that |Xi ∩ (Ci ∪W )| > s, we apply
Observation 17 to G[Xi] with the subset Zi := Xi ∩ (Ci ∪W ) of vertices, obtaining a
separation (Di, Bi) of G[Xi] of order at most k; and we let Ai+1 := (Ai \ {Xi}) ∪ {Di, Bi}
and Ci+1 := Ci ∪ (Di ∩ Bi). If no such element X exists, the procedure stops and we
set t := i + 1, C := Ci and {A1, . . . , At} := Ai. Assuming the construction stops, it is
clear the conditions (ii), (iii) and (iv) hold. Since |Ci+1 \ Ci| 6 k for i ∈ {0, . . . , t− 2}, it
suffices to argue that the construction stops with t < 6p. Without loss of generality, we
can assume that the construction does not stop in the first step, i.e., that |W | > s.

If 0 6 i 6 t− 1 and X ⊆ V (G), we let ∂iX := |X ∩ (Ci ∪W )|. Suppose that i 6 t− 2.
Note that if X ∈ Ai and X 6= Xi, then X ∩ Ci+1 = X ∩ Ci, since Ci+1 \ Ci ⊆ Xi \ Ci is
disjoint from X; hence, ∂i+1X = ∂iX. By the choice of the separation (Di, Bi), we have

∂i+1Di > |Di ∩ Zi| = |Zi| − |Zi \Di| > |Zi|/3 > s/3,

and symmetrically ∂i+1Bi > s/3. We conclude that if 0 6 i 6 t− 1, then∑
X∈Ai

∂iX > |Ai|s/3 = (i+ 1)s/3.

On the other hand,

∂i+1Di + ∂i+1Bi 6 ∂iXi + 2|Di ∩Bi| = ∂iXi + 2k,

and thus ∑
X∈Ai+1

∂i+1X 6 2k +
∑
X∈Ai

∂iX.
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By induction, we conclude that for i ∈ {0, . . . , t− 1}, we have∑
X∈Ai

∂iX 6 |W |+ 2ik 6 ps+ 2ik 6 (p+ i/6)s.

Combining the inequalities, we obtain (i + 1)/3 < (p + i/6), and hence i < 6p − 2.
Consequently, the construction stops with t < 6p.

Corollary 19. Let k, s and p be positive integers such that s > 12k. If G is a graph of
treewidth less than k and W a subset of vertices of G of order at most ps, then there exists
a set C ⊆ V (G) \W and a partition E1, . . . , Et of V (G) \ (C ∪W ) for some t < 6p such
that

(i) |C| < 6pk;

(ii) for each i ∈ {1, . . . , t}, at most s vertices in C ∪W have a neighbor in Ei;

(iii) for each non-isolated vertex v in C, either v has a neighbor in C ∪W , or in at least
two of the sets E1, . . . , Et;

(iv) G = G[C ∪W ∪ E1] ∪ · · · ∪G[C ∪W ∪ Et].

Proof. Apply Lemma 18 and replace C by C \ W if necessary, so that C ∩ W = ∅.
Let Ei := Ai \ (C ∪W ) for i ∈ {1, . . . , t}, and remove from the list E1, . . . , Et the empty
sets. Finally, if a vertex v ∈ C has a neighbor in Ei and no neighbor in ∪j 6=iEj for
some i ∈ {1, . . . , t}, then we can replace C by C \ {v} and Ei by Ei ∪ {v}.

A tree partition (T, β) of a graph G consists of a tree T and a function β that to each
vertex of T assigns a subset of vertices of G, such that

• the sets β(v) for v ∈ V (T ) are pairwise disjoint and form a partition of V (G); and

• if distinct vertices x and y of T are not adjacent, then G does not contain any edge
with one end in β(x) and the other in β(y).

Equivalently, the graph obtained from G by contracting each set β(x) for x ∈ V (T ) to a
single vertex (and removing loops and multiple edges) is a subgraph of T . In a rooted tree
partition, the tree T is additionally rooted. The depth of a vertex v of T is the length of the
path in T from v to the root; in particular, the depth of the root is 0. The depth of T is
the maximum of the depths of its vertices. For a subtree S ⊆ T , let β(S) := ⋃

v∈V (S) β(v).
The subtree S is naturally rooted in the vertex of S nearest to the root of T . For every
integer a, the depth-a order of the rooted tree partition is the maximum of |β(S)| over all
subtrees S of T of depth at most a− 2. We use the following simple observation.

Lemma 20. Let r : N→ R+
0 be a non-decreasing function. If for every positive integer a,

the graph G admits a rooted tree partition (Ta, β) of depth-a order at most r(a), then G is
fractionally ?-fragile at rate r.
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Proof. Let a be a positive integer. For each i ∈ {0, . . . , a− 1}, let Li be the set of vertices
of Ta whose depth belongs to {i+ ja : j ∈ {0, 1, 2, . . .}} and let Xi := ⋃

v∈Li
β(v). By the

definition of a tree partition, the vertex set of each component of G−Xi is contained in β(S)
for a component S of Ta−Li. Each component of Ta−Li is a tree of depth at most a− 2,
and hence |β(S)| 6 r(a). Consequently, ?(G−Xi) 6 r(a), and thus Xi ∈ G?↓r(a). Note
that Xi ∩Xj = ∅ if i 6= j. Considering the uniform distribution on {X0, . . . , Xa−1}, which
is (1/a)-thin, we conclude that G is fractionally ?-fragile at rate r.

For example, if ∆ > 3 and T is a tree of maximum degree at most ∆, then we can
root T and define β(v) := {v} for every v ∈ V (T ), thereby obtaining a rooted tree partition
of T of depth-a order O((∆−1)a−2). It thus follows from Lemma 20 that trees of maximum
degree at most ∆ are fractionally ?-fragile at rate O((∆− 1)a−2), essentially matching the
bound from Theorem 16.

0

1

23

4

5

67

8

σ(u) = {2, 3, 4, 5, 6, 7, 8}
γ(u) = {0, 1}

r β(r) = {0, 1}

u β(u) = {2, 3, 4, 5}

x β(x) = {6, 7, 8}

σ(x) = {6, 7, 8}
γ(x) = {2, 3, 4, 5}

Figure 1: A tree decomposition (right) of the graph with 9 vertices on the left obtained by
following the construction in the proof of Lemma 21, illustrating the case where |W | 6
(∆− 1)b−1s (for some integer b > 2).

We now construct good tree partitions for graphs of bounded treewidth and maximum
degree.

Lemma 21. Let a, b, k and ∆ be positive integers with ∆ > 3 and a > b. If G is a
connected graph of treewidth less than k and maximum degree at most ∆, then G admits a
rooted tree partition (T, β) of depth-a order at most 12k(∆− 1)a+b−1

(
1 + 6a/b

)
.

Proof. Let s := 12k. We construct the tree partition starting from the root and adding
children as described below. It might be helpful to look at Figures 1 and 2 while reading
the construction. To every vertex v of T will be associated, in addition to β(v), three sets,
namely σ(v), γ(v) and κ(v). When considering a vertex v with parent z in T , two of these
will already have been defined in one of the previous steps: the set σ(v) ⊆ V (G) \ β(z),
which at the end of the construction will be equal to β(S) for the subtree S of T consisting
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of v and all its descendants, and the set γ(v) ⊆ β(z), which is of size at most (∆− 1)b−1s
and such that in G, all neighbors of vertices from σ(v) are contained in σ(v) ∪ γ(v), and
each vertex in γ(v) has at most ∆ − 1 neighbors in σ(v). The set κ(v), which must be
contained in β(v), is defined when v is considered; its role becomes clear later.

Clearly, we can assume that G has at least three vertices. For the root r of T , we
start the construction by letting β(r) consist of two adjacent vertices of G and κ(r) := ∅,
adding a child u of r to T , and setting σ(u) := V (G) \ β(r) and γ(u) := β(r). Suppose
now that the construction reaches a vertex v of T with parent z. Let W be the set of
vertices in σ(v) that have a neighbor (in G) in γ(v).

If |W | 6 (∆− 1)b−1s, we let β(v) := W and κ(v) := ∅; when σ(v) = W , then v is a
leaf of T , otherwise, we add a child x to v and set σ(x) := σ(v) \W and γ(x) := W (see
Figure 1). Notice that if y ∈ σ(x), then all neighbors of y in G are contained in σ(v)∪γ(v),
since σ(x) ⊆ σ(v). Moreover, because y /∈ W we know that y has no neighbor in γ(v), and
hence all neighbors of y are contained in σ(v) = σ(x) ∪ γ(x). Let us also point out that
a vertex w ∈ γ(x) has less than ∆ neighbors in σ(x), because w has a neighbor in γ(v),
which is disjoint from σ(v).

Let us consider the case that |W | > (∆ − 1)b−1s; in this case, we say that v is a
branching vertex. Since |γ(v)| 6 (∆− 1)b−1s and each vertex in γ(v) has at most ∆− 1
neighbors in σ(v), we have |W | 6 (∆− 1)bs. Let C,E1, . . . , Et ⊆ σ(v) be the sets obtained
by applying Corollary 19 to G[σ(v)] and W , with p being (∆− 1)b. We set β(v) := W ∪C,
κ(v) := C, we add t children u1, . . . , ut to v, and set σ(ui) := Ei and let γ(ui) consist of
all vertices in W ∪ C with a neighbor in Ei for i ∈ {1, . . . , t} (see Figure 2). Let us point
out that |γ(ui)| 6 s 6 (∆− 1)b−1s by property (ii) from Corollary 19, and that vertices
in σ(ui) only have neighbors in σ(ui) ∪ γ(ui) by property (iv) from Corollary 19. Let us
also remark that each vertex in γ(ui) has at most ∆− 1 neighbors in σ(ui), since G has
maximum degree at most ∆, each vertex in W has a neighbor in γ(v), and due to the
property (iii) from Corollary 19 for vertices in C ∩ γ(ui).

Note that since |γ(v)| 6 s when v is the child of a branching vertex, and |β(v)| 6
(∆ − 1)|γ(v)| when v is not a branching vertex, if x and y are two distinct branching
vertices and x is an ancestor of y, then the depth of x is by at least b larger than the
depth of y. Note also that every branching vertex x has less than 6(∆− 1)b children and
satisfies |κ(x)| < 6(∆− 1)bk.

The described construction clearly results in a rooted tree partition of G. Let us now
consider any subtree S of T of depth at most a− 2, with root w. The level of a branching
vertex x of S is the number of branching vertices on the path from x to w, excluding x
itself; hence, each branching vertex has level at most b(a− 2)/bc 6 ba/bc. The number
of branching vertices of S of level i is at most

(
6(∆− 1)b

)i
. If w is the root of T , then

let B := β(w), otherwise let B be the set of vertices in σ(w) with a neighbor in γ(w); in
either case, we have |B| 6 (∆− 1)bs. Note that each vertex in β(S) is either at distance
at most a− 2 from B, or at distance at most a− 2− b · i from a vertex in κ(x) for some
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branching vertex x ∈ V (S) of level i. Therefore, we have

|β(S)| 6 (∆− 1)a−1

(∆− 1)bs+
ba/bc∑
i=0

(
6(∆− 1)b

)i+1
(∆− 1)−bik


= 12k(∆− 1)a−1

(∆− 1)b + (∆− 1)b

2

ba/bc∑
i=0

6i


6 12k(∆− 1)a+b−1
(
1 + 6a/b

)
,

as required.

CE1E2 E3 E4

|γ(u3)| 6 sσ(v)

W

β(z)=γ(v)
z

v
β(v) = W ∪ C
κ(v) = C

σ(ui) = Ei

γ(ui) = N(Ei) ∩ (W ∪ C)

u1

u2 u3

u4

Figure 2: A schematic illustration of the construction of the tree decomposition in the
proof of Lemma 21, in the case where |W | > (∆− 1)b−1s and v is thus a branching vertex.

We now combine Lemmas 20 and 21, choosing b = Θ(
√
a) in the latter.

Corollary 22. Let k and ∆ be positive integers with ∆ > 3. The class of graphs of
treewidth less than k and maximum degree at most ∆ is fractionally ?-fragile at rate r(a) =
k(∆− 1)a+O(

√
a).

The result can be extended to planar graphs using their fractional tw-fragility; that is, by
combining Corollaries 11 and 22.

Theorem 23. For every integer ∆ > 3, the class of planar graphs with maximum degree
at most ∆ is fractionally ?-fragile at rate r(a) = (∆− 1)a+O(

√
a).

Proof. Let G be a planar graph of maximum degree at most ∆. Consider an integer a > 256,
let a′ := d2

√
ae, let a′′ := a+ 1 and note that 1/a′ + 1/a′′ < 1/a. Choose X ∈ Gtw↓3a′−3 at

random from the (1/a′)-thin probability distribution given by Corollary 11. Then G −
X is a planar graph of treewidth less than 3a′ − 2 and maximum degree at most ∆.
Choose Y ∈ (G − X)

?↓(3a′−2)(∆−1)a′′+O(
√

a′′) from the (1/a′′)-thin probability distribution
given by Corollary 22, and let Z := X ∪ Y. Then ?(G − Z) = ?((G − X) − Y) 6
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x

Figure 3: The graph T3(P4): the handle is the vertex represented by a square, and the
circled part is the jug of the vertex x.

(3a′ − 2)(∆ − 1)a′′+O(
√
a′′) = (∆ − 1)a+O(

√
a). Consequently, choosing the random set Z

in this way gives a probability distribution on G?↓(∆−1)a+O(
√

a) , and Pr[v ∈ Z] 6 Pr[v ∈
X]+Pr[v ∈ Y] 6 1/a′+1/a′′ < 1/a for every v ∈ V (G). We conclude that G is fractionally
?-fragile at rate (∆− 1)a+O(

√
a).

4 Treedepth

By Lemma 5, we cannot hope to extend the results on fractional ?-fragility to any class
with unbounded maximum degree. The natural parameter to consider in graphs with
unbounded maximum degree is the treedepth [11]: firstly, stars have treedepth at most 2,
and secondly, a connected graph of maximum degree at most ∆ and treedepth at most d
has at most ∆d vertices, thus giving us about as good a relationship to ? as one may hope
for in the case where the maximum degree is bounded from above. The treedepth td(G) of
a graph G is the minimum integer d for which there exists a rooted tree T of depth at
most d − 1 with vertex set V (G) such that every edge of G joins a vertex to one of its
ancestors or descendants in T .

Given Corollary 22 and the relationship between ? and td outlined above, one could
perhaps hope that graphs of bounded treewidth are fractionally td-fragile at a linear
rate. However, this is not the case. For the simplicity of presentation, we only give the
counterargument for the case of graphs of treewidth two, but it can be naturally generalized
to show that the class of all graphs of treewidth at most t cannot be fractionally td-fragile
at rate better than Ω(at).

For a graph H and a non-negative integer d, let Td(H) be the graph inductively
defined as follows: T0(H) is the graph consisting of a single vertex v, which we call
the handle of T0(H). For d > 1, let Td(H) be the graph obtained from H by adding,
for each x ∈ V (H), a copy of Td−1(H) and identifying its handle with x, and finally
adding a vertex v adjacent to all vertices of H; the vertex v is the handle of Td(H).
Figure 3 gives a representation of T3(H) when H is the 4-vertex path P4. Note that
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for each vertex x of Td(H), there is a unique index i ∈ {0, . . . , d} such that x is the
handle of a copy of Ti(H); let us call this copy the jug of x. Given a non-identically-zero
function w : V (H)→ R+

0 assigning weights to vertices of H, let wd : V (Td(H))→ R+
0 be

defined as follows. For the handle v, we set wd(v) := 1, and when d > 1, for each vertex x
in the copy of H we set wd(x) := w(x)/w(V (H)), and in the copy of Td−1(H) attached
at x, we set the weights according to wd(x) · wd−1. It may help to follow the sequel to
notice that wd(V (Td(H))) = d + 1 for every non-negative integer d and every graph H.
Further, if the jug J of x in Td(H) is a copy of Ti(H) with i > 1, then ∑v∈NJ

wd(v) = wd(x)
where NJ is the set of neighbors of x in Td(H) that belong to J .

Let Bd be the complete binary tree of depth d (let us remark that Bd = Td(2K1),
where 2K1 is the graph with two vertices and no edge), and let td : V (Bd)→ R+

0 be the
weight function assigning to each vertex of depth i the weight 2−i (so td = wd for the
weight function w assigning to both vertices of 2K1 the same weight). Let us start with
an observation on complete binary subtrees in heavy subsets of Bd. For a graph H with
a handle h, we say that a graph G with a vertex s contains H as a minor rooted in s if
there exists an assignment µ of pairwise disjoint non-empty sets of vertices of G to the
vertices of H, such that

• s ∈ µ(h);

• for each vertex v ∈ V (H), the graph G[µ(v)] is connected;

• for each edge uv ∈ E(H), there exists an edge of G with one end in µ(u) and the
other end in µ(v).

The sets µ(v) are called the bags of the minor.

Lemma 24. Let d and p be non-negative integers and let S be a subtree of Bd with root s
such that td(V (S)) > (2p+ 1)td(s). Then S contains Bp as a minor rooted in s.

Proof. We prove the statement by induction on the non-negative integer p. The case p = 0
being trivial, suppose that p > 1. For x ∈ V (S), let Sx be the subtree of S induced by x and
all its descendants. We can assume that td(V (Sx)) < (2p+1)td(x) for every x ∈ V (S)\{s},
as otherwise we can consider Sx instead of S and combine the obtained minor with the path
from x to s in S. In particular, for a child x1 of s in S we have td(Sx1) < (2p+1)td(x1) = (p+
1/2)td(s), and thus td(V (S)\ (V (Sx1)∪{s})) > (p−1/2)td(s). Consequently, s has another
child x2 in S and td(Sx2) = td(V (S) \ (V (Sx1) ∪ {s})) > (p− 1/2)td(s) = (2p− 1)td(x2).
Symmetrically, td(Sx1) > (2p− 1)td(x1). By the induction hypothesis, each of Sx1 and Sx2

contains Bp−1 as a minor rooted in x1 and x2, respectively, which combine with s to
form Bp as a minor rooted in s.

Next, let us lift this result to Td(Bd). For a non-negative integer p, let us define q(p) :=
10
√
p+ 1. Let us remark that the function q is chosen so that q(p)−2 > q(p−b(q(p)−4)/8c)

holds for p > 1.

the electronic journal of combinatorics 27(4) (2020), #P4.9 17



Lemma 25. Let d and p be non-negative integers such that d > q(p)− 1, let G := Td(Bd)
and w := (td)d, let s be a vertex of G and let S be a connected induced subgraph of G
contained in the jug of s and containing s. If w(V (S)) > q(p)w(s), then S contains Bp as
a minor rooted in s.

Proof. We prove the statement by induction on the non-negative integer p. The case p = 0
being trivial, suppose that p > 1. For x ∈ V (S), let Sx be the intersection of S with the
jug of x. We can assume that w(V (Sx)) < q(p)w(x), as otherwise we can consider Sx
instead of S, find the required minor in Sx, and combine it with a path from s to x.

Let T be the subgraph of G induced by the neighbors of s in the jug of s (note that T
is a copy of Bd), and let N be the set of neighbors of s in G that belong to S. Notice
that N ⊆ V (T ) since S is contained in the jug of s by assumptions. We have

q(p)w(s) 6 w(V (S)) = w(s) +
∑
x∈N

w(V (Sx)) < w(s) + q(p)w(N),

and thus
w(N) >

(
1− 1

q(p)

)
w(s) =

(
1− 1

q(p)

)
w(V (T )). (1)

Let B consist of the vertices x in N such that w(V (Sx)) < (q(p)− 2)w(x). Then

q(p)w(s) 6 w(s) +
∑
x∈N

w(V (Sx))

= w(s) +
∑

x∈N\B
w(V (Sx)) +

∑
x∈B

w(V (Sx))

< w(s) + q(p)w(N)− 2w(B)
6 w(s) + q(p)w(s)− 2w(B),

and hence
w(B) < w(s)

2 = w(V (T ))
2 . (2)

Let r be the root of T and set X := (V (T ) \ N) ∪ {r}. By (1) and the assumption
d > q(p)− 1,

w(X) < w(V (T ))
q(p) + w(r) =

( 1
q(p) + 1

d+ 1

)
w(V (T )) 6 2

q(p)w(V (T )). (3)

For x ∈ X, let Tx be the subtree of the forest T [N ∪{x}] induced by x and its descendants,
and set a(x) := (w(V (Tx))− w(V (Tx) ∩B))/w(x). By (2) and (3), we have∑

x∈X w(x)a(x)
w(X) = w(V (T ))− w(B)

w(X) >
q(p)

4 . (4)

Since the left side of (4) is a weighted average of the values a(x) for x ∈ X, there
exists x ∈ X such that a(x) > q(p)/4. Let T ′x be the smallest subtree of Tx containing x
and all vertices in V (Tx) \ B. Note that w(V (T ′x)) > a(x)w(x) > q(p)

4 w(x) and no leaf

the electronic journal of combinatorics 27(4) (2020), #P4.9 18



of T ′x belongs to B. Set p′ := b(q(p)− 4)/8c. Lemma 24 ensures that T ′x contains Tp′ as a
minor µ, which can be extended so that for every leaf u, the bag µ(u) contains a leaf y
of T ′x; this leaf in particular does not belong to B. Hence, w(V (Sy)) > (q(p) − 2)w(y),
which is at least q(p − p′)w(y) by the definition of q, since p > 1. Consequently, the
induction hypothesis implies that Sy contains Tp−p′ as a minor rooted in y. Adding these
minors of Tp−p′ for each leaf of Tp′ , and replacing x by s in the root bag, we obtain Tp in S
as a minor rooted in s, as required.

We now use Lemma 6 to give the desired lower bound.

Theorem 26. Let r : N → R+
0 be a non-decreasing function. If all planar graphs of

treewidth at most two are fractionally td-fragile at rate r, then r(a) = Ω(a2).

Proof. Consider two integers a and d such that d > a > 20. Let G := Td(Bd) and w := (td)d.
Note that G is planar and has treewidth at most two. Suppose that X is a subset of V (G)
such that w(X) 6 w(V (G))/a. Let r be the handle of G and let X ′ = X ∪ {r}; we have
w(X ′) 6 w(X) + 1 = w(X) + w(V (G))

d+1 6 2
a
w(V (G)). For x ∈ X ′, let Jx be the jug of x and

let Sx be the component of Jx − (X ′ \ {x}) containing x. We have

a

2w(X ′) 6 w(V (G)) =
∑
x∈X′

w(V (Sx)),

and thus there exists x ∈ X ′ such that w(V (Sx)) > a
2w(x). Set p := ba2/400 − 1c, so p

is a non-negative integer. Because 10
√
p+ 1 6 a

2 , we deduce from Lemma 25 that Sx
contains Bp as a minor.

Note that Bp has treedepth p+ 1, that deleting a vertex decreases the treedepth by at
most one, and that treedepth is minor-monotone [11]. Since Sx − x ⊆ G−X, we have

td(G−X) > td(Sx − x) > td(Sx)− 1 > td(Bp)− 1 > p.

Since this holds for every set X with w(X) 6 w(V (G))/a, Lemma 6 implies that r(a) >
p = Ω(a2).

Outerplanar graphs are planar and have treewidth two; however, the graphs Td(Bd) are
not outerplanar if d > 2. As we will see below, outerplanar graphs are actually fractionally
td-fragile at a subquadratic rate. Nevertheless, even for outerplanar graphs the rate is not
linear, as we now show. Let us start by showing that Td(Pn) has substantial treedepth,
where Pn is the n-vertex path.

Lemma 27. Let d > 0, a > 1 and n > 2a be integers. The graph Td(Pn) has treedepth at
least ad+ 1.

Proof. We prove the statement by induction on the non-negative integer d. The case d = 0
is trivial, and we thus assume that d > 1. Set G := Td(Pn), let v be the handle of G, and
let Q be the n-vertex path induced by the neighbors of v. For a subpath Q′ of Q, we
define JQ′ to be the union of the vertex sets of every jug the handle of which is contained

the electronic journal of combinatorics 27(4) (2020), #P4.9 19



in Q′. Suppose that R is a rooted tree witnessing the treedepth of Td(Pn). By finite
induction we build a path u0 . . . ua in R starting at the root u0 of R and a decreasing
sequence Q0 ⊃ Q1 ⊃ · · · ⊃ Qa of subpaths of Q such that the following invariants hold for
each i ∈ {0, . . . , a}.

(i) |V (Qi)| = 2a−i;

(ii) u0, . . . , ui−1 6∈ JQi
; and

(iii) the subtree of R rooted at ui contains all vertices of JQi
.

We proceed by finite induction on i ∈ {0, . . . , a}. The path Q0 is chosen arbitrarily among
the subpaths of Q with 2a vertices and u0 is the root of R. For i ∈ {1, . . . , a}, the path Qi

is selected as one of the halves of Qi−1 so that JQi
does not contain ui−1. It follows that Qi

satisfies (i) and (ii). By (iii), we know that the subtree of R rooted at ui−1 contains all
vertices of JQi−1 , and thus also all vertices of JQi

. Since G[JQi
] is connected and ui−1 /∈ JQi

,
we can choose ui as the unique child of ui−1 in R such that the subtree of R rooted at ui
contains all vertices of JQi

, so that (iii) is satisfied. This concludes the construction.
Now let x ∈ V (Qa), let Jx be the jug of x and let Rx be the subtree of R rooted

at ua. We know by (iii) that V (Jx) ⊆ V (Rx). Because Jx is isomorphic to Td−1(Pn), the
induction hypothesis implies that Rx has depth at least a(d− 1). Since ua has depth a
in R, it follows that R has depth at least ad. Consequently, the treedepth of Td(Pn) is at
least ad+ 1.

We now give an argument analogous to that of Lemma 25. For the d-vertex path Pd,
let pd : V (Pd)→ R+

0 be the mapping that assigns 1 to each vertex of Pd.

Lemma 28. Let d, p and b be non-negative integers such that d > 4b+2p+2, let G := Td(Pd)
and w := (pd)d. Let s be a vertex of G and let S be a connected induced subgraph of G
contained in the jug of s and containing s. If w(V (S)) > (4b + 2p + 2)w(s), then S
contains Tp(Pb) as a minor rooted in s.

Proof. We prove the statement by induction on the non-negative integer p. The case p = 0
being trivial, we suppose that p > 1. For x ∈ V (S), let Sx be the intersection of S with
the jug of x. We can assume that w(V (Sx)) < (4b + 2p + 2)w(x), as otherwise we can
consider Sx instead of S, find the required minor in Sx, and combine it with a path from s
to x.

Let P be the subgraph of G induced by the neighbors of s in the jug of s. Note that P
is a copy v1 . . . vd of Pd, and let N be the set of neighbors of s in G that are contained
in S. Notice that N ⊆ V (P ) by hypothesis. We have

(4b+ 2p+ 2)w(s) 6 w(V (S)) = w(s) +
∑
x∈N

w(V (Sx))

< w(s) + (4b+ 2p+ 2)w(N),
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and thus

w(N) >
(

1− 1
4b+ 2p+ 2

)
w(s) =

(
1− 1

4b+ 2p+ 2

)
w(V (P )). (5)

Let B consist of the vertices x in N such that w(V (Sx)) < (4b+ 2p)w(x). Since

(4b+ 2p+ 2)w(s) 6 w(V (S)) = w(s) +
∑
x∈N

w(V (Sx))

< w(s) + (4b+ 2p+ 2)w(N)− 2w(B)
6 w(s) + (4b+ 2p+ 2)w(s)− 2w(B),

we have
w(B) < w(s)

2 = w(V (P ))
2 . (6)

Set X := (V (P ) \N) ∪ {v1}. By (5), we have

w(X) < w(V (P ))
4b+ 2p+ 2 + w(v1)

=
(

1
4b+ 2p+ 2 + 1

d

)
w(V (P ))

6
1

2b+ p+ 1w(V (P )). (7)

Given vi, vj ∈ V (P ), the vertex vj is to the right of vi if j > i. For x ∈ X, let Px be
the subpath of P [N ∪ {x}] induced by x and the vertices to the right of x. Observe
that (V (Px))x∈X is a partition of V (P ). Consequently, setting a(x) := (w(V (Px)) −
w(V (Px) ∩B))/w(x), we deduce from (6) and (7) that∑

x∈X w(x)a(x)
w(X) = w(V (P ))− w(B)

w(X) >
2b+ p+ 1

2 . (8)

Since the left side of (8) is a weighted average of the values a(x) for x ∈ X, there
exists x ∈ X such that a(x) > (2b+ p+ 1)/2. Since all vertices of P have the same weight,
we deduce that Px − x contains at least (2b + p + 1)/2 − 1 > b vertices not belonging
to B. For each such vertex y, we have w(V (Sy)) > (4b+ 2p)w(y), and by the induction
hypothesis, Sy contains Tp−1(Pb) as a minor rooted in y. Since Px−x is a subpath of P [N ]
and s is adjacent to every vertex in N , these minors along with s combine to form Tp(Pb)
as a minor rooted in s and contained in S, as required.

Now are ready to give a lower bound for outerplanar graphs.

Theorem 29. Let r : N→ R+
0 be a non-decreasing function. If all outerplanar graphs are

fractionally td-fragile at rate r, then r(a) = Ω(a log a).
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Proof. Consider two integer a and d such that d > a > 28. Set G := Td(Pd) and w := (pd)d.
Note that G is outerplanar. Suppose that X is a subset of V (G) such that w(X) 6
w(V (G))/a. Let r be the handle of G and let X ′ := X ∪{r}; we have w(X ′) 6 w(X)+1 =
w(X) + w(V (G))

d+1 6 2
a
w(V (G)). For x ∈ X ′, let Jx be the jug of x and let Sx be the

component of Jx − (X ′ \ {x}) containing x. We have
a

2w(X ′) 6 w(V (G)) =
∑
x∈X′

w(V (Sx)),

and thus there exists x ∈ X ′ such that w(V (Sx)) > a
2w(X ′). Set c := b(a− 4)/12c. We

deduce from Lemma 28 that Sx contains Tc(Pc) as a minor. Since Sx − x ⊆ G − X,
Lemma 27 implies that

td(G−X) > td(Sx)− 1 > td(Tc(Pc))− 1 > cblog2 cc.

As this holds for every set X with w(X) 6 w(V (G))/a, Lemma 6 implies that r(a) >
cblog2 cc = Ω(a log a).

Next, we will give a general upper bound for graphs with bounded treewidth. To this
end, we need the following property of treedepth.

Lemma 30. Let H,H1, . . . , Ht be induced subgraphs of a graph G such that

• G = H ∪H1 ∪ . . . ∪Ht;

• Hi ∩Hj ⊆ H whenever 1 6 i < j 6 t; and

• Hi ∩H is a clique for i ∈ {1, . . . , t}.

Then
td(G) 6 td(H) + max{td(Hi − V (H)) : 1 6 i 6 t}.

Proof. Let T, T1, . . . , Tt be rooted trees respectively witnessing the treedepths of H,H1 −
V (H), . . . , Ht − V (H). For i ∈ {1, . . . , t}, since H ∩ Hi is a clique, all its vertices are
contained in a root-leaf path of T ; let `i be the leaf of such a path. Taking T ∪T1∪ · · · ∪Tt
and, for i ∈ {1, . . . , t}, adding an edge from the root of Ti to `i, we obtain a tree witnessing
that the treedepth of G is at most td(H) + max{td(Hi − V (H)) : 1 6 i 6 t}.

We are now ready to give the following upper bound on the rate of td-fragility for graphs
with bounded treewidth.

Theorem 31. For every non-negative integer t, the class of graphs with treewidth at most t
is fractionally td-fragile at rate r(a) = 2t(t+1)/2+1at.

Proof. We proceed by induction on the non-negative integer t. Graphs of treewidth 0
have no edges, and thus they have treedepth 1. Hence, suppose that t > 1. Let a be
a positive integer and let G be a graph of treewidth at most t, which we can assume
to be connected and chordal by Observation 7 without loss of generality. Let us fix
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an elimination ordering of G, and let v be the first vertex in this ordering. For a
non-negative integer d, let Ld be the set of vertices of G at distance exactly d from v.
For i ∈ {0, . . . , 2a− 1}, let Xi := ⋃

s>0 Li+s·2a, and choose X randomly from the uniform
distribution on {X0, . . . , X2a−1}.

Consider a non-negative index j, and note that G[Lj] has treewidth at most t − 1:
for j = 0 it is obvious, while for j > 1 it follows from the fact that each vertex of Lj
has a neighbor in Lj−1 preceding it in the elimination ordering by Observation 8, and
hence in the restriction of the elimination ordering to G[Lj], each vertex is preceded by
at most t− 1 of its neighbors. The induction hypothesis thus implies that for each j, we
can choose a set Yj ∈ G[Lj]td↓2(t−1)t/2+1(2a)t−1 at random such that Pr[v ∈ Yj] 6 1

2a for
each v ∈ Lj. Set Z := X ∪ Y0 ∪ Y1 ∪ · · · . If v ∈ V (G), then there exists a unique index j
such that v ∈ Lj, and hence

Pr[v ∈ Z] 6 Pr[v ∈ X] + Pr[v ∈ Yj] 6 1/a.

Consequently, it suffices to show that Z ∈ Gtd↓2t(t+1)/2+1at . As G[Lj \ Yj] has treedepth
at most 2(t−1)t/2+1(2a)t−1 = 2t(t+1)/2at−1 for each j, the conclusion follows by repeatedly
applying Lemmas 9 and 30. Indeed, let i ∈ {0, . . . , 2a− 1} be the index such that X = Xi.
It suffices to bound the treedepth of the subgraph of G induced by (Li+1 \ Yi+1) ∪ · · · ∪
(Li+2a−1\Yi+2a−1), and of that induced by ∪i−1

j=0Lj\Yj in the border case — which is omitted
as similar to what follows only with different index boundaries yielding fewer applications
of the lemmas. To this end, for any j ∈ {1, . . . , 2a− 2} define H to be G[∪i+js=i+1Ls \ Ys]
and, for each component C of G[Li+j+1 \ Yi+j+1], define HC to be the subgraph of G
induced by the union of V (C) and the subset of vertices of H with a neighbor (in G) that
belongs to V (C). Lemma 9 ensures that H ∩ HC is a clique, and Lemma 30 that the
treedepth of H ∪⋃C HC is at most td(H) + 2t(t+1)/2at−1. Therefore, the conclusion follows
by finite induction on j ∈ {1, . . . , 2a− 1}.

Let us remark that Theorem 31 implies that every fractionally tw-fragile class of graphs
is also fractionally td-fragile; for example, this includes all proper minor-closed classes [3].
More precisely, if a graph G is fractionally tw-fragile at rate t, then it is also fractionally
td-fragile at rate r(b) = 2t(2b)(t(2b)+1)/2+1(2b)t(2b), as seen by first sampling a set X from a
1
2b -thin probability distribution on Gtw↓t(2b) and then applying Theorem 31 with a = 2b
to G− X.

As we mentioned before, the bound provided by Theorem 31 can be improved for the
special case of outerplanar graphs. Firstly, we note that the following holds.

Observation 32. Suppose that G is an outerplanar graph, that K ⊆ V (G) induces a
connected subgraph of G, and let H be a connected subgraph of G−K such that each vertex
of H has a neighbor in K. Then H is a path.

Proof. If H is not a path, it either is a cycle or contains a vertex of degree at least three.
Contracting K to a single vertex, and considering it along with H, we obtain either K4
or K2,3 as a minor of G, contradicting the assumption that G is outerplanar.
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We can now modify the argument used to demonstrate Theorem 31. We use the fact that
a path with n vertices has treedepth dlog2(n+ 1)e, see [11].

Theorem 33. The class of outerplanar graphs is fractionally td-fragile at rate r(a) =
2a(1 + dlog2 ae).

Proof. Let a be a positive integer. Let G be an outerplanar graph, which without loss
of generality can be assumed to be connected. By triangulating the inner faces, we can
assume that G is chordal. Let L0, L1, . . . and X0, . . . , X2a−1, and X be defined in the
same way as in the proof of Theorem 31. From Lemma 9 and Observation 32, we infer
that G[Lj] is a disjoint union of paths, for each non-negative integer j. Repeating the
same layering argument in G[Lj], for each j, we can choose a set Yj ⊆ Lj at random
so that Pr[v ∈ Yj] 6 1

2a for every v ∈ V (Lj) and G[Lj \ Yj] is a disjoint union of paths
with at most 2a − 1 vertices. Consequently, td(G[Lj \ Yj]) 6 dlog2(2a)e for every j,
and letting Z := X ∪ Y0 ∪ Y1 ∪ · · · , we apply Lemmas 9 and 30 similarly as in the
proof of Theorem 31 to infer that Z ∈ Gtd↓2a(1+dlog2 ae), while Pr[v ∈ Z] 6 1/a for
each v ∈ V (G).

Combining Theorem 31 with Corollary 11 yields that planar graphs are fractionally
td-fragile at rate aO(a). A much better bound can be obtained using Theorem 14. To this
end, let us introduce another variation on Theorem 31.

Theorem 34. The class of planar chordal graphs is fractionally td-fragile at rate r(a) =
8a2(2 + dlog2 ae).

Proof. Let a be a positive integer. Let G be a planar chordal graph, which without loss of
generality can be assumed to be connected. Let L0, L1 . . . and X0, . . . , X2a−1, and X be
defined in the same way as in the proof of Theorem 31. For every j > 1, Lemma 9 implies
the neighborhood of every component of G[Lj ] in Lj−1 induces a connected subgraph of G,
and since G is planar, G[Lj] is outerplanar. By Theorem 33, we can for each j choose a
set Yj ⊆ Lj at random so that Pr[v ∈ Yj] 6 1

2a for each v ∈ V (Lj) and G[Lj \ Yj] has
treedepth at most 4a(2 + dlog2 ae). Consequently, letting Z := X∪Y0∪Y1∪ · · · , Lemmas 9
and 30 imply that Z ∈ Gtd↓8a2(2+dlog2 ae) similarly as before, while Pr[v ∈ Z] 6 1/a for
each v ∈ V (G).

Let us point out that the rate from Theorem 34 cannot be substantially improved: the
graphs Td(Td(Pd)) are planar, chordal, and combining the ideas of Theorems 26 and 29,
one can show that they cannot be fractionally td-fragile at rate better than Ω(a2 log a).
We can now compose the results to obtain a bound for planar graphs.

Corollary 35. The class of planar graphs is fractionally td-fragile at rate r(a) = 384a3(3+
dlog2 ae).

Proof. Let a be a positive integer. Let G be a planar graph, which without loss of
generality can be assumed to be connected. Let v be a vertex of G, and for d > 0, let Ld
be the set of vertices of G at distance exactly d from v in G. For i ∈ {0, . . . , 2a − 1},
let Xi := Li ∪Li+2a ∪ · · · , and choose X from the uniform distribution on {X0, . . . , X2a−1}.
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Consider any component H of G − X. This component contains only vertices at
distance from v between i + 2aj + 1 and i + 2aj + 2a − 1 for some integer j. Let G′
be the graph obtained from G by deleting all vertices at distance at least i + 2aj + 2a
from v and by contracting all vertices at distance at most max(i + 2aj, 0) from v to a
single vertex x. Clearly, G′ is a minor of G, and thus G′ is planar. Moreover, every vertex
of G′ is at distance at most 2a− 1 from x and H ⊆ G′. Let G′′ be a triangulation of G′,
and let P be a trigeodesic partition of V (G′′) such that G′′/P is chordal, which exists
by Theorem 14. By Theorem 34, we can choose a set Y′H ⊆ V (G′′/P) at random such
that td(G′′/P − Y′H) 6 32a2(3 + log2 a) and Pr[z ∈ Y′H ] 6 1

2a for every z ∈ V (G′′/P). We
can naturally view Y′H as a subset of P; with this in mind, let YH := V (H) ∩ ⋃P∈Y′H P .
Clearly, for every u ∈ V (H), we have Pr[u ∈ YH ] 6 1

2a . Furthermore, note that since G′′
has radius less than 2a, every geodesic path in G′′ has less than 4a vertices, and since P
is trigeodesic, if follows that |P | < 12a for every P ∈ P. Consequently, we can turn the
tree T witnessing the treedepth of G′′/P − Y′H into one for H − YH by replacing each
vertex P ∈ V (G′′/P−Y′H) in T by a path consisting of the vertices contained in P ∩V (H).
Therefore td(H − YH) < 12a td(G′′/P − Y′H) 6 384a3(3 + dlog2 ae).

Letting Z be the union of X and the sets YH for each component H of G − X, we
conclude that td(G−Z) 6 384a3(3+dlog2 ae) and Pr[u ∈ Z] 6 1/a for each u ∈ V (G).

As we mentioned before, the planar graphs Td(Td(Pd)) cannot be fractionally td-fragile
at rate better than Ω(a2 log a). We leave open the problem of determining the correct rate
for planar graphs (between the bounds of Ω(a2 log a) and O(a3 log a) we obtained).

5 Algorithmic remarks

In this paper, we mostly focused on the structural aspects of fractional fragility. Neverthe-
less, all our upper bound results can be straightforwardly turned into polynomial-time
algorithms to sample from the corresponding probability distribution. Moreover, an
inspection of the proofs shows that the distributions have supports of bounded size. More
precisely:

• For a graph G of bounded treewidth and maximum degree, the support of the
(1/a)-thin distribution on G?↓r(a) obtained in Corollary 22 has size at most a.

• For a planar graph G of bounded maximum degree, the support of the (1/a)-thin
distribution on G?↓r(a) obtained in Theorem 23 has size at most (a+ 1)d2

√
ae.

• For a graph G of treewidth at most t, the support of the (1/a)-thin distribution
on Gtd↓r(a) obtained in Theorem 31 has size at most ft(a), where f0(a) = 1 and
ft(a) = 2aft−1(2a). Note that to obtain this bound, we use the fact that the choices of
the sets Yj do not have to be independent; consequently, we can use the same random
choices for each j, obtaining only ft−1(2a) choices for the random set Y0 ∪ Y1 ∪ · · · ,
rather than

(
ft−1(2a)

)the number of layers
a naive analysis would suggest.
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• For an outerplanar graph G, the support of the (1/a)-thin distribution on Gtd↓r(a)
obtained in Theorem 33 has size at most 4a2.

• For a planar graph G, the support of the (1/a)-thin distribution on Gtd↓r(a) obtained
in Corollary 35 has size at most 512a4.

As noted after Observation 1, this implies that in the algorithmic applications, we obtain
deterministic rather than randomized algorithms.
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