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Abstract

The greedy tree G(D) and the M-tree M(D) are known to be extremal among
trees with degree sequence D with respect to various graph invariants. This paper
provides a general theorem that covers a large family of invariants for which G(D)
or M(D) is extremal. Many known results, for example on the Wiener index,
the number of subtrees, the number of independent subsets and the number of
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matchings follow as corollaries, as do some new results on invariants such as the
number of rooted spanning forests, the incidence energy and the solvability. We also
extend our results on trees with fixed degree sequence D to the set of trees whose
degree sequence is majorised by a given sequence D, which also has a number of
applications.

Mathematics Subject Classifications: 05C05, 05C07, 05C09, 05C35, 05C92

1 Introduction

In the context of chemical graph theory, (molecular) graphs are used to model molecules:
the vertices of the graph represent the atoms of the molecule, and the edges correspond to
the chemical bonds between atoms. Thus vertex degrees amount to valencies of atoms. If
the entries of D = (d1, d2, . . . , dn) are possible valencies of atoms, then the set of all graphs
with degree sequence D contains the molecular graphs of all possible isomers of a certain
molecule. This is one of the motivations to study graphs with a given degree sequence. In
this paper, we will be particularly concerned with trees whose degree sequence is given.

The greedy tree G(D) with degree sequence D, formally defined in the next section,
is a tree that can be constructed by starting with the largest degree vertex and always
assigning the largest available degree to a neighbour of the vertex with the largest degree
whose neighbour degrees are not yet fully specified. On the other hand, large degrees and
small degrees alternate in the M-tree M(D) with degree sequence D, see Definition 27.

The greedy tree G(D) and theM-treeM(D) are known to be extremal for a number
of graph invariants. Let us list a few examples.

• The sum W (G) of the distances d(u, v) between all (unordered) pairs of vertices
{u, v}, better known as the Wiener index, is among the most popular graph invari-
ants. It was shown by Wang in [33] and by Zhang et al. in [41] that, among all trees
with degree sequence D, G(D) has the minimum Wiener index.

• Schmuck et al. [29] showed a more general statement: if W (G) is replaced by a
Wiener-like invariant

Wf (G) =
∑

{u,v}⊆V (G)

f(d(u, v))

for a nonnegative and nondecreasing function f , then G(D) still attains the minimum
value among trees with degree sequence D. Likewise, if f is a nonnegative and
nonincreasing function, then G(D) attains the maximum value. In particular, this
includes a well-studied invariant known as the Harary index, which corresponds to
f(x) = 1/x (see [32]).

• The greedy tree G(D) is extremal with respect to several other invariants including:

– the number of subtrees (and the number of antichains when rooted trees are
considered) [3, 42],

– the spectral radius [5] and the Laplacian spectral radius [40],
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– the spectral moments [2, 24]. See also [7] for a generalisation.

• The total number of independent subsets is also known as the Merrifield-Simmons
index of a graph. It is proven in [1] that the Merrifield-Simmons index is max-
imised by M(D). The total number of matchings is also called Hosoya index. It is
minimised by M(D) (see [1]).

• The energy of a graph G is defined as En(G) =
∑

i |λi|, where the λis are the
eigenvalues of the adjacency matrix of G. For trees, the energy is connected to
matchings by the well-known Coulson formula [14]: let m(G, k) be the number of
matchings of cardinality k in a graph G. For every tree T ,

En(T ) =
2

π

∫ ∞
0

dx

x2
log
∑
k>0

m(T, k)x2k. (1)

For a positive real number x, define

M(G, x) =
∑
k>0

m(G, k)xk.

It is shown in [1] that, among all trees with degree sequence D,M(D) is the unique
tree with minimum M(., x) for any x > 0. Thus, it also has the minimum energy.

The long list of graph invariants for which G(D) orM(D) is extremal leads us to the
following natural question: what condition(s) does a graph invariant need to satisfy for
G(D) or M(D) to be extremal among trees with degree sequence D? In this paper, we
provide sufficient conditions that cover a number of examples, both old and new. The
idea is inspired by an exchange lemma used to study bounded degree trees in [17], and
trees with given degree sequence in [1].

A sequence B = (b1, b2, . . . , bn) is said to majorise D if b1 + · · · + bn = d1 + · · · + dn
and d1 + · · · + dk 6 b1 + · · · + bk for every k with 1 6 k < n. We then write B B D.
In Section 4, we will consider the set of all trees whose degree sequence is majorised by
D. Several natural sets of trees satisfy majorisation properties. This includes the set of
all n-vertex trees, n-vertex trees with bounded degrees, and trees of order n with fixed
number of leaves. There are several instances of graph invariants for which the extremal
trees with degree sequence D are also extremal among those whose degree sequence is
majorised by D. We will see many such examples at the end of this paper.

We need to introduce some notation to describe our results. Let T be a rooted tree.
The root of T is denoted by r(T ). We write T = [T1, T2, . . . , Tk] if the rooted trees
T1, T2, . . . , Tk are the connected components of T − r(T ), where the roots of T1, T2, . . . , Tk
are the neighbours of r(T ).

Let v and w be two different leaves of a tree H. The tree obtained by merging the
root of [L1, L2, . . . , Lk] with v and the root of [R1, R2, . . . , R`] with w, as seen in Figure 1,
is denoted by [L1, L2, . . . , Lk]vHw[R1, R2, . . . , R`].
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H

wv

L1

L2

Lk

R1

R2

R`

Figure 1: The tree [L1, L2, . . . , Lk]vHw[R1, R2, . . . , R`].

Let ρ(T ) be a quantity associated to a rooted tree T , which satisfies a recursive relation
of the form

ρ([T1, T2, . . . , Tk]) = fρ(ρ(T1), ρ(T2), . . . , ρ(Tk)) (2)

for a symmetric function fρ, i.e., the value of fρ is invariant under permutation of the
branches. We call fρ the recurrence rule for ρ. In our examples, the recurrence rule can
always be expressed as a function of sums or products over all branches.

Definition 1. We say that a tree T is ρ-exchange-extremal if, whenever we can decompose
T as

T = [L1, L2, . . . , Lk]vHw[R1, R2, . . . , R`]

for some H, then we have k > ` and

min{ρ(L1), ρ(L2), . . . , ρ(Lk)} > max{ρ(R1), ρ(R2), . . . , ρ(R`)}

or k 6 ` and

max{ρ(L1), ρ(L2), . . . , ρ(Lk)} 6 min{ρ(R1), ρ(R2), . . . , ρ(R`)}.

We will prove the following theorem:

Theorem 2. Let ρ be an invariant of rooted trees that satisfies the recurrence relation
(2). Suppose that a tree T with degree sequence D is ρ-exchange-extremal.

• If fρ is increasing (in each variable and under addition of further variables) and the
minimum of ρ is attained by the single-vertex tree, then T has to be G(D).

• If fρ is decreasing (in each variable and under addition of further variables) and the
maximum of ρ is attained by the single-vertex tree, then T has to be M(D).
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It turns out that extremality with respect to many different invariants implies ρ-
exchange-extremality for a suitable choice of ρ. This includes some of the previously men-
tioned instances (Wiener index, number of subtrees, Merrifield-Simmons index, Hosoya
index, etc.), but we will also discuss examples that have not been considered before.

The rest of this paper is organised as follows. Section 2 treats the case of increasing
fρ, where the greedy tree G(D) is extremal. The case of decreasing fρ is considered in
Section 3, it leads to the situation where the M-tree M(D) is extremal. Various special
cases are listed at the end of each section. This includes many known results, but we also
obtain several new results, specifically for the number of rooted spanning forests (related
to the coefficients of the Laplacian characteristic polynomial), the incidence energy, and
an invariant called the solvability. We also settle an open question on the Steiner Wiener
index. Furthermore, in Section 4, we compare trees with different degree sequences and
prove extremality results for the set of all trees whose degree sequence is majorised by a
fixed sequence D.

The following technical terms will be needed. The height h(T ) of a rooted tree T is
the greatest distance of a vertex to r(T ). A subgraph B of a tree T is called a complete
branch of T if there is an edge e such that B is one of the components of T − e, see
Figure 2. We denote by rd(B) the degree of the root r(B) (the end of e that belongs to
B) as a vertex of B.

r(B)
B T −B

Figure 2: Complete branches B and T −B of T .

2 Increasing recurrence rule fρ

Definition 3. [29] Given a degree sequence of a tree D, the greedy tree, denoted G(D),
is constructed by the following “greedy algorithm”:

(i) Label the vertex with the largest degree v (the root).

(ii) Label the neighbours of v as v1, v2, . . . , vd(v), and assign the largest degrees available
to them so that d(v1) > d(v2) > · · · > d(vd(v)).

(iii) Label the neighbours of v1 (except v) as v1,1, v1,2, . . . , v1,d(v1)−1, and assign the largest
degrees available to them so that d(v1,1) > d(v1,2) > · · · > d(v1,d(v1)−1). Then do
the same for v2, v3, . . . , vd(v).

(iv) Repeat (ii) and (iii) for all the newly labelled vertices. Always start with the neigh-
bours of the labelled vertex with the largest degree whose neighbours are not labelled
yet.
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Figure 3 shows the greedy tree G(D) for D = (4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, . . . , 1).

v

v1

v1,1 v1,2

v2

v2,1,1

v3 v4

Figure 3: The greedy tree G(4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, . . . , 1).

We will see in this section that the greedy tree is the unique ρ-exchange-extremal tree
if ρ satisfies the following conditions:

I.1 the recurrence relation (2) holds, for some symmetric recurrence rule fρ,

I.2 the function fρ is strictly increasing (strictly increasing in each single variable and
strictly increasing under addition of further variables),

I.3 ρ(•) < ρ(B), for all rooted trees B with |V (B)| > 1, where • denotes a single vertex
tree.

2.1 Special case: the Wiener index

Let us first consider the special case where ρ(T ) is the number of vertices of T , i.e.,
ρ(T ) = ρ0(T ) = |V (T )|. We have

ρ0([T1, . . . , Tk]) = fρ0(ρ0(T1), . . . , ρ0(Tk)) = 1 +
k∑
i=1

ρ0(Ti).

The recurrence rule fρ0 is indeed symmetric and increasing with respect to each of
its variables and under addition of further variables. Clearly ρ0(•) = 1 is the minimum
among all rooted trees. So conditions I.1 to I.3 are all satisfied.

Now recall that the Wiener index is the sum of all distances between pairs of vertices:

W (T ) =
∑

u,v∈V (T )

d(u, v).

An important alternative formula for the Wiener index for trees is (see [9])

W (T ) =
∑

uv∈E(T )

ρ0(Tu)ρ0(Tv), (3)
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where Tu and Tv are the components of T − uv containing u and v respectively. We
use this formula to show that minimality with respect to the Wiener index implies ρ0-
exchange-extremality.

Lemma 4 (cf. [31]). Let T be a tree with degree sequence D for which W (T ) attains
its minimum. Then, for any two disjoint complete branches A = [A1, . . . , Ak] and B =
[B1, . . . , B`] in T , we have

• either k > ` and min{ρ0(A1), . . . , ρ0(Ak)} > max{ρ0(B1), . . . , ρ0(B`)},

• or k 6 ` and max{ρ0(A1), . . . , ρ0(Ak)} 6 min{ρ0(B1), . . . , ρ0(B`)}.

u1 u2 ut

U1 U2 Ut

r(B)r(A)

A1

A2

Ak

B1

B2

B`

Figure 4: Decomposition of T in the proof of Lemma 4.

Proof. Let P = r(A)u1 . . . ut r(B) be the unique path between r(A) and r(B). To simplify
notation, we put α = ρ0(A) = 1 +

∑k
i=1 ρ0(Ai) and β = ρ0(B) = 1 +

∑`
i=1 ρ0(Bi).

For 1 6 j 6 t, let Uj be the component containing uj when we remove all the edges of
the path P , and set zj = ρ0(Uj), pj = z1 + · · ·+ zj, qj = zt + · · ·+ zt−j+1 and p0 = q0 = 0.

Using the formula for the Wiener index in (3), we have:

W (T ) =
t∑

j=0

(α + pj)(qt−j + β) + CT ,

where CT is the contribution of edges in U1, . . . , Ut, A and B.
With q = q1 + · · ·+ qt and p = p1 + · · ·+ pt, this can be rewritten as

W (T ) = αq + βp+ αβ(t+ 1) +
t∑

j=0

pjqt−j + CT .

The last two terms
∑t

j=0 pjqt−j+CT are invariant under any rearrangements of the Ais
and Bis. Note that the degree sequence remains the same if all the Ais are switched with
all the Bis (interchanging the degrees of r(A) and r(B)), if A1, A2, . . . , Ak, B1, B2, . . . , B`

are permuted in an arbitrary way, or both. Hence, if W (T ) is minimal, then the expression
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αq + βp+ αβ(t+ 1) must have its minimum value under these operations. Note that the
sum Σ = α + β remains constant under any of these rearrangements, and we have

αq + βp+ αβ(t+ 1) = αq + (Σ− α)p+ α(Σ− α)(t+ 1),

which is a strictly concave function of α. Thus the minimum is attained if α is either
as small or as large as possible. For this we must have

k 6 ` and max{ρ0(Ai) : 1 6 i 6 k} 6 min{ρ0(Bi) : 1 6 i 6 `}

or
k > ` and min{ρ0(Ai) : 1 6 i 6 k} > max{ρ0(Bi) : 1 6 i 6 `}.

In words, the largest possible branches (and as many of them as possible) have to be
gathered in one place. This is precisely the statement of the lemma.

We know now that the tree which minimises the Wiener index is ρ0-exchange-extremal.
Moreover, ρ0-exchange-extremality is equivalent to the semi-regular property defined in
Definition 4 of [29], where it is proved that such a tree is greedy. Thus we have the
following observation, which will be the basis for the proof of the main theorem of this
section.

Theorem 5 (cf. [29, 31]). If T is a ρ0-exchange-extremal tree, then T is a greedy tree.

2.2 Main result

We require one more lemma before stating the main result. This lemma establishes a
connection between ρ0 and other invariants ρ.

Lemma 6. Let ρ be an invariant of rooted trees that satisfies I.1,I.2 and I.3, and let
T be a ρ-exchange-extremal tree. For any two disjoint complete branches A and B in T ,
ρ(A) > ρ(B) if and only if ρ0(A) > ρ0(B). In particular, ρ(A) = ρ(B) if and only if
ρ0(A) = ρ0(B).

Proof. We reason by induction on the heights of A and B, specifically max{h(A), h(B)}.
If max{h(A), h(B)} = 0, then h(A) = h(B) = 0, so A and B are both single vertices and
the claim holds trivially. Assume that the statement holds whenever max{h(A), h(B)} 6
t, for some t > 0. Now, consider two complete branches A and B in T such that
max{h(A), h(B)} = t + 1 and ρ(A) > ρ(B). If A only has a single vertex, then so
does B by condition I.3. If B only has a single vertex, then ρ0(A) > ρ0(B) is trivially
satisfied. In both cases, there is nothing left to show. So we can now assume that A and
B have more than one vertex and can thus be decomposed. Let A = [A1, . . . , Ak] and
B = [B1, . . . , B`] for some k, ` > 1. Since T is a ρ-exchange-extremal tree, we are left with
two possibilities. If k > `, and min{ρ(Ai) : 1 6 i 6 k} > max{ρ(Bi) : 1 6 i 6 `}, then by
the induction hypothesis, we have min{ρ0(Ai) : 1 6 i 6 k} > max{ρ0(Bi) : 1 6 i 6 `}.
Thus ρ0(A) > ρ0(B), because fρ0 is increasing.
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On the other hand, if k 6 ` and max{ρ(Ai) : 1 6 i 6 k} 6 min{ρ(Bi) : 1 6 i 6 `},
then ρ(A) 6 ρ(B) since fρ is increasing, so ρ(A) = ρ(B). For this to hold, we must have
k = ` and ρ(A1) = · · · = ρ(Ak) = ρ(B1) = · · · = ρ(B`). By the induction hypothesis, this
implies ρ0(A1) = · · · = ρ0(Ak) = ρ0(B1) = · · · = ρ0(B`), so ρ0(A) = ρ0(B).

Thus we have shown that ρ(A) > ρ(B) implies ρ0(A) > ρ0(B), and the proof of the
converse is analogous.

Now we are ready for the main theorem.

Theorem 7. Let ρ be an invariant of rooted trees that satisfies I.1,I.2 and I.3. If a tree
T is ρ-exchange-extremal, then T is a greedy tree.

Proof. By Lemma 6, the tree T is also ρ0-exchange-extremal. Theorem 5 gives us the
desired result.

In the remainder of this section, we describe different applications of Theorem 7.

2.3 The number of subtrees

As a first example, we consider the number of subtrees (here, a subtree is any induced
subgraph that is connected and thus again a tree). We will be able to show that there is a
suitable function ρ such that a tree with the greatest possible number of subtrees among
all trees with the same degree sequence is necessarily ρ-exchange-extremal. To this end,
we need a technical lemma, which will also be useful later.

Lemma 8. Let x1 > . . . > xn > 1 and a > b be positive real numbers, n > k > n/2 and
Sn the set of permutations of 1, . . . , n. Then

a
k∏
i=1

xi + b
n∏

i=k+1

xi = max

{
a
∏̀
i=1

xσ(i) + b
n∏

i=`+1

xσ(i) : σ ∈ Sn and ` ∈ {n− k, k}

}
.

Moreover, we have uniqueness: if

a

k∏
i=1

xi + b

n∏
i=k+1

xi = a
∏̀
i=1

xσ(i) + b

n∏
i=`+1

xσ(i),

a > b and the xis are not all equal to 1, then ` = k and xσ(1), . . . , xσ(k) are a permutation
of x1, . . . , xk. If a = b, then either the same holds, or ` = n− k and xσ(1), . . . , xσ(n−k) are
a permutation of xk+1, . . . , xn.

In words, Lemma 8 says that the maximum value is reached when we assemble the
largest elements together in the same product.

Proof. Set g(x) = ax+ bx−1
∏n

i=1 xi, and note that

a
∏̀
i=1

xσ(i) + b

n∏
i=`+1

xσ(i) = g
(∏̀
i=1

xσ(i)

)
.
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Since g′′(x) = 2bx−3
∏n

i=1 xi > 0, g is strictly convex, so it can only attain its maximum

value when x =
∏i=`

i=1 xσ(i) is either largest or smallest. The largest possible value of x is

clearly L =
∏k

i=1 xi, the smallest S =
∏n

i=k+1 xi. Comparing the two possibilities, we see
that

g(L)− g(S) = a
k∏
i=1

xi + b

n∏
i=k+1

xi − a
n∏

i=k+1

xi − b
k∏
i=1

xi = (a− b)

(
k∏
i=1

xi −
n∏

i=k+1

xi

)
> 0

since a > b and k > n
2
. We have strict inequality if a > b unless k = n

2
and all xis are

equal (in which case xσ(1), . . . , xσ(k) are still a permutation of x1, . . . , xk) or all xis are
equal to 1. The statement of the lemma follows.

The number of subtrees of a tree T is denoted by η(T ), and the number of subtrees of
T containing the vertices v1, . . . , v` is denoted by η(T, v1, . . . , v`). In the following lemma,
we establish the necessary property to apply our main theorem.

Lemma 9. Let T be a tree with degree sequence D for which η(T ) attains its maximum.
For any two disjoint complete branches A = [A1, . . . , Ak] and B = [B1, . . . , B`] in T , we
have

• either k > ` and

min{η(A1, r(A1)), . . . , η(Ak, r(Ak))} > max{η(B1, r(B1)), . . . , η(B`, r(B`))},

• or k 6 ` and

max{η(A1, r(A1)), . . . , η(Ak, r(Ak))} 6 min{η(B1, r(B1)), . . . , η(B`, r(B`))}.

In other words, T is ρ-exchange-extremal with ρ(T ) = η(T, r(T )).

Proof. Consider a decomposition of T as [A1, . . . , Ak]vHw[B1, . . . , B`], for some tree H.
Each subtree of T has to belong to one of the following types:

• Subtrees which contain neither v nor w. Each subtree of this type is either in H−v−
w or in one of the Ais or Bis. Thus, there are η(H−v−w)+

∑k
i=1 η(Ai)+

∑`
i=1 η(Bi)

of them.

• Subtrees which contain w, but not v. A subtree of this type consists of a part in
H − v and another part in [B1, . . . , B`], each containing w. Their number is

η(H − v, w)
∏̀
i=1

(1 + η(Bi, r(Bi))) .

• Subtrees which contain v, but not w. By similar reasoning as in the second case,
the number of these subtrees is

η(H − w, v)
k∏
i=1

(1 + η(Ai, r(Ai))) .
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• Subtrees which contain both v and w. This corresponds to subtrees of H which
contain both v and w, to which induced subtrees of the Ais and Bis containing the
respective roots can be attached. Thus, there are

η(H, v, w)
∏̀
i=1

(1 + η(Bi, r(Bi)))
k∏
i=1

(1 + η(Ai, r(Ai)))

of them.

In total we have

η(T ) = αT + βT ,

where

αT = η(H − v, w)
∏̀
i=1

(1 + η(Bi, r(Bi))) + η(H − w, v)
k∏
i=1

(1 + η(Ai, r(Ai))) ,

βT = η(H − v − w) +
k∑
i=1

η(Ai) +
∑̀
i=1

η(Bi)

+ η(H, v, w)
∏̀
i=1

(1 + η(Bi, r(Bi)))
k∏
i=1

(1 + η(Ai, r(Ai))) .

As in the proof of Lemma 4, this must be maximal under all permutations of the Ais and
Bis, possibly also switching the degrees of v and w. Note here that βT is not affected by
any of these rearrangements. So the maximality of η(T ) depends only on αT .

Since all the quantities involved are positive and the factors 1 + η(Ai, r(Ai)) and
1 + η(Bi, r(Bi)) are even greater than 1, Lemma 8 applies. Thus we obtain the maximum
of αT if either η(H − w, v) > η(H − v, w), k > ` and

min{η(A1, r(A1)), . . . , η(Ak, r(Ak))} > max{η(B1, r(B1)), . . . , η(B`, r(B`))},
or η(H − w, v) 6 η(H − v, w), k 6 ` and

max{η(A1, r(A1)), . . . , η(Ak, r(Ak))} 6 min{η(B1, r(B1)), . . . , η(B`, r(B`))}.
So we have established ρ-exchange-extremality with respect to ρ(T ) = η(T, r(T )), the

number of root-containing subtrees. Moreover, if T can be decomposed as [T1, . . . , Tk],
then

η(T, r(T )) =
k∏
i=1

(1 + η(Ti, r(Ti))) , (4)

which is increasing in all of its variables and under addition of further variables, so I.1
and I.2 hold. Moreover, the minimum of η(T, r(T )), which is trivially equal to 1, is only
reached if T = •. Thus, I.3 holds as well, and Theorem 7 implies the following theorem,
which was already established in [3, 42].

Theorem 10 ([3, 42]). Given a degree sequence, the corresponding greedy tree is the
unique tree that maximises the number of subtrees.
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2.4 Rooted spanning forests, incidence energy, Laplacian-energy-like invari-
ant

Let T be an n-vertex tree and A(T ) its adjacency matrix. The Laplacian matrix of
T is L(T ) = A(T ) − D(T ), where D(T ) is the diagonal matrix whose diagonal entry
dii is the degree of the i-th vertex vi. The Laplacian characteristic polynomial L(T, x)
is the characteristic polynomial of the Laplacian matrix. In 1967, Kel’mans [22] gave a
combinatorial interpretation for the coefficients of the Laplacian characteristic polynomial
as follows.

Theorem 11. If L(T, x) = det(xIn − L(T )) =
∑n

k=1(−1)n−kck(T )xk, then

ck(T ) =
∑

F∈F(T,k)

γ(F ),

where F(T, k) is the set of all spanning forests of the tree T containing exactly k
components and γ(F ) is the product of the number of vertices in each component of F .

The quantity γ(F ) can be interpreted as the number of ways to assign roots to the
components of a forest F , and therefore ck(T ) is the number of k-rooted spanning forests
of T (spanning forests with k components, where each component is rooted at one of its
vertices).

Let us consider the polynomial in which we associate to every rooted spanning forest
F a weight xλ(F ), where λ(F ) is the number of components of F . Replacing x by −x in
Theorem 11, we see that this polynomial is connected to the Laplacian matrix as follows:

rf(T, x) =
n∑
k=1

ck(T )xk = det(L(T ) + xIn). (5)

Note that the total number of rooted spanning forests in a tree T is equal to rf(T, 1).
To avoid confusion as we also consider rooted spanning forests within rooted trees, we will
refer to “marked” spanning forests rather than rooted spanning forests in the following,
and call the components’ roots “markers”. We show that the invariant rf(·, x) fits our
general scheme. This generalises the approach taken in [20], where trees with given
maximum degree are considered.

We define an auxiliary quantity for rooted trees T , which is denoted by f(T, x). It
counts marked spanning forests F weighted with xγ(F )−1, in which the root of T is also
a marker of one of the forest’s components. Note that f(T, x) also counts (weighted)
spanning forests of T where all components, except the one containing the root of T , have
a marker. Finally, we set

ρ1(T, x) =
rf(T, x)

rf(T, x) + f(T, x)
.

Lemma 12. Let T = [A1, . . . , Ak]vHw[B1, . . . , B`] for some tree H, and let x > 0.
Suppose that rf(T, x) 6 rf(T ′, x) for every tree T ′ with the same degree sequence as T .
Then
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• either k > ` and

min{ρ1(A1, x), . . . , ρ1(Ak, x)} > max{ρ1(B1, x), . . . , ρ1(B`, x)},

• or k 6 ` and

max{ρ1(A1, x), . . . , ρ1(Ak, x)} 6 min{ρ1(B1, x), . . . , ρ1(B`, x)}.

Proof. Let A = [A1, . . . , Ak] and B = [B1, . . . , B`]. To obtain an expression for rf(T, x),
we consider the following cases for a marked spanning forest of T :

• r(A) and r(B) belong to components that have a marker in H (possibly the same
component). The parts that form spanning forests of A1∪· · ·∪Ak∪B1∪· · ·∪B` are
either fully marked or marked except for the root’s component (which is joined to
the component of r(A) or r(B) in H). Let c11(H, r) be the number of r-component
marked spanning forests of H, and set a =

∑
r>1 c11(H, r)x

r. The contribution of
this case to rf(T, x) is

a ·
k∏
i=1

(rf(Ai, x) + f(Ai, x))
∏̀
j=1

(rf(Bj, x) + f(Bj, x)).

• r(A) and r(B) belong to the same component, but this component does not have a
marker in H. In this case, the marker of the component that contains r(A) and r(B)
lies in one of the Ais or Bjs. So we have to choose exactly one of them and replace
the factor rf(., x) + f(., x) by rf(., x). Let c00(H, r) be the number of r-component
spanning forests of H, where r(A) and r(B) lie in the same component and all com-
ponents except the one containing those are marked. Set b =

∑
r>1 c00(H, r)x

r−1.
This gives a contribution of

b ·
k∏
i=1

(rf(Ai, x) + f(Ai, x))
∏̀
j=1

(rf(Bj, x) + f(Bj, x))(
k∑
i=1

rf(Ai, x)

rf(Ai, x) + f(Ai, x)
+
∑̀
j=1

rf(Bj, x)

rf(Bj, x) + f(Bj, x)

)
.

• r(A) and r(B) lie in different components, both vertices have markers outside of H.
Now, one of the Ais has to contain the marker of the component of r(A), and one
of the Bjs the marker of the component of r(B). Let c′00(H, r) be the number of
r-component spanning forests of H where r(A) and r(B) belong to different com-
ponents and all but those two components are marked. Set c =

∑
r>2 c

′
00(H, r)x

r−2.
For this case we get

c ·
k∏
i=1

(rf(Ai, x) + f(Ai, x))
∏̀
j=1

(rf(Bj, x) + f(Bj, x))
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(
k∑
i=1

rf(Ai, x)

rf(Ai, x) + f(Ai, x)

)(∑̀
j=1

rf(Bj, x)

rf(Bj, x) + f(Bj, x)

)
.

• r(A) and r(B) lie in different components, one has a marker in H, the other does
not. Let c10(H, r) be the number of r-component spanning forests of H such that
r(A) and r(B) lie in different components and all but the one containing r(B) are
marked. Define c01(H, r) analogously, with the roles of r(A) and r(B) reversed. Now
set d1 =

∑
r>2 c10(H, r)x

r−1 and d2 =
∑

r>2 c01(H, r)x
r−1. Using a similar reasoning

as before, we get a contribution of

d1 ·
k∏
i=1

(rf(Ai, x) + f(Ai, x))
∏̀
j=1

(rf(Bj, x) + f(Bj, x)) ·
k∑
i=1

rf(Ai, x)

rf(Ai, x) + f(Ai, x)

+ d2 ·
k∏
i=1

(rf(Ai, x) + f(Ai, x))
∏̀
j=1

(rf(Bj, x) + f(Bj, x)) ·
∑̀
j=1

rf(Bj, x)

rf(Bj, x) + f(Bj, x)
.

Hence, we finally obtain

rf(T, x) =
k∏
i=1

(rf(Ai, x) + f(Ai, x))
∏̀
j=1

(rf(Bj, x) + f(Bj, x))

[
a+ (b+ d1)

k∑
i=1

rf(Ai, x)

rf(Ai, x) + f(Ai, x)
+ (b+ d2)

∑̀
j=1

rf(Bj, x)

rf(Bj, x) + f(Bj, x)

+ c

(
k∑
i=1

rf(Ai, x)

rf(Ai, x) + f(Ai, x)

)(∑̀
j=1

rf(Bj, x)

rf(Bj, x) + f(Bj, x)

)]
.

The product
∏k

i=1(rf(Ai, x)+f(Ai, x))
∏`

j=1(rf(Bj, x)+f(Bj, x)) remains constant when
the Ais and Bjs are rearranged, as does the sum

Σ =
k∑
i=1

rf(Ai, x)

rf(Ai, x) + f(Ai, x)
+
∑̀
j=1

rf(Bj, x)

rf(Bj, x) + f(Bj, x)

=
k∑
i=1

ρ1(Ai, x) +
∑̀
j=1

ρ1(Bj, x).

We can now argue exactly as in the proof of Lemma 4. Write y =
∑k

i=1 ρ1(Ai, x). For
rf(T, x) to attain its minimum under all possible permutations of Ais and Bis, the function

y 7→ a+ (b+ d1)y + (b+ d2)(Σ− y) + cy(Σ− y),

which is strictly concave in y, has to attain its minimum. This occurs when y is either as
large or as small as possible. That is,
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• k > ` and min{ρ1(A1, x), . . . , ρ1(Ak, x)} > max{ρ1(B1, x), . . . , ρ1(B`, x)}, or

• k 6 ` and max{ρ1(A1, x), . . . , ρ1(Ak, x)} 6 min{ρ1(B1, x), . . . , ρ1(B`, x)}.

We have established now that minimality with respect to rf(·, x) implies ρ1-exchange-
extremality. Moreover, the quantity ρ1 can be determined recursively as follows. If T can
be decomposed as [T1, . . . , Tk], then

rf(T, x) =
k∏
i=1

(rf(Ti, x) + f(Ti, x))

(
x+

k∑
i=1

rf(Ti, x)

rf(Ti, x) + f(Ti, x)

)
,

and

f(T, x) =
k∏
i=1

(rf(Ti, x) + f(Ti, x))

using similar arguments as before. Thus,

ρ1(T, x) =
x+

∑k
i=1

rf(Ti,x)
rf(Ti,x)+f(Ti,x)

1 + x+
∑k

i=1
rf(Ti,x)

rf(Ti,x)+f(Ti,x)

=
x+

∑k
i=1 ρ1(Ti, x)

1 + x+
∑k

i=1 ρ1(Ti, x)
. (6)

The recurrence rule fρ1 corresponding to (6) is increasing in all of its variables and under
addition of further variables, moreover ρ1(•, x) = x

1+x
is the unique minimum. So, we

may use Theorem 7 to obtain the following result.

Theorem 13. For every tree T with degree sequence D and every x > 0,

rf(T, x) > rf(G(D), x),

with equality if and only if T is isomorphic to G(D). In particular, G(D) has the smallest
total number of marked spanning forests among trees with degree sequence D.

Now, let us consider other quantities related to the polynomial rf(T, x).

Definition 14. A subdivision graph, denoted S(G), is a graph obtained by inserting a
new vertex of degree 2 on each edge of G.

Lemma 15 ([43]). Let T be a tree of order n and S(T ) its corresponding subdivision
graph. Then

ck(T ) = m(S(T ), k), k = 0, . . . , n,

where m(S(T ), k) is the number of k-matchings of S(T ).

Let M(T, x) =
∑

k>0 m(T, k)xk be the matching generating polynomial of T ; then
Lemma 15 implies that rf(T, x) = M(S(T ), x). Thus, we obtain the following corollary of
Theorem 13:
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Corollary 16. For every tree T with degree sequence D, and for every x > 0,

M(S(T ), x) > M(S(G(D)), x),

with equality if and only if T is isomorphic to G(D).

For a tree T , let µ1, µ2, . . . , µn be the eigenvalues of L(T ). They are also the eigenvalues
of the signless Laplacian matrix L+(T ) (this is in fact true for every bipartite graph,
see [8]). Recall that the energy of a graph is the sum of the absolute values of the
eigenvalues of its adjacency matrix. A variant of the energy, known as the Laplacian-
energy-like invariant (LEL for short, see [27]), is defined by

LEL(T ) =
n∑
i=1

√
µi.

It is closely related to the incidence energy IE of a graph, defined in [21] as the sum
of the singular values of its (vertex-edge) incidence matrix. For every tree T , one has
LEL(T ) = IE(T ). Furthermore, it is known that (see [13])

LEL(T ) = IE(T ) =
1

2
En(S(T )), (7)

where S(T ) is the subdivision graph of T . This allows us to prove the following corollary.

Corollary 17. Given a degree sequence of a tree, the incidence energy IE, or equivalently
the Laplacian-energy-like invariant LEL, is minimised by the greedy tree.

Proof. Let T be a tree and S(T ) its subdivision graph. Using the Coulson formula (1) for
the energy and the relation (7), we obtain:

LEL(T ) = IE(T ) =
2

π

∫ ∞
0

1

x2
ln

(∑
k

m(S(T ), k)x2k

)
dx =

2

π

∫ ∞
0

1

x2
ln M(S(T ), x2) dx.

Thus, the claim readily follows from Corollary 16.

2.5 A common generalisation of Wiener index and terminal Wiener index

In analogy to the Wiener index, the terminal Wiener index [12] is defined as the sum of
all distances between pairs of leaves, and the spinal Wiener index [4] is the sum of all
distances between pairs of non-leaves. It is known that both are minimised by greedy trees
[31, 4]. We consider a common generalisation defined as follows: for two fixed positive
numbers a and b, we set

Wa,b(T ) =
∑

{v,w}⊆V (T )

ω(v)ω(w) d(v, w) =
1

2

∑
v∈V (T )

∑
w∈V (T )

ω(v)ω(w) d(v, w),
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where

ω(u) =

{
a if u is a leaf,

b otherwise.

It is easy to see that W1,1 is the Wiener index, W1,0 is the terminal Wiener index, and
W0,1 is the spinal Wiener index. Let us prove an equivalent representation for Wa,b that
generalises (3).

Proposition 18. We have

∑
{v,w}⊆V (T )

ω(v)ω(w) d(v, w) =
∑

vw∈E(T )

 ∑
u∈V (Tv)

ω(u)

 ∑
u∈V (Tw)

ω(u)

 ,

where Tv and Tw are the components of T − vw containing v and w respectively.

Proof. A pair of two vertices v′ and w′ occurs on the right side of the equation with
weight ω(v′)ω(w′) for every edge vw such that v′ ∈ Tv and w′ ∈ Tw (or the other way
around). Equivalently, whenever the unique path P (v′, w′) from v′ to w′ contains the
edge vw. Every pair of two vertices v′ and w′ is counted d(v′, w′) times in this way and
therefore contributes ω(v′)ω(w′) d(v′, w′). The sum over all pairs gives the left side of the
equation.

Let L(T ) be the set of leaves of a tree T . If T is rooted, the root is only counted as a
leaf if it is the only vertex. In view of Proposition 18, we can write

Wa,b(T ) =
∑

vw∈E(T )

ρ2(Tv)ρ2(Tw),

where ρ2(T ) = a|L(T )| + b|V (T ) − L(T )|. Here, Tv and Tw are regarded as rooted at v
and w, respectively.

Lemma 19. Let T be a tree with degree sequence D for which Wa,b(T ) attains its mini-
mum. For any pair of disjoint complete branches A = [A1, . . . , Ak] and B = [B1, . . . , B`]
in T , we have

• either k > ` and min{ρ2(A1), . . . , ρ2(Ak)} > max{ρ2(B1), . . . , ρ2(B`)},

• or k 6 ` and max{ρ2(A1), . . . , ρ2(Ak)} 6 min{ρ2(B1), . . . , ρ2(B`)}.

Proof. The proof is analogous to the one for the Wiener index (Lemma 4), using ρ2 instead
of ρ0.

In other words, a tree that minimises Wa,b is ρ2-exchange-extremal. Moreover, if
H = [H1, . . . , Hk], then

ρ2(H) =
k∑
i=1

ρ2(Hi) + b. (8)

We see that conditions I.1, I.2 and I.3 are satisfied for every fixed pair of positive numbers
a, b. Hence, we have the following theorem:
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Theorem 20. Given a degree sequence D, Wa,b is minimised by G(D) for every fixed pair
of positive numbers a, b.

If we take the limits a → 0 or b → 0, we find that the greedy tree minimises W0,b

and Wa,0, thus in particular the terminal and the spinal Wiener index. However, it may
not be the unique optimal tree, since strict inequalities may become non-strict in the
limit. Let us, for example, exhibit this phenomenon for the terminal Wiener index W1,0.
Consider the trees with degree sequence (3, 2, 2, 2, 2, 2, 1, 1, 1) shown in Figure 5. Note

The greedy tree T ∗ T

Figure 5: Optimal trees for the terminal Wiener index.

that W1,0(T
∗) = 6 + 5 + 5 = 16 and W1,0(T ) = 6 + 6 + 4 = 16, so the greedy tree T ∗ and

the tree T have the same terminal Wiener index and are thus both extremal. Both trees
satisfy Lemma 19.

2.6 The Steiner Wiener index

The Steiner distance of a graph, introduced by Chartrand et al. [6] in 1989, is a natural
and nice generalisation of the classical graph distance. For r > 2, let {v1, v2, . . . , vr} be
a set of vertices of a graph G. We denote by S(v1, v2 . . . , vr) the smallest subtree of G
which contains all the vertices v1, v2, . . . , vr. Then the Steiner distance of {v1, . . . , vr},
denoted by sd(v1, v2, . . . , vr), is the number of edges in S(v1, v2, . . . , vr). For r = 2, the
Steiner distance clearly coincides with the classical distance, i.e., sd(v1, v2) = d(v1, v2).

In [25], the authors define the Steiner r-Wiener index SWr(G) of a graph G as a
generalisation of the Wiener index in the following way:

SWr(G) =
∑

{v1,...,vr}⊆V (G)

sd(v1, . . . , vr).

It is straightforward that the case r = 2 corresponds to the classical Wiener index. We
have SW1(G) = 0 for every graph G and SWn(G) = n− 1 for every n-vertex graph G, so
it is natural to restrict r to the set {2, 3, . . . , n− 1}. There is also an alternative formula
for the Steiner Wiener index of trees generalising (3), see [25]:

Proposition 21. Let T be an n-vertex tree, and r a positive integer. We have

SWr(T ) =
∑

uv∈E(T )

r−1∑
i=1

(
|V (Tu)|

i

)(
|V (Tv)|
r − i

)
(9)
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=
∑

uv∈E(T )

((n
r

)
−
(
|V (Tu)|

r

)
−
(
|V (Tv)|

r

))
, (10)

where Tu and Tv are the components of T − uv containing u and v respectively.

Proof. Equation (9) is already proven in [25], and Equation (10) follows directly from
the Vandermonde identity. There is also a direct combinatorial argument: the edge uv
is contained in S(v1, v2, . . . , vr) if and only if the set {v1, v2, . . . , vr} contains vertices of
both Tu and Tv. Equivalently, {v1, v2, . . . , vr} can be any set of r vertices that is not a
subset of either V (Tu) or V (Tv). Our formula follows immediately.

Zhang et al. [39, Question 1.1] asked in a recent paper whether the greedy tree
minimises the Steiner r-Wiener index for every r. In the following, we will answer this
question affirmatively. Recall for the following lemma that ρ0(T ) is simply defined to
be the number of vertices of T . As for the Wiener index, we will show ρ0-exchange-
extremality. To avoid degeneracies (see the example below), we consider SWr(T )+εW (T )
for some fixed ε > 0 and later let ε go to 0.

Lemma 22. Let ε be a fixed positive real number, and let T be a tree for which SWr(T )+
εW (T ) attains its minimum among trees with degree sequence D. Then, for any two
disjoint complete branches A = [A1, . . . , Ak] and B = [B1, . . . , B`] in T , we have

• either k > ` and min{ρ0(A1), . . . , ρ0(Ak)} > max{ρ0(B1), . . . , ρ0(B`)},

• or k 6 ` and max{ρ0(A1), . . . , ρ0(Ak)} 6 min{ρ0(B1), . . . , ρ0(B`)}.

In other words, T is ρ0-exchange-extremal.

Proof. We use the same notation as in the proof of Lemma 4, see also Figure 4 again. We
have

SWr(T ) + εW (T ) =
t∑

j=0

((n
r

)
−
(
α + pj
r

)
−
(
qt−j + β

r

)
+ ε(α + pj)(qt−j + β)

)
+ CT ,

=
t∑

j=0

((n
r

)
−
(
α + pj
r

)
−
(
n− α− pj

r

)
+ ε(α + pj)(n− α− pj)

)
+ CT ,

where CT is invariant under permutations of the Ais and Bis. This is a strictly concave
function of α, so it can only attain its minimum when α is either at its largest or smallest
value. As in the proof of Lemma 4, this implies the statement.

We thus have the following theorem.

Theorem 23. Given a degree sequence D, a positive integer r and a positive real number ε,
SW(T ) + εW (T ) attains its minimum if and only if T is the greedy tree G(D).
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As mentioned before, we now take the limit ε→ 0 to obtain the following theorem.

Theorem 24. Given a degree sequence D, the greedy tree attains the minimum of the
Steiner r-Wiener index SWr.

As was also the case previously for the terminal Wiener index and the spinal Wiener
index, the greedy tree might not be unique with the minimum Steiner r-Wiener index.
This can happen when r is quite large (compared to the total number of vertices), as in
the following example: for the degree sequence D = (3, 2, 2, 1, 1, 1), both the greedy tree
and the only other tree with the same degree sequence have the same Steiner 5-Wiener
index of 27.

Greedy tree Non-greedy tree

Figure 6: Both trees with degree sequence (3, 2, 2, 1, 1, 1) have the same Steiner 5-Wiener
index.

3 Decreasing recurrence rule fρ

Let us first mention some definitions, which are needed to describe an M-tree. We use
similar terminology and notation as in [1]. Let us remark that, even though large and
small degrees alternate, the concept is slightly different from that of an “alternating greedy
tree”, as introduced in [35].

Definition 25. A complete branch B = [B1, . . . , Bk] of a tree T is called a pseudo-leaf
branch and its root a pseudo-leaf if |V (B1)| = |V (B2)| = · · · = |V (Bk)| = 1; i.e., all
vertices in B, except for the root r(B), are leaves.

We simply write [d] for a pseudo-leaf branch with d vertices (a root and d− 1 leaves).
In particular, [1] stands for a single vertex.

Definition 26. Let (d1, . . . , dt, 1, . . . , 1) be the degree sequence of a tree T , where dj > 2
for 1 6 j 6 t. The t-tuple (d1, . . . , dt) is called the reduced degree sequence of T . We
assume that the dis are in non-increasing order, i.e., d1 > d2 > · · · > dt.

By the handshake lemma, the sum of the number of leaves of T and the degrees of the
non-leaf vertices, i.e., |L(T )|+

∑t
i=1 di, where (d1, . . . , dt) is the reduced degree sequence

of T , is equal to 2(|L(T )|+ t−1). Thus, the number of leaves is |L(T )| = 2−2t+
∑t

i=1 di.
This implies that two trees with the same reduced degree sequence have the same number
of leaves, therefore they have the same degree sequence.
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Next, we give an explicit construction for the M-tree M(D) with degree sequence
D. Following the previous remark, we also write M(D′) instead of M(D) for the same
M-tree, where D′ is the reduced degree sequence corresponding to D.

Definition 27. Let (d1, . . . , dt) be a reduced degree sequence of a tree. If t 6 dt + 1,
thenM(d1, . . . , dt) is the tree obtained by merging t− 1 leaves of a star [1 + dt] with the
roots of the t − 1 stars [d1], [d2], . . . , [dt−1]. In our formal notation, it can be written as
[[d1], [d2], . . . , [dt−1], [1], . . . , [1]]. We label selected vertices as shown in Figure 7, in such
a way that

d(vi) 6 d(vj) if i < j. (11)

At this point all non-leaf vertices are labelled.

v1

vt v2

Figure 7: Labelling of the vertices of M(d1, . . . , dt) when t 6 dt + 1.

On the other hand, if t > dt + 2, we construct M(d1, . . . , dt) recursively. Let ` be
the largest integer such that a vertex labelled v` occurs in M(ddt , . . . , dt−1), and let s
be the smallest integer such that vs is adjacent to a leaf in M(ddt , . . . , dt−1). Let Rdt =
[[d1], . . . , [ddt−1]], where the pseudo-leaves are labelled v`+1, . . . , v`+dt−1, still respecting
(11). M(d1, . . . , dt) is the tree obtained by merging the root of Rdt with a leaf adjacent
to vs.

v1

v3 v2

v1

v3 v2

v4v5

v1

v3 v2

v4v5v6

M(4, 3, 3) M(4, 4, 4, 3, 3, 3) M(5, 4, 4, 4, 3, 3, 3, 2)

Figure 8: Step-by-step construction of M(5, 4, 4, 4, 3, 3, 3, 2).

We will show in this section that theM-treeM(D) is the unique ρ-exchange-extremal
tree with degree sequence D if ρ satisfies the following conditions:

II.1 the quantity ρ satisfies (2), where the function fρ is symmetric,
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II.2 the function fρ is strictly decreasing (strictly decreasing in each single variable and
strictly decreasing under addition of further variables),

II.3 the quantity ρ satisfies ρ(•) > ρ(B), for all rooted trees B with |V (B)| > 1.

3.1 Special case: the Hosoya index

Let T be a rooted tree, and recall that the Hosoya index, denoted by z(T ), is the total
number of matchings of T . The number of matchings in T that do not cover the root
r(T ) will be denoted by z0(T ). We consider the following ratio, which can be interpreted
as the probability that a random matching does not cover the root:

ρ3(T ) =
z0(T )

z(T )
.

If T = [T1, . . . , Tk], then it is not hard to see that

z0(T ) =
k∏
j=1

z(Tj)

and

z(T ) = z0(T ) +
k∑
j=1

z0(Tj)
k∏
i=1
i 6=j

z(Ti).

It follows that

ρ3(T ) = ρ3([T1, T2, . . . , Tk]) =
1

1 +
∑k

j=1 ρ3(Tj)
. (12)

Note that this recurrence rule fρ3 is symmetric and decreasing with respect to each
of its variables and under addition of further variables. In addition, we obviously have
ρ3(•) = 1 > ρ3(B) for every rooted tree B with more than one vertex. Thus II.1, II.2
and II.3 are all satisfied.

Lemma 28 (cf. [17]). Let T be a tree with degree sequence D for which z(T ) attains its
maximum. For any two disjoint complete branches A = [A1, . . . , Ak] and B = [B1, . . . , B`]
in T , we have

• either k > ` and min{ρ3(A1), . . . , ρ3(Ak)} > max{ρ3(B1), . . . , ρ3(B`)},

• or k 6 ` and max{ρ3(A1), . . . , ρ3(Ak)} 6 min{ρ3(B1), . . . , ρ3(B`)}.

In other words, the tree with degree sequence D that minimises the Hosoya index is
ρ3-exchange-extremal. In addition, as a special case of Theorem 22 in [1], the following
holds.

Theorem 29 ([1]). If T is a ρ3-exchange-extremal tree, then T is an M-tree.
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3.2 Main result

In analogy to Theorem 7, we obtain the following result.

Theorem 30. Let ρ be an invariant of rooted trees that satisfies conditions II.1,II.2 and
II.3. If a tree T is ρ-exchange-extremal, then T is an M-tree.

The proof of Theorem 30 is essentially identical to that of Theorem 7, with minor
modifications to take into account that fρ and fρ3 are decreasing and ρ(•) and ρ3(•) are
maxima. The rest of this section will be devoted to applications of Theorem 30.

3.3 Matching polynomial and energy

Let T be a rooted tree. Denote by m(T, k) the number of k-matchings in T and by m0(T, k)
the number of k-matchings not containing the root. We write M(T, x) =

∑
k>0 m(T, k)xk

and M0(T, x) =
∑

k>0 m0(T, k)xk for the generating polynomials corresponding to m and
m0 respectively. Moreover, we define the following ratio for x > 0:

τ(T, x) =
M0(T, x)

M(T, x)
.

Lemma 31 ([1]). Let x > 0, and let T be a tree such that M(T, x) 6 M(T ′, x) for
every tree T ′ with the same degree sequence. For any two disjoint complete branches
A = [A1, . . . , Ak] and B = [B1, . . . , B`] in T , we have

• either k > ` and min{τ(Aj, x) : 1 6 j 6 k} > max{τ(Bj, x) : 1 6 j 6 `},

• or k 6 ` and max{τ(Aj, x) : 1 6 j 6 k} 6 min{τ(Bj, x) : 1 6 j 6 `}.
The tree that minimises the matching polynomial M(T, x) for some x > 0 is therefore

τ(., x)-exchange-extremal. In addition, we have the following generalisation of (12): if
T = [T1, T2, . . . , Tk], then

τ(T, x) =
1

1 + x
∑k

j=1 τ(Tj, x)
.

The recurrence rule fρ, with ρ(T ) = τ(T, x), is thus symmetric and decreasing with
respect to each of its variables and under addition of further variables. In addition,
τ(•, x) = 1 is the unique maximum among all rooted trees for every x. Thus the following
result from [1] can be seen as a special case of Theorem 30:

Theorem 32 ([1]). Let x be a fixed positive real number. If T is a tree with degree
sequence D, then

M(T, x) > M(M(D), x),

and equality holds only if T is isomorphic to M(D).

In view of the connection between the energy and the matching polynomial (namely
the Coulson formula (1)), we also get the following corollary.

Corollary 33 ([1]). Given the degree sequence D of a tree, the energy is minimised by
the M-tree M(D).
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3.4 Merrifield-Simmons index

Recall that the number of independent sets in T is also called the Merrifield-Simmons
index and denoted by σ(T ). Let σ0(T ) be the number of independent sets of T that
do not contain the root, and define ρ4(T ) = σ(T )/σ0(T ). The following lemma from [1]
states that the tree that maximises the number of independent sets among all trees with
a given degree sequence D has to be ρ4-exchange-extremal.

Lemma 34 ([1]). Let T be a tree with degree sequence D for which σ(T ) attains its
maximum. Then, for any two disjoint complete branches A = [A1, . . . , Ak] and B =
[B1, . . . , B`] in T , we have

• either k > ` and min{ρ4(Aj) : 1 6 j 6 k} > max{ρ4(Bj) : 1 6 j 6 `},

• or k 6 ` and max{ρ4(Aj) : 1 6 j 6 k} 6 min{ρ4(Bj) : 1 6 j 6 `}.

The recurrence rule fρ4 corresponding to ρ4 is found in a similar way to (12), and is
given by

ρ4([T1, T2, . . . , Tk]) = 1 +
k∏
j=1

ρ4(Tj)
−1.

Note that it is decreasing with respect to each of its variables (and under addition of
further variables), and ρ4(•) = 2 is easily seen to be maximal among all trees. Hence we
can deduce the following theorem as a consequence of Theorem 30.

Theorem 35 ([1]). Given a degree sequence D, the Merrifield-Simmons index is max-
imised by M(D).

3.5 Solvability

Let G be a graph and v a vertex in G. The open neighbourhood of v, denoted N(v), is the
set {u ∈ V (G) : uv ∈ E(G)}, and the closed neighbourhood of v is N [v] = N(v) ∪ {v}.

Let F2 be the field with two elements. The solvability of G, introduced in [15] and

denoted s(G), is the number of pairs (a, b) ∈ FV (G)
2 ×FV (G)

2 such that there exists a vector

x ∈ FV (G)
2 that satisfies

(A+ diag(a))x = b,

where A is the adjacency matrix of G and diag(a) is the diagonal matrix whose diagonal
is a.

This can be interpreted as a domination problem with parity constraints. We are
looking for a set S of vertices satisfying, for each of the vertices of the graph, one of
four possible conditions: the open/closed neighbourhood has to contain an even/odd
number of vertices in S. Here, a encodes the open/closed neighbourhood condition and b
encodes the required parity. The solvability of a graph measures how many instances of
the problem have solutions. It turns out that the solvability of trees can be calculated by
a recursion involving a second auxiliary quantity t associated with rooted trees, as stated
in the following lemma.
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Lemma 36 ([15]). Let T be a rooted tree. If T = [T1, T2, . . . , Tk], then

s(T ) = 8
k∏
i=1

s(Ti)− 5
k∏
i=1

t(Ti),

t(T ) = 8
k∏
i=1

s(Ti)− 6
k∏
i=1

t(Ti),

with initial values s(•) = 3 and t(•) = 2.

We remark that the value of the parameter t generally depends on the choice of root,
unlike s. Note also that s(T ) and t(T ) are both positive, and that s(T ) > t(T ) holds for
every rooted tree T .

It was shown in [15] that the path has the greatest solvability among all trees (in fact
all graphs) of a given order, while the star has the least solvability, but no other extremal
results for the solvability of trees are available. Let us show that our general results apply
to the solvability as well. To this end, define ρ5(T ) to be the ratio ρ5(T ) = s(T )

t(T )
> 1. If T

can be decomposed as [T1, . . . , Tk], then by Lemma 36 we have:

ρ5(T ) =
8
∏k

i=1 ρ5(Ti)− 5

8
∏k

i=1 ρ5(Ti)− 6
. (13)

Note that this is a symmetric and decreasing recurrence rule, so ρ5 satisfies condi-
tions II.1 and II.2. Moreover, II.3 is also satisfied by (13), since

ρ5(T ) = 1 +
1

8
∏k

i=1 ρ5(Ti)− 6
< 1 +

1

8− 6
=

3

2
= ρ5(•)

for every tree rooted tree T with more than one vertex. Let us now prove the main lemma
of this subsection.

Lemma 37. Let T be a tree with degree sequence D for which s(T ) attains its minimum.
Then, for any two disjoint complete branches A = [A1, . . . , Ak] and B = [B1, . . . , B`] in
T , we have

• either k > ` and min{ρ5(Aj) : 1 6 j 6 k} > max{ρ5(Bj) : 1 6 j 6 `},

• or k 6 ` and max{ρ5(Aj) : 1 6 j 6 k} 6 min{ρ5(Bj) : 1 6 j 6 `}.

Proof. Let P = u0u1 . . . um be the path between r(A) = u0 and r(B) = um. For 1 6

j < m, let Uj = [U1
j , . . . , U

rd(Uj)
j ] be the component containing uj (rooted at uj) when we

remove all the edges of the path P . We also denote by Xj the component containing uj
in T − uj−1uj, rooted at uj. We consider the tree T as rooted at r(A). Using Lemma 36,
we can write s(T ) and t(T ) in terms of matrices as follows:
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u1 u2 um−1

U1 U2 Um−1

U1
1 U

2
1

r(B)r(A)

A1

A2

Ak

B1

B2

B`

X1

X2

Xm−1

Figure 9: Decomposition of T in the proof of Lemma 37.

(
s(T )
t(T )

)
=

(
8
∏k

i=1 s(Ai) −5
∏k

i=1 t(Ai)

8
∏k

i=1 s(Ai) −6
∏k

i=1 t(Ai)

)(
s(X1)
t(X1)

)
.

Moreover, for 1 6 j < m, we have(
s(Xj)
t(Xj)

)
=

(
8
∏rd(Uj)

i=1 s(U i
j) −5

∏rd(Uj)
i=1 t(U i

j)

8
∏rd(Uj)

i=1 s(U i
j) −6

∏rd(Uj)
i=1 t(U i

j)

)(
s(Xj+1)
t(Xj+1)

)
.

Let us denote the 2 × 2-matrix on the right side of this equation by Mj. Empty
products (if rd(Uj) = 0) are defined to be 1, which is consistent with the recursion. Then
we have

(
s(T )
t(T )

)
=

(
8
∏k

i=1 s(Ai) −5
∏k

i=1 t(Ai)

8
∏k

i=1 s(Ai) −6
∏k

i=1 t(Ai)

)
M

(
s(B)
t(B)

)
,

where M = M0 × M1 × M2 × · · · × Mm−1, M0 being the identity matrix. If we set

M =

(
M00 M01

M10 M11

)
, then we can write the solvability of T as

s(T ) =
k∏
i=1

s(Ai)
∏̀
i=1

s(Bi)(64M00 + 64M01)−
k∏
i=1

s(Ai)
∏̀
i=1

t(Bi)(40M00 + 48M01)

−
k∏
i=1

t(Ai)
∏̀
i=1

s(Bi)(40M10 + 40M11) +
k∏
i=1

t(Ai)
∏̀
i=1

t(Bi)(25M10 + 30M11)
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=
k∏
i=1

t(Ai)
∏̀
i=1

t(Bi)
[
(64M00 + 64M01)

k∏
i=1

ρ5(Ai)
∏̀
i=1

ρ5(Bi)

− (40M00 + 48M01)
k∏
i=1

ρ5(Ai)− (40M10 + 40M11)
∏̀
i=1

ρ5(Bi) + (25M10 + 30M11)
]
.

Since
∏k

i=1 t(Ai)
∏`

i=1 t(Bi) and (64M00 + 64M01)
∏k

i=1 ρ5(Ai)
∏`

i=1 ρ5(Bi) + (25M10 +
30M11) remain invariant under any rearrangements of the Ais and Bis, s(T ) attains its
minimum under permutations of the Ais and Bis if and only if

α
k∏
i=1

ρ5(Ai) + β
∏̀
i=1

ρ5(Bi)

attains its maximum, where α = 40M00 + 48M01 and β = 40M10 + 40M11.
Next we show that α and β are positive. For m = 1, M is equal to the identity matrix.

So α = β = 40 > 0.
Now, for m > 1, let us prove by induction on m that 5M00+6M01 > 0, 5M10+6M11 > 0

and M01,M11 6 0. Note that the positivity of 5M00+6M01 implies the positivity of α since
α = 8(5M00 + 6M01), and the positivity of 5M10 + 6M11, combined with the inequality
M11 6 0, implies the positivity of β since β = 8(5M10 + 5M11) > 8(5M10 + 6M11). Let us
write [

M00(m) M01(m)
M10(m) M11(m)

]
= M(m) = M0 ×M1 × · · · ×Mm−1.

For m = 2, we have, since s(U i
1) > t(U i

1) > 0 for all i,

M01(2) = −5

rd(U1)∏
i=1

t(U i
1) 6 0, M11(2) = −6

rd(U1)∏
i=1

t(U i
1) 6 0,

5M00(2) + 6M01(2) = 40

rd(U1)∏
i=1

s(U i
1)− 30

rd(U1)∏
i=1

t(U i
1) > 0,

5M10(2) + 6M11(2) = 40

rd(U1)∏
i=1

s(U i
1)− 36

rd(U1)∏
i=1

t(U i
1) > 0.

Suppose now that the statement is true for m = d. For the induction step, we take
m = d+ 1, and M(d+ 1) = M0 ×M1 × · · · ×Md = M(d)×Md. We have

M00(d+ 1) = (8M00(d) + 8M01(d))

rd(Ud+1)∏
i=1

s(U i
d+1),

M01(d+ 1) = −(5M00(d) + 6M01(d))

rd(Ud+1)∏
i=1

t(U i
d+1),
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M10(d+ 1) = (8M10(d) + 8M11(d))

rd(Ud+1)∏
i=1

s(U i
d+1),

M11(d+ 1) = −(5M10(d) + 6M11(d))

rd(Ud+1)∏
i=1

t(U i
d+1).

By the induction hypothesis, we have M01(d),M11(d) 6 0, 5M00(d)+6M01(d) > 0 and
5M10(d) + 6M11(d) > 0. For all i, s(U i

d+1) > t(U i
d+1) > 0, so

M01(d+ 1) 6 0, and M11(d+ 1) 6 0.

Moreover, we get

5M00(d+ 1) + 6M01(d+ 1)

= 8 · (5M00(d) + 5M01(d))

rd(Ud+1)∏
i=1

s(U i
d+1)− 6 · (5M00(d) + 6M01(d))

rd(Ud+1)∏
i=1

t(U i
d+1)

> (5M00(d) + 6M01(d))

8

rd(Ud+1)∏
i=1

s(U i
d+1)− 6

rd(Ud+1)∏
i=1

t(U i
d+1)

 > 0

and

5M10(d+ 1) + 6M11(d+ 1)

= 8 · (5M10(d) + 5M11(d))

rd(Ud+1)∏
i=1

s(U i
d+1)− 6 · (5M10(d) + 6M11(d))

rd(Ud+1)∏
i=1

t(U i
d+1)

> (5M10(d) + 6M11(d))

8

rd(Ud+1)∏
i=1

s(U i
d+1)− 6

rd(Ud+1)∏
i=1

t(U i
d+1)

 > 0.

This completes our induction. Since we know now that α and β are positive, and that
ρ5(A1), . . . , ρ5(Ak), ρ5(B1), . . . , ρ5(B`) are all greater than 1 by definition, Lemma 8 applies
and shows that s(T ) can only be minimal if

• α > β, k > ` and min{ρ5(Aj) : 1 6 j 6 k} > max{ρ5(Bj) : 1 6 j 6 `},

• or α 6 β, k 6 ` and max{ρ5(Aj) : 1 6 j 6 k} 6 min{ρ5(Bj) : 1 6 j 6 `}.

This completes the proof.

So a tree that minimises the solvability, given the degree sequence, must be ρ5-
exchange-extremal. Applying Theorem 30, we immediately get the following theorem.

Theorem 38. Given a degree sequence of a tree D, the solvability is minimised byM(D).
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4 Majorisation of degree sequences

Recall that a sequence B = (b1, b2, . . . , bn) is said to majorise D if b1+· · ·+bn = d1+· · ·+dn
and d1 + · · ·+ dk 6 b1 + · · ·+ bk for every k with 1 6 k < n. In this case we write B BD.
Let Tn be the set of n-vertex trees. In this section we study the class of trees whose degree
sequence is majorised by a fixed degree sequence B of a tree, i.e.,

TCB = {T ∈ Tn : B BD, where D is the degree sequence of T}.

Definition 39. Let ρ be an invariant of rooted trees which satisfies a recursive relation
as in Equation (2), and let Sn denote the set of permutations of 1, 2, . . . , n. We say that
the tree invariant I is maximum-ρ-compatible if for every tree H and every choice of two
of its leaves v and w, every collection of rooted trees T1, T2, . . . , Tr with ρ(T1) > ρ(T2) >
. . . > ρ(Tr), and every integer s with r/2 6 s 6 r, the maximum value of I among all
trees in the set

Ks = {[Tσ(1), . . . , Tσ(k)]vHw[Tσ(k+1), . . . , Tσ(r)] : σ ∈ Sr and r − s 6 k 6 s}

is attained by (at least) one of the following two trees:

[T1, . . . , Ts]vHw[Ts+1, . . . , Tr] or [Ts+1, . . . , Tr]vHw[T1, . . . , Ts].

In words, among all possibilities to attach T1, T2, . . . , Tr to v and w in such a way that
their degrees are not greater than some fixed bound s + 1, the maximum value of I is
reached when the s trees Ti with largest ρ-values are attached to one of the two vertices v
and w, so that its degree is s + 1. Note here that if s 6 s′ then Ks ⊆ Ks′ . In the same
way, one defines an invariant I to be minimum-ρ-compatible (replacing “maximum value”
by “minimum value” in the definition).

Several examples from the previous sections fit this scheme. In each case, the proof is
essentially the same as the proof that extremality with respect to I implies ρ-exchange-
extremality.

• The Wiener index is minimum-ρ0-compatible, and this extends to the generalisations
discussed in Subsections 2.5 and 2.6.

• The number of subtrees is maximum-ρ-compatible with respect to the invariant
ρ(T ) = η(T, r(T )) defined in Subsection 2.3.

• The weighted number of rooted spanning forests rf(T, x) discussed in Subsection 2.4
is minimum-ρ1-compatible with respect to the invariant ρ1 defined there.

• The Hosoya index is minimum-ρ3-compatible (see Subsection 3.1), and this extends
to the matching generating polynomial M(T, x).

• The Merrifield-Simmons index is maximum-ρ4-compatible (Subsection 3.4).
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• The solvability is minimum-ρ5-compatible (Subsection 3.5).

We note that for any maximum-ρ-compatible invariant I, a tree with degree sequence
D that attains the maximum value of I is necessarily ρ-exchange-extremal, since the
compatibility condition is an extension of ρ-exchange-extremality.

Theorem 40. Let I be a maximum-ρ-compatible tree invariant, for some ρ that satisfies
(2), and let B be a degree sequence of a tree. Then

i) max{I(T ) : T ∈ TCB} = I(G(B)) if ρ satisfies properties I.1, I.2 and I.3,

ii) max{I(T ) : T ∈ TCB} = I(M(B)) if ρ satisfies properties II.1, II.2 and II.3,

Proof. We only prove part i), the proof of part ii) is analogous. As mentioned earlier,
by definition of maximum-ρ-compatibility of I, max{I(T ) : T ∈ TCB} is reached by a
ρ-exchange-extremal tree, say E. It is only left to prove that E can be chosen to have
degree sequence B. Let T ∈ TCB, with a degree sequence D (thus D C B), such that
D = (d1, d2, . . . , dn) 6= B = (b1, b2, . . . , bn). Let r be the smallest index for which dr > br
(such an index must exist, since B and D have the same sum), and let ` be the largest
index less than r such that d` < b` (such an index must exist, since b1 + b2 + · · · br >
d1 + d2 + · · · + dr by majorisation). Observe that di = bi for ` < i < r. Now define
B1 = (b′1, b

′
2, . . . , b

′
n) by b′i = bi for i /∈ {`, r}, b′` = b`− 1 and b′r = br + 1. We note that B1

is still non-increasing, thus a valid degree sequence: b′` = b` − 1 > d` > d`+1 > b′`+1 and
b′r = br+1 6 dr 6 dr−1 6 b′r−1. Moreover, it is easy to verify that DCB1, since b′i > di for
i < r, while b′1+b′2+ · · ·+b′j = b1+b2+ · · ·+bj for j > r. Clearly, we also have B1CB. We
can repeat this procedure with B1 and D to obtain a degree sequence B2 with DCB2CB1,
and so on. This yields a sequence of degree sequences B = B0, B1, B2, . . . , Bp = D such
that

B = B0 BB1 B · · ·BBp = D,

and Bi and Bi+1 always only differ in two entries (by exactly 1 each). We therefore restrict
ourselves first to the case that B and D only differ in two entries: b` = d` + 1, br = dr− 1
and bi = di for i /∈ {`, r}.

Let v and w be distinct vertices in T such that d(v) = d` > dr = d(w). Then T
can be decomposed as [T1, . . . , Td`−1]vHw[Td` , . . . , Td`+dr−2] for some tree H and branches
T1, T2, . . . , Td`+dr−2. Let σ ∈ Sd`+dr−2 such that ρ(Tσ(1)) > ρ(Tσ(2)) > . . . > ρ(Tσ(d`+dr−2)).

By the definition of maximum-ρ-compatibility, we can find a tree T ′, which is either

[Tσ(1), . . . , Tσ(d`)]vHw[Tσ(d`+1), . . . , Tσ(d`+dr−2)] or

[Tσ(d`+1), . . . , Tσ(d`+dr−2)]vHw[Tσ(1), . . . , Tσ(d`)],

such that its degree sequence is B and I(T ) 6 I(T ′). In the general case, we can find a
sequence of trees T0, T1, . . . , Tp = T whose degree sequences are B = B0, B1, . . . , Bp = D
respectively, such that

I(T0) > I(T1) > · · · > I(Tp) = I(T ).

This shows that the extremal tree E mentioned earlier can indeed be chosen to have
degree sequence B. The statement of the theorem follows.
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Corollary 41. Let A ⊆ Tn be a class of trees with n vertices and B a degree sequence
such that for every tree T ∈ A, its degree sequence D satisfies DCB. If I is a maximum-
ρ-compatible tree invariant, then

• max{I(T ) : T ∈ A} = I(G(B)) if ρ satisfies I.1, I.2 and I.3 and G(B) ∈ A,

• max{I(T ) : T ∈ A} = I(M(B)) if ρ satisfies II.1, II.2 and II.3 and M(B) ∈ A.

Again, an analogous statement holds if I is minimum-ρ-compatible (replacing max by
min).

Proof. The degree sequence condition implies that A ⊆ TCB, so the statement is imme-
diate from Theorem 40.

We conclude this paper by discussing different applications of Corollary 41.

• The first example is the class of all trees of order n, A = Tn, where we can take
B = (n − 1, 1, . . . , 1). The only tree with this degree sequence is the star Sn =
G(B) = M(B). Therefore, we obtain the following known results as immediate
corollaries: among all n-vertex trees, the star minimises the Wiener index [9], the
Hosoya index and the energy [11], the quantity rf(T, x) [43] for every x > 0 (thus
also the incidence energy) and the solvability [15], while it maximises the number
of subtrees [30] and the Merrifield-Simmons index [28].

• Next, we take A to be the set of all n-vertex trees whose vertex degrees are at most
equal to d. Here, we can take B = (d, . . . , d, r, 1, . . . , 1), where 1 6 r < d and
r ≡ n− 1 mod d− 1. The greedy tree G(B) is in this case called a Volkmann tree.
Again, several extremality results now follow as direct applications of Corollary 41.
For example, the Volkmann tree minimises the Wiener index [10] and the polynomial
rf(T, x) for every x > 0 [20] (thus also the incidence energy), while it maximises
the number of subtrees [23]. On the other hand, the M-tree M(B) is known to be
extremal for the Hosoya index, the energy of a graph and the Merrifield-Simmons
index [18, 16]. We also obtain new results for the Steiner Wiener index (which is
minimised by G(B)) and the solvability (which is minimised by M(B)).

• Next, let A be the set of n-vertex trees with exactly ` leaves. Now we can take
B = (`, 2, . . . , 2, 1, . . . , 1) (n−`−1 copies of 2, ` copies of 1) and find that either G(B)
orM(B) is extremal for each of the invariants we considered in the previous sections,
thus recovering several known results (and adding some new ones). For instance, the
greedy tree G(B) is known to minimise the Wiener index [9, 34] and the polynomial
rf(T, x) as well as the incidence energy [19]. On the other hand, it maximises
the number of subtrees [3]. Similarly, the extremal tree for the Hosoya index, the
Merrifield-Simmons index and the energy is known to be M(B) [38, 36, 37]. We
find now also that G(B) minimises the Steiner Wiener index, whileM(B) minimises
the solvability.
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• Finally, let A be the set of n-vertex trees having r branching vertices, i.e., vertices of
degree greater than or equal to 3. Here, we can take B = (n−2r+1, 3, . . . , 3, 1, . . . , 1)
(r− 1 copies of 3, n− r copies of 1). It was shown in [26] that the greedy tree G(B)
minimises the Wiener index in this class of trees if r 6 n+2

3
, while the case r > n+2

3

was left as an open problem. Minimality of G(B) with respect to the Wiener index
is a consequence of our results for arbitrary r now, and we also obtain extremality
of G(B) or M(B) for all the other invariants mentioned in this paper.
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46(2):522–531, 2009.

[13] I. Gutman, D. Kiani, and M. Mirzakhah. On incidence energy of graphs. MATCH
Commun. Math. Comput. Chem., 62:573–580, 2009.

[14] I. Gutman and O. E. Polansky. Mathematical Concepts in Organic Chemistry.
Springer, Berlin, 1986.

the electronic journal of combinatorics 28(1) (2021), #P1.1 32



[15] J. Hatzl and S. Wagner. Combinatorial properites of a general domination problem
with parity constraints. Discrete Math., 308:6355–6367, 2008.

[16] C. Heuberger and S. Wagner. Maximizing the number of independent subsets over
trees with bounded degree. J. Graph Theory, 58(1):49–68, 2008.

[17] C. Heuberger and S. Wagner. Chemical trees minimizing energy and Hosoya index.
J. Math. Chem., 46:214–230, 2009.

[18] C. Heuberger and S. Wagner. On a class of extremal trees for various indices. MATCH
Commun. Math. Comput. Chem., 62:437–464, 2009.
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