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Abstract

A graph G is a non-separating planar graph if there is a drawing D of G on the
plane such that (1) no two edges cross each other in D and (2) for any cycle C in
D, any two vertices not in C are on the same side of C in D.

Non-separating planar graphs are closed under taking minors and are a subclass
of planar graphs and a superclass of outerplanar graphs.

In this paper, we show that a graph is a non-separating planar graph if and only
if it does not contain K1 ∪K4 or K1 ∪K2,3 or K1,1,3 as a minor.

Furthermore, we provide a structural characterisation of this class of graphs.
More specifically, we show that any maximal non-separating planar graph is either
an outerplanar graph or a wheel or it is a graph obtained from the disjoint union of
two triangles by adding three vertex-disjoint paths between the two triangles.

Lastly, to demonstrate an application of non-separating planar graphs, we use
the characterisation of non-separating planar graphs to prove that there are max-
imal linkless graphs with 3n − 3 edges. Thus, maximal linkless graphs can have
significantly fewer edges than maximum linkless graphs; Sachs exhibited linkless
graphs with n vertices and 4n− 10 edges (the maximum possible) in 1983.

Mathematics Subject Classifications: 05C10, 05C83

1 Introduction

A drawing of a graph in the plane consists of a set of points representing (under a bijection)
the vertices of the graph and a set of curves between certain pairs of points representing
edges between corresponding vertex pairs of the graph where the curves do not pass
through the points that represent vertices. A planar drawing is a drawing in which edges
do not intersect.

Let C be a cycle in a planar drawing D of a graph G, then C is a separating cycle if
there is at least one vertex in the interior of C and one vertex in the exterior of C.
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Figure 1: Three examples of non-separating planar graphs

A non-separating planar drawing of a graph is a planar drawing of the graph that does
not contain any separating cycles. A non-separating planar graph is a graph that has a
non-separating planar drawing (see for example Figure 1).

Any graph G′ that can be obtained from a graph G by a series of edge deletions, vertex
deletions and edge contractions is called a minor of G.

A set S of graphs is a minor-closed set or minor-closed family of graphs if any minor
of a graph G ∈ S is also a member of S.

In this paper we characterise non-separating planar graphs. This class is a subclass
of planar graphs and a superclass of outerplanar graphs and is closed under minors. To
characterise non-separating planar graphs we prove Theorems 1 and 2.

Theorem 1. For any graph G, the following are equalivalent:

• G is non-separating planar graphs,

• G does not contain any of K1 ∪K4 or K1 ∪K2,3 or K1,1,3 as a minor,

• G does not contain any of K1 ∪ K4 or K1 ∪ K2,3 or K1,1,3 as a subdivision1 (see
Figure 2).

(a) K1 ∪K4 (b) K1 ∪K2,3 (c) K1,1,3

Figure 2: Excluded minors for non-separating planar graphs

An edge e = (u, v) in a graph G is subdivided by replacing it with two edges (u,w), (w, v)
where w is not a vertex of G. A subdivision of a graph G is a graph that can be obtained
by some sequence of subdivisions, starting with G. A graph is a triangular prism if it is
isomorphic to the graph that is depicted in Figure 3a. A graph is an elongated triangular

1where ∪ denotes the disjoint union
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(a) Triangular prism (b) Elongated triangular prism

Figure 3: Triangular prism and elongated triangular prism

prism if it is a triangular prism or if it is obtained by some sequence of subdivisions of
the red dashed edges of the triangular prism depicted in Figure 3b.

An outerplanar drawing is a drawing of a graph on a disk in which no two edges cross
and all the vertices of the graph are located on the boundary of the disk. A graph is
outerplanar if it has an outerplanar drawing.

We also characterise non-separating planar graphs in terms of their structure as follows.

Theorem 2. Any non-separating planar graph is one of the following:

1. an outerplanar graph,

2. a subgraph of a wheel,

3. a subgraph of an elongated triangular prism.

A realisation R of a graph G = (V,E) in R3 consists of a set of points in R3 that
represent (under a bijection) the vertices of the graph and a set of curves between certain
pairs of points that represent the edges between corresponding vertex pairs of the graph,
such that these curves do not intersect and also do not pass through the points that
represent the vertices of the graph. Informally, realisations of graphs are drawings of
graphs in R3.

Two vertex-disjoint cycles C1 and C2 that are embedded into R3 are linked if no
topological sphere can be embedded into R3 separating C1 from C2. Two linked cycles
are called a link. To put it in another way, two cycles C1 and C2 are not linked (unlinked)
if they can be continuously deformed without ever intersecting each other until C1 and
C2 end up in two different sides of a topological sphere embedded into R3. Informally, a
link consists of two cycles that are embedded in three dimensions such that they cannot
be separated unless we cut one of them.

A realisation R of a graph is linkless if it contains no links. A graph is linklessly
embeddable if it has a linkless realisation. Although linklessly embeddable graphs are
characterised in terms of a set of forbidden minors proved by Robertson, Seymour, and
Thomas [14], there are a lot of unanswered questions about them.

In 1983, Sachs asked for the maximum number of edges in a linklessly embeddable
graph on n vertices [15, Problem 2]. Sachs observed that for n > 4, there exists a linklessly
embeddable graph with n vertices and 4n − 10 edges, obtained from a maximal planar
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graph by adding a vertex adjacent to all other vertices [15]. Since a linklessly embeddable
graph does not contain a K6-minor [15], it follows from a theorem of Mader [9] that a
linklessly embeddable graph on n > 4 vertices has at most 4n − 10 edges. This answers
the question of Sachs [15].

Every maximal planar graph on n vertices has the maximum number of edges in an n-
vertex planar graph. Does the same phenomenon hold for linklessly embeddable graphs?
We provide a negative answer by presenting maximal linklessly embeddable graphs on n
vertices with only 3n− 3 edges for infinitely many n.

Theorem 3. There exists an infinite family G of maximal linklessly embeddable graphs
such that any graph G ∈ G has at most 3|V (G)| − 3 edges.

The rest of this paper is organised as follows. Section 2 goes into more details about
the different classes of graphs that we are dealing with and describes their relation to
each other. Section 3 is dedicated to proving a number of preliminary lemmas that are
used later. More specifically, in Section 3 we investigate the structure of the graphs that
contain K2,3 as a minor but do not contain any of K1 ∪ K2,3, K1 ∪ K4 or K1,1,3 as a
minor. These lemmas are structured in this specific manner to be useful in characterising
non-separating planar graphs both in terms of forbidden minors and also in terms of their
structure. Section 4 then uses the results of Section 3 to prove our main theorems. In
Section 5 we demonstrate the relationship of non-separating planar graphs with linklessly
embeddable graphs by using Theorem 1 to prove Theorem 3. Lastly, in Section 6, we
summarise our results and point out future directions for research.

2 Background

The theory of graph minors developed by Robertson and Seymour is one of the most
important recent advances in graph theory and combinatorics. This substantial body of
work is presented in a series of 23 papers (Graph Minors I–XXIII) over 20 years from
1983 to 2004.

The graph minor theorem (also known as Robertson–Seymour theorem or Wagner’s
conjecture) can be formulated as follows:

Graph Minor Theorem (Robertson and Seymour [13]). Every minor-closed class of
graphs can be characterised by a finite family of excluded minors.

Perhaps the most famous minor-closed class of graphs is the class of planar graphs.
In 1930, Kuratowski characterised planar graphs in terms of two forbidden subdivisions.

Kuratowski’s Theorem (Kuratowski [8]). A graph is planar if and only if it does not
contain a subdivision of K5 or a subdivision of K3,3 as a subgraph.

Later on, Wagner characterised planar graphs in terms of forbidden minors as follows:

Wagner’s Theorem (Wagner [16]). A graph is planar if and only if it does not have K5

or K3,3 as a minor.
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In fact, it is easy to see that for any surface2 Σ, the class of graphs that can be drawn
on Σ without edge crossings is closed under minors. For example, the class of toroidal
graphs is also closed under minors and hence can be characterised in terms of a finite
set of forbidden minors. However, the complete set of forbidden minors for this class of
graphs is not yet known [10].

Another well-known minor-closed class of graphs is the class of outerplanar graphs.
Chartrand and Harary proved that a graph is outerplanar if and only if it does not contain
K4 or K2,3 as a minor [5].

Linklessly embeddable graphs are also closed under minors. Sachs first suggested the
study of linklessly embeddable graphs [15]. He conjectured that these embeddings can be
characterised by excluding the Petersen family of graphs. The Petersen family of graphs
consists of K6, K1,3,3 and five other graphs including the Petersen graph.

Conway, Gordon and Sachs proved that K6 is not linklessly embeddable [6, 15]. Sachs
has also proved that the other members of Petersen family of graphs are not linklessly
embeddable [15]. Moreover in the same paper he showed that every minor of a linklessly
embeddable graph is linklessly embeddable. Robertson, Seymour and Thomas proved
Sach’s conjecture in the 1990s [14, 12].

Among the other characterisations of graphs in terms of forbidden minors, we point
out the following famous results:

• characterisation of the projective planar graphs (graphs that are embeddable on
projective plane) in terms of 35 forbidden minors [2];

• characterisation of outer projective planar graphs (graphs that are embeddable on
the projective plane with a disk removed such that all the vertices are located on
the boundary of the surface) in terms of 32 forbidden minors [4];

• characterisation of outercylindrical graphs (graphs that are embeddable on a plane
with two disks removed from it such that all the vertices are located on the boundary
of the removed disks) in terms of 38 forbidden minors [3].

3 Preliminary Lemmas

A path P in a graph G is said to be chordless if there is no edge between any two non-
consecutive vertices of P in G. A uv-path is a path from a vertex u to a vertex v. Vertices
u and v, in a subdivision S of K2,3, are called the terminal vertices of S if both u and v
have degree 3 in S. Define the terminal paths in S as the three uv-paths in S.

Next we will prove a couple of lemmas about the graphs that do not contain K1,1,3 as
a minor (see Figure 4).

Lemma 4. Every terminal path in a spanning K2,3-subdivision of a K1,1,3-minor-free
graph is chordless.

2a 2-manifold, or in other words a topological space such that every point has a neighborhood that is
homeomorphic to an open subset of a Euclidean plane
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Figure 4: K1,1,3

Proof. Suppose that such a terminal path P has a chord e. Then it is easy to find a K1,1,3

minor in the graph.

A vertex w of a uv-path P is an inner vertex of P if w 6= u and w 6= v. An edge e of
a path P is an inner edge of P if e is incident with two inner vertices of P .

Given a set P of paths in a graph G, define a spine P ∈ P to be a path such that for
any other path P ′ ∈ P there is an edge in G that is incident with an inner vertex of P
and an inner vertex of P ′. In other words, for each path P ′ ∈ P other than P there is
an inner vertex of P that is adjacent to an inner vertex of P ′ (see, e.g., Figure 5). Two
vertices u and v are co-path with respect to P if u and v are on the same path in P .

P1

P2

P3

vu

u′ v′
P4

Figure 5: Path P2 is the only spine among the four paths P1, P2, P3, P4, where P1, P2, P3

are uv-paths and P4 is a u′v′-path (see proof of Lemma 4).

Any graph G that contains a K2,3-subdivision is spineless if there is no spine among
the terminal paths of any of the spanning K2,3-subdivisions in G. Any graph G with a
spanning K2,3-subdivision is spineful if it is not spineless.

We divide the rest of lemmas in this section into two subsections, covering spineless
and spineful graphs in turn.

3.1 Spineless Graphs

We start by proving that spineless graphs do not contain W4 as a minor (see Figure 6a).

Lemma 5. If G is a spineless graph then G does not contain W4 as a minor.
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(a) W4

P1

P2

P3

(b) Graph W4 with P2 as its spine.

Figure 6: Any graph with a spanning W4 minor is spineful (see Lemma 5).

Proof. Suppose that there is a spineless graph G that contains W4 as a minor. Then it is
straightforward to find a K2,3-subdivision with a spine in G. But this is a contradiction
since G is spineless (see, e.g., Figure 6b).

For a subset U ⊆ V (G), G[U ] denotes the subgraph of G induced by U . Similarly, for
any subgraph H of the graph G, G[H] denotes the subgraph of G that is induced by the
vertices of H.

Lemma 6. Let P1, P2, P3 be the terminal paths in a spanning K2,3-subdivision S of a
spineless graph G with no K1,1,3-minor where G[P1 ∪ P2] has an edge e that is not in P1

or P2. Then:

• every edge of G[P2 ∪ P3] is an edge of P2 ∪ P3 and every edge of G[P1 ∪ P3] is an
edge of P1 ∪ P3 and

• e is the only edge in G[P1 ∪ P2] that is not in P1, P2 and P3.

Proof. Let G1 = G[P1 ∪P2], G2 = G[P2 ∪P3] and G3 = G[P3 ∪P1] and let u and v be the
two vertices of e. First we show that G2 does not have any edge that is not an edge of P2

or P3. To reach a contradiction suppose that G2 has an edge e1 = (u1, v1) that is not in
P2 ∪P3. Moreover, by the assumptions of the lemma, there is an edge e in G1 that is not
in P1 ∪ P2.

By Lemma 4, e and e1 are not chords of P1, P2 or P3 and therefore, without loss of
generality, u is an inner vertex of P1 and v is an inner vertex of P2 and u1 is an inner
vertex of P2 and v1 is an inner vertex of P3 (see, e.g., Figure 7). But this is a contradiction
since then P2 is a spine and therefore G is not spineless. Similarly we can show that G3

does not have any edge that is not an edge of P1 or P3.
Now we show that there is at most one edge in G1 that is not an edge of P1 or P2.

To reach a contradiction suppose that G1 has two edges e1 = (u1, v1) and e2 = (u2, v2)
that are not among the edges of P1 or P2 (note that it is possible that either u1 = u2 or
v1 = v2 or u1 = v2 or v1 = u2).

By Lemma 4, e1 and e2 are not chords of P1 or P2 and therefore, without loss of
generality, let u1 and u2 be among the inner vertices of P1 and v1 and v2 be among the
inner vertices of P2 (see, e.g., Figure 8).
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P1

P2

P3

u

v

v1

u1

Figure 7: Vertices u, v, u1, v1 in G (see proof of Lemma 6)

u1

v1

u2

v2

P1

P2

P3

e1 e2

Figure 8: Edges e1, e2, P1, P2 and P3 in G (see proof of Lemma 6)

Choose P to be either P1 or P2 so that the endpoints of e1 and e2 on the other path are
distinct. Let G− be the graph that is obtained by contracting all the edges of P except
the ones that are incident to the terminal vertices of S into a single vertex w. It is easy
to see that there is a W4-minor in G− (see, e.g., Figure 9). Then by Lemma 5, G is not
spineless, which is a contradiction.

u1 u2

w

(a) G−

u1 u2

w

P1

P2

P3

(b) Graph G− with a spine P2

Figure 9: Finding a spine in G− (see proof of Lemma 6)

Lemma 7. Let {u, v} and {P1, P2, P3} be the sets of terminal vertices and terminal paths
respectively in a spanning K2,3-subdivision S of a spineless graph G with no K1,1,3-minor
and no (K1∪K2,3)-minor where the lengths of P1 and P2 are greater than 2 and G[P1∪P2]
has an edge e′ = (u′, v′) that is not in P1 ∪ P2. Then either:
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• u′ and v′ are adjacent to u, or

• u′ and v′ are adjacent to v.

Proof. By Lemma 4, e′ is not a chord of P1 or P2 and therefore, without loss of generality,
let u′ be an inner vertex of P1 and v′ be an inner vertex of P2. To reach a contradiction,
suppose that u′ and v′ are not both adjacent to the same vertex u or v. We have two
cases:

Case 1. Neither u′ nor v′ is adjacent to the terminal vertices. In this case it
is easy to find a K1 ∪K2,3 minor in G (see, e.g., Figure 10 and Figure 18a).

u′

v′

P1

P2
P3

e′

(a) Edge e′ and P1, P2, P3 in G (b) Paths P ′1, P
′′
1 in G (c) K1 ∪K2,3

Figure 10: Edge e′ and P1, P2, P3, P
′
1, P

′′
1 in G. Compare the colouring scheme of Fig-

ure 10b with Figure 18a to see how K1 ∪K2,3 is a minor of G (see proof of Lemma 7).

Case 2. One of the two vertices u′ or v′ is adjacent to u or v. Without loss
of generality let u′ be adjacent to u (see, e.g., Figure 11a).

u′

v′

P1

P2
P3

e′

(a) Edge e′ and P1, P2, P3 in G

u′

v′

P ′′
1

P2
P3

e′

u v

P ′
1

(b) Paths P ′1 and P ′′1 in G

Figure 11: Edge e′ and paths P1, P2, P3, P
′
1, P

′′
1 in G (see proof of Lemma 7).

The vertex u′ splits P1 into two shorter paths P ′1 and P ′′1 , where P1 consists of the
edge (u, u′). Without loss of generality, let P ′1 be a shortest path among P ′1 and P ′′1 (see,
e.g., Figure 11b). Then, since the lengths of P1 and P2 are greater than 2, it is easy to
see that there is a K2,3 minor in P ′1 ∪ e′ ∪ P2 ∪ P3 and an inner vertex v′′ on P ′′1 such that
P ′1 ∪ e′ ∪P2 ∪P3 and v′′ form a K1 ∪K2,3 minor in G (see, e.g., Figure 12). However, this
is a contradiction since G is a K1 ∪K2,3-minor free graph.
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Figure 12: Finding a K1 ∪ K2,3-minor in G (compare with Figure 10c, see proof of
Lemma 7).

Lemma 8. Let G be the family of spineless graphs with no K1,1,3-minor and no (K1 ∪
K2,3)-minor, and that contain a K2,3-subdivision. Then any G ∈ G can be obtained by
subdividing the red dashed edges of the graphs that are shown in Figure 13.

(a) Type I (b) Type II (c) Type III

Figure 13: Three types of spineless non-separating planar graphs (see proof of Lemma 8).

Proof. Let P1, P2, P3 be the terminal paths and u, v be the terminal vertices in a K2,3-
subdivision S of a graph G ∈ G. Since G does not contain K1 ∪ K2,3 as a minor, S is
a spanning K2,3-subdivision of G. If G does not have any edges other than the edges of
P1, P2, P3 then, clearly, G can be obtained by subdividing the red dashed edges of the
graph depicted in Figure 13a.

Now let us consider the case where G has an edge e′ = (u′, v′) that is not an edge of
any of P1, P2, P3. By Lemma 6, e′ is the only edge in G that is not an edge of P1, P2 or P3.
By Lemma 4, e′ is not a chord of P1, P2 or P3 and therefore, without loss of generality,
let u′ be an inner vertex of P1 and v′ be an inner vertex of P2. We have two cases:

Case 1. Either P1 or P2 has length 2. It is easy to verify that in this case G is a
graph that can be obtained by subdividing the red dashed edges in Figure 13b.

Case 2. The lengths of both P1 and P2 are more than 2. By Lemma 7, both
u′ and v′ are adjacent to the same vertex u or v. Now it is easy to verify that in this case
G is a graph that can be obtained by subdividing the red dashed edges in Figure 13c.
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3.2 Spineful Graphs

Lemma 9. There is at most one spine in the set of terminal paths of a spanning K2,3-
subdivision of a K1,1,3-minor-free graph.

Proof. Let P = {P1, P2, P3} be the set of terminal paths in a spanning K2,3-subdivision S
in a K1,1,3-minor-free graph G. To reach a contradiction, suppose that there is more than
one spine in P . Without loss of generality, let P1 and P2 both be spines. Then, for each
pair i, j ∈ {1, 2, 3} with i < j, there is an edge incident with an inner vertex of Pi and an
inner vertex of Pj. Now, it is easy to find K1,1,3 as a minor in G. See Figure 14.

P1

P2

P3

u v

(a) Graph G with P1 and P2 as
spines.

(b) Graph G contains K1,1,3 as a mi-
nor.

Figure 14: If P1 and P2 are spines then G contains K1,1,3 as a minor. The colour scheme
used here to colour the vertices of a K1,1,3 minor is the same as the one used in Figure 4
(see proof of Lemma 9).

Next we will prove a lemma about a class of graphs that do not contain K1 ∪K4 as a
minor (see Figure 15).

Figure 15: K1 ∪K4

Lemma 10. Let P1, P2, P3 be the terminal paths in a spanning K2,3-subdivision S of a
graph G with no (K1 ∪ K4)-minor, where P2 is a spine. Then there is no pair of edges
e1 = (u1, v1) and e2 = (u1, v2) in G such that u1 is an inner vertex of P1 or P3 and v1
and v2 are two distinct inner vertices of P2.

Proof. To reach a contradiction suppose that there is an edge e1 = (u1, v1) and an edge
e2 = (u1, v2) such that u1 is an inner vertex of P1 or P3 and v1 and v2 are two inner
vertices of P2 (see, e.g., Figure 16a). Without loss of generality let u1 be an inner vertex
of P1. Since P2 is a spine there is also an edge e3 = (u3, v3) in G such that u3 is an inner
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P1

P2

P3

u v

u1

v1 v2

(a) Graph G with P2 as a
spine.

P1

P2

P3

u v

u1

v1 v2

u3

v3

(b) Graph G contains K1,1,3

as a minor.
(c) Finding a K1 ∪K4 minor
in G.

Figure 16: Graph G contains K1 ∪K4 as a minor (see proof of Lemma 10).

vertex of P3 and v3 is an inner vertex of P2 (see, e.g., Figure 16b). Now it is easy to find
a (K1 ∪K4)-minor in G (see, e.g., Figure 16c).

Let P be a path and h be a vertex that is not in P . Let G be the graph that is
obtained from P and h by adding an edge (h, v) for every vertex v in P . Then G is a fan
graph and h is the handle of G. 3

Let P be a uv-path. We define the outer inner vertices of P as those inner vertices of
P that are adjacent to u and v on P .

Lemma 11. Let P1, P2, P3 be the terminal paths in a spanning K2,3-subdivision S of a
graph G with no K1,1,3-minor, no (K1 ∪K4)-minor and no (K1 ∪K2,3)-minor, where P2

is a spine. Then, G[P1 ∪ P2] and G[P2 ∪ P3] are subgraphs of fan graphs whose handles
are among the outer inner vertices of P2.

Proof. Let G1 = G[P1 ∪ P2] and G2 = G[P2 ∪ P3]. First we show that G1 and G2 are
subgraphs of fan graphs. To reach a contradiction suppose that either G1 or G2 is not a
subgraph of a fan graph. Without loss of generality, suppose that G1 is not a subgraph
of a fan graph.

Since G1 is not a subgraph of a fan graph, there are two edges e1 = (u1, v1) and
e2 = (u2, v2) in G1 that are not an edge of P1 or an edge of P2 and are vertex-disjoint. By
Lemma 4, e1 and e2 are not chords of P1 or P2. In other words:

• u1, v1, u2, v2 are all inner vertices of P1 and P2.

• u1 and v1 are not co-path with respect to {P1, P2, P3}.

• u2 and v2 are not co-path with respect to {P1, P2, P3}.

Without loss of generality let u1 and u2 be the two endpoints of e1 and e2 on P1 and
let v1 and v2 be the other two endpoints of e1 and e2 on P2. Let u and v be the terminal

3K3 and K4 minus an edge are the only fan graphs that do not have a unique handle.
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vertices of S. Contract all the edges of P1 that are not incident to u and v into a single
vertex w and let us denote the resulting minor of G by H.

Since H is a minor of G, it does not contain a K1 ∪K4 minor. Moreover, P2 is a spine
in H. Also, w is adjacent to v1 and v2 in H. Therefore, e1 = (w, v1) and e2 = (w, v2) are
two edges of H that contradict Lemma 10 and therefore G1 is a subgraph of a fan graph.
We denote the corresponding fan graph by G+

1 .
Similarly, we conclude that G2 is a subgraph of a fan graph and we denote the corre-

sponding fan graph by G+
2 .

Next we show that the handles of fan graphs G+
1 and G+

2 , which we denote by h1 and
h2 respectively, are outer inner vertices of P2. As the first step, we show that h1 and h2

are inner vertices of P2 and then as the second step we show that both h1 and h2 are
adjacent to either u or v on P2 (i.e., h1 and h2 are outer inner vertices of P2).

We use contradiction to prove the first step. To reach a contradiction suppose that
either the handle of G+

1 or the handle of G+
2 is not an inner vertex of P2. Without loss

of generality, suppose that the handle of G+
1 is not an inner vertex of P2. Then it must

be on P1. So there are two edges e1 = (u′1, v
′) and e2 = (u′2, v

′) in G1 that are not in
E(P1) ∪ E(P2) and are incident with the same vertex v′ on P1.

By Lemma 4, e1 and e2 are not chords of P1 or P2 and therefore v′ is an inner vertex
of P1 and u′1 and u′2 are inner vertices of P2. However, this is also in contradiction with
Lemma 10.

We use contradiction to prove the second step as well. To reach a contradiction,
without loss of generality, suppose that h1 is not adjacent to u or v on P2 and let h2 be
any vertex on P2. The handle h2 splits P2 into two subpaths: P ′2 from u to h2 and P ′′2
from h2 to v. Without loss of generality, let h1 be on P ′2 (see, e.g., Figure 17a).

Since P2 is a spine, there are two edges e1 = (u1, x1) and e2 = (u2, x2) such that u1

is an inner vertex of P1 and u2 is an inner vertex of P3. Since G1 is a subgraph of a fan
graph G+

1 with handle h1 we have x1 = h1 and since G2 is a subgraph of fan graph G+
2

with handle h2 we have x2 = h2 (see, e.g., Figure 17b). Let P ′1 be the part of P1 from u
to u1 and let P ′3 be the part of P3 from u to u2.

P1

P ′
2

P3

u v
h1

h2

P ′′
2

(a) Vertices h1, h2 and P ′2, P
′′
2 in

G.

P1

P ′
2

P3

u v
h1

h2

P ′′
2

u1

u2

(b) Vertices u1, u2 in G.

Figure 17: Finding K1 ∪K2,3 minor in G (see proof of Lemma 11).

Now it is easy to see that v together with P ′1 ∪ (u1, h1) ∪ P ′2 ∪ (u2, h2) ∪ P ′3 contains a
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K1 ∪K2,3 minor, which is a contradiction (see, e.g., Figure 18).

(a) K1 ∪K2,3 (b) Graph G contains K1 ∪ K2,3

as a minor.

Figure 18: Finding K1 ∪K2,3 minor in G (see proof of Lemma 11).

Lemma 12. Let G be a K1,1,3-minor-free, (K1 ∪K4)-minor-free, (K1 ∪K2,3)-minor-free
graph with a spanning K2,3-subdivision S. Let G[P1 ∪ P2] and G[P2 ∪ P3] be subgraphs of
fan graphs G+

1 and G+
2 with the same handle h where P1, P2, P3 are the terminal paths in

S and P2 is a spine. Then the length of P2 is 2.

Proof. To reach a contradiction suppose that length of P2 is greater than 2. Since P2 is
the spine, by Lemma 11, h is an outer inner vertex of P2. Now, it is easy to find a K1∪K2,3

minor in G which contradicts the assumptions of the lemma (see, e.g., Figure 19).

Figure 19: Finding a (K1 ∪K2,3)-minor in G (see proof of Lemma 12).

Lemma 13. Let G be a K1,1,3-minor-free, (K1 ∪K4)-minor-free, (K1 ∪K2,3)-minor-free
graph with a spanning K2,3-subdivision S. Let u, v be the terminal vertices and P1, P2, P3 be
the terminal paths in S and let P2 be a spine in S. Let G1 = G[P1∪P2] and G2 = G[P2∪P3]
be subgraphs of fan graphs G+

1 with handle h1 and G+
2 with handle h2 respectively such

that h1 6= h2.
Then there is exactly one edge e′ = (h1, v

′) in G1 that is not in P1 ∪ P2 and there is
exactly one edge e′′ = (h2, v

′′) in G2 that is not in P2 ∪ P3, where:

• h1 and v′ are outer inner vertices of P2 and P1 respectively that are both adjacent
to u or both adjacent to v and
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• h2 and v′′ are outer inner vertices of P2 and P3 respectively that are both adjacent
to u or both adjacent to v.

Proof. Since P2 is a spine, there is an edge e′ = (h1, v
′) in G1 that is not in P1 ∪ P2 and

there is an edge e′′ = (h2, v
′′) in G2 that is not in P2 ∪ P3. Moreover, by Lemma 11, h1

and h2 are outer inner edges of P2.
Now to reach a contradiction, without loss of generality, let h1 be adjacent to u on P2

but let v′ be a vertex that is not adjacent to u on P1. Let v1 be the vertex that is adjacent
to u on P1.

Since h1 and h2 are inner vertices of the spine P2, by Lemma 4, v′ is an inner vertex
of P1 and v′′ is an inner vertex of P2 (see, e.g., Figure 20a).

We know that v1 appears before v′ as we traverse P1 from u towards v and h1 appears
before h2 as we traverse P2 from u towards v. Let P ′ be the part of P1 that stretches
from v′ to v. Now it is easy to see that v1 together with (h1, v

′)∪ P ′ ∪ P2 ∪ P3 contains a
K1 ∪K2,3 minor, which is a contradiction (see, e.g., Figure 20b).

u v
h1

h2

v′′

v′v1

(a) K1 ∪K2,3

u v
h1

h2

v′′

v′v1

(b) Graph G contains K1 ∪
K2,3 as a minor.

Figure 20: Finding a (K1 ∪K2,3)-minor in G (see proof of Lemma 13).

Lemma 14. Let G be the family of spineful K1,1,3-minor-free, (K1 ∪K4)-minor-free and
(K1∪K2,3)-minor-free graphs that contain a K2,3-subdivision. Then for any G ∈ G, either
G is a subgraph of a wheel with at least 4 spokes or G is an elongated triangular prism.

Proof. Let P1, P2, P3 be the terminal paths and u, v be the terminal vertices in a K2,3-
subdivision S of a graph G ∈ G where P2 is a spine. Since G does not contain K1∪K2,3 as
a minor, S is a spanning K2,3-subdivision of G. Let G1 = G[P1∪P2] and G2 = G[P2∪P3].
Since P2 is a spine, by Lemma 11, G1 and G2 are subgraphs of fan graph G+

1 and G+
2 with

handles h1 and h2 where h1 and h2 are both among the outer inner vertices of P2.
We break the rest of the proof into two cases:
Case 1. h1 = h2. By Lemma 12, the length of P2 is 2 and therefore G is a subgraph

of a wheel W . Moreover, since P2 is a spine, W has at least 4 spokes.
Case 2. h1 6= h2. By Lemma 13, there is exactly one edge e1 in G1 that is not in

P1 ∪ P2 and exactly one edge e2 in G2 that is not in P2 ∪ P3. Then G is an elongated
triangular prism.
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4 Proof of the Main Theorems

Lemma 15. A graph G does not contain any of K1∪K4 or K1∪K2,3 or K1,1,3 as a minor
if and only if G is either an outerplanar graph or a subgraph of a wheel or a subgraph of
an elongated triangular prism.

Proof. It is straightforward to see that any outerplanar graph or a subgraph of a wheel
or an elongated triangular prism does not contain any of K1 ∪K4 or K1 ∪K2,3 or K1,1,3

as a minor. Next we prove the lemma in the other direction.
We break the proof into the following three cases:

1. G does not contain any of K4 or K2,3 as a minor.

2. G contains K4 but does not contain K2,3 as a minor.

3. G contains K2,3 as a minor.

Case 1. Graph G does not contain any of K4 or K2,3 as a minor. In this
case, G is outerplanar.

Case 2. Graph G contains K4 as a minor but it does not contain K2,3 as a
minor. Since the degrees of the vertices in K4 are less than 4, any subgraph contractible
to K4 is also a subdivision of K4. Therefore, there is a subdivision S of K4 in G.

Since G does not contain K1 ∪ K4 as a minor, S is a spanning subgraph of G (any
vertex of G is also a vertex of S). Moreover, since any proper subdivision of K4 contains
K2,3 as a minor, K4 is the only graph that contains K4 as a minor but does not contain
K2,3 as a minor. So G is isomorphic to K4 and is a subgraph of a wheel.

Case 3. Graph G contains K2,3 as a minor. Since the degrees of the vertices
in K2,3 are less than 4, any subgraph contractible to K2,3 is also a subdivision of K2,3.
Therefore, there is a subdivision S of K2,3 in G. Since G does not contain K1 ∪K2,3 as a
minor, S is a spanning subgraph of G.

Here we have two cases:
Case 3a. Graph G is spineless. By Lemma 8, G can be obtained by subdividing the

red dashed edges of one of the graphs shown in Figure 13. Now, any of the graphs shown
in Figure 13 is a subgraph of a wheel or a subgraph of an elongated triangular prism.
Therefore G is either a subgraph of a wheel or a subgraph of an elongated triangular
prism.

Case 3b. Graph G is spineful. By Lemma 14, G is either a subgraph of a wheel
or it is a subgraph of an elongated triangular prism.

4.1 Proof of Theorem 1

Lemma 16. For any graph G, G contains any of K1 ∪ K4 or K1 ∪ K2,3 or K1,1,3 as a
minor if and only if G contains any of K1 ∪K4 or K1 ∪K2,3 or K1,1,3 as a subdivision.

Proof. By the definitions of subdivision and minor, if G contains a graph H as a subdi-
vision, then G contains H as a minor. Moreover, if a graph G contains a graph H with
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maximum degree three as a minor, then G contains H as a subdivision. Therefore, as
both K1∪K4 and K1∪K2,3 have maximum degree of three, in order to prove this lemma,
it is sufficient to show that if G contains K1,1,3 as a minor, then G contains K1,1,3 or
K1 ∪K2,3 as a subdivision.

Let G be a graph that contains K1,1,3 as a minor. Then either G contains K1,1,3 as a
subdivision and we are done, or G contains a subgraph H that is contractible to the graph
J shown in Figure 21a. However, J contains K1 ∪K2,3 as a subgraph (see Figure 21b).
Therefore G has a subgraph contractible to K1∪K2,3. But K1∪K2,3 has maximum degree
three and hence G contains a subdivision of K1 ∪K2,3.

(a) Graph J (b) Graph J contains K1 ∪K2,3

as a subdivision (by deletion of
dashed edges).

Figure 21: Finding a K1 ∪K2,3 subdivision in J (see proof of Lemma 16).

The proof of Lemma 16, in essence, is similar to how we can deduce Kuratowski’s
characterisation of planar graphs from Wagner’s characterisation of planar graphs and
vice versa (refer to Kuratowski’s Theorem and Wagner’s Theorem in Section 2).

Now we are ready to prove Theorem 1.

Proof of Theorem 1. It is straightforward to verify that in any planar drawing of a graph
that contains K1 ∪K4 or K1 ∪K2,3 or K1,1,3 as a minor, there are two vertices that are
separated by a cycle. Moreover, by Lemma 16, graph G contains any of K1 ∪ K4 or
K1 ∪ K2,3 or K1,1,3 as a minor if and only if G contains any of K1 ∪ K4 or K1 ∪ K2,3

or K1,1,3 as a subdivision. Therefore, to prove this theorem, it is sufficient to show that
any graph that does not contain any of K1 ∪ K4 or K1 ∪ K2,3 or K1,1,3 as a minor is a
non-separating planar graph.

By Lemma 15, any graph that does not contain any of K1∪K4 or K1∪K2,3 or K1,1,3 as
a minor is either an outerplanar graph or a subgraph of a wheel or an elongated triangular
prism and it is easy to verify that any such graph is a non-separating planar graph.

4.2 Proof of Theorem 2

Proof. Theorem 2 is a direct consequence of Lemma 15 and Theorem 1.

Theorems 1 and 2 together provide us with Theorem 17:
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(a) a link in 3D (b) intersection of a plane with a link (c) cross section of
the link from the top

Figure 22: A separating cycle in a cross section of a link with a plane

Theorem 17. The following are equivalent, for any graph G:

1. G does not contain any of K1 ∪K4 or K1 ∪K2,3 or K1,1,3 as a minor.

2. G is outerplanar or a subgraph of a wheel or a subgraph of an elongated triangular
prism.

3. G is a non-separating planar graph.

5 Proof of Theorem 3

Consider two linked circles in three dimensions and a cross section of them that contains
one of the two circles as depicted in Figure 22a. Such a cross-section has a structure that
resembles the structure of a separating cycle with a vertex inside it and another outside
it.

With this intuition in mind, we prove Theorem 3.

Proof. Let G be an elongated prism. Then G is a maximal non-separating planar graph
with |V (G)|+ 3 edges. Moreover, G contains both K4 and K2,3 as minors.

Let H be the graph that is obtained by adding two new vertices u and v to G such
that u and v are each adjacent to all the vertices of G. Graph H has at most 3|V (H)|− 3
edges. We claim that H is a maximal linklessly embeddable graph.

To prove that H is a maximal linklessly embeddable graph, we show that any graph
H+ that is obtained by adding an edge e to H is not a linklessly embeddable graph. Since
u and v are adjacent to all the vertices of G, edge e (in H+) is either (u, v) or it is an
edge between two vertices of G.

Let H+ be the graph obtained by adding (u, v) to H. Since G contains K4 or K2,3 as a
minor, H+ contains either K6 or K1,1,2,3 as a minor. The latter contains K1,3,3. However,
K6 and K1,3,3 are both forbidden minors for linklessly embeddable graphs [15, 12].

Now let H+ be the graph that is obtained by adding an edge between two vertices of
G in H. By the characterisation of non-separating planar graphs, G+ e contains K4∪K1

or K2,3 ∪K1 or K1,1,3 as a minor.
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If G + e contains K4 ∪ K1 as a minor, then H+ contains K6 as a minor and hence
H+ is not a linklessly embeddable graph. If G + e contains K2,3 ∪ K1 as a minor, then
H+ contains K1,1,2,3 as a minor. But K1,1,2,3 contains K1,3,3 as a minor and therefore
H+ is not a linklessly embeddable graph. If G + e contains K1,1,3 as a minor, then H+

contains K2,1,1,3 as a minor, which in turn contains K1,3,3 as a minor. Therefore H+ is
not a linklessly embeddable graph.

6 Conclusion

This paper provides a forbidden minor characterisation for non-separating planar graphs
and as expected, the forbidden minors for non-separating planar graphs are each a minor
of one of the two forbidden minors for planar graphs.

Moreover it describes the structure of these graphs by proving that any maximal
non-separating planar graph is either an outerplanar graph or a wheel or an elongated
triangular prism.

One can define a similar class of graphs with respect to surfaces other than the plane.
For example, a non-separating toroidal graph is a graph that has a drawing D on the
torus such that:

• no two edges cross and

• for any cycle C in D and any two vertices u and v in D that are not a vertex of C,
one can draw a curve from u to v without crossing any edge of C.

Any such class of graphs is also closed under minor operations and hence it can be char-
acterised using a finite set of forbidden minors. It would be specially interesting to know
the set of forbidden minors for non-separating toroidal graphs since they are all minors
of the forbidden minors for toroidal graphs and we do not yet know the complete set of
forbidden minors of toroidal graphs.

In Theorem 3, we also showed that there are maximal linklessly embeddable graphs
with 3|V | − 3 edges. Now, a natural question that comes into mind is the following:
Does every edge-maximal linklessly embeddable graph have at least 3n− 3 edges? Nega-
tive answers to this question have recently been reported by [1, 11], using edge-maximal
linklessly embeddable graphs with 6 14

5
n and 6 25

12
n edges respectively.

Theorem 3 also shows that there is a connection between non-separating planar graphs
and linklessly embeddable graphs. It would be interesting to explore this connection
further. In fact it was this connection that served as our first motivation for exploring
the structure of non-separating planar graphs.

Another application of non-separating planar graphs is in decomposing planar graphs.
In another paper, we use such a decomposition to prove a stronger version of the Hanani-
Tutte Theorem [7]. Finally, it would be interesting to see if there are other applications
for non-separating planar graphs.
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