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Abstract

A signed circuit cover of a signed graph is a natural analog of a circuit cover of
a graph, and is equivalent to a covering of its corresponding signed-graphic matroid
with circuits. It was conjectured that a signed graph whose signed-graphic matroid
has no coloops has a 6-cover. In this paper, we prove that the conjecture holds for
signed Eulerian graphs.

Mathematics Subject Classifications: 05C21, 05C22

1 Introduction

Let G be a graph. A signed graph is a pair (G,Σ) with Σ ⊆ E(G), each edge in Σ is
labelled by −1 and other edges are labelled by 1. The graph G can be viewed as the signed
graph (G,∅). A circuit is a connected 2-regular graph. A circuit C of G is balanced if
|C∩Σ| is even, otherwise it is unbalanced. We say that a subgraph of (G,Σ) is unbalanced
if it contains an unbalanced circuit, otherwise it is balanced. Signed graphs is a special
class of “biased graphs”, which was defined by Zaslavsky in [7, 8]. Just as biased graphs,
there are two interesting classes of matroids, the class of signed-graphic matroids and
the class of even-cycle matroids, associated with signed graphs, which in fact are special
classes of “frame matroids” and “lifted-graphic matroids” associated with biased graphs,
respectively.

A barbell is a union of two unbalanced circuits sharing exactly one vertex or a union
of two vertex-disjoint unbalanced circuits together with a minimal path joining them. A
signed circuit of (G,Σ) is a balanced circuit or a barbell. We say the matroid with E(G)
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as its ground set and with the set of all signed circuits as its circuit set is the signed-
graphic matroid defined on (G,Σ). We say that (G,Σ) is flow-admissible if each element
of E(G) is in a circuit of its signed-graphic matroid, that is, each edge of G is in a signed
circuit of (G,Σ).

For a positive integer k, we say that a signed graph (G,Σ) has a k-cover if there is a
family C of signed circuits of (G,Σ) such that each edge of G belongs to exactly k members
of C. For ordinary graphs G (signed graph (G,Σ) with Σ = ∅), a k-cover of G is just a
family of circuits which together covers each edge of G exactly k times. In [1], Bermond,
Jackson and Jaeger proved that every bridgeless graph G has a 4-cover. Fan [4] proved
that every bridgeless graph G has a 6-cover. Together it follows that every bridgeless
graph G has a k-cover, for every even integer k greater than 2. The only left case that
k = 2 is the famous Circuit Double Cover Conjecture: every bridgeless graph G has a
2-cover, which is still open and believed to be very hard. It is somehow a surprise that it
is even unknown whether there is an integer k such that every signed graph (G,Σ) has a
k-cover.

Let A and B be two vertex-disjoint unbalanced circuits of length 2m + 1. Let G
be the signed graph obtained from A and B by joining A and B with two internally
disjoint paths of length 2m + 1 such that the two paths form an unbalanced circuit.
Then each signed circuit of G is a barbell of 6m + 3 edges. Any k-cover of G contains
k|E(G)| = k(8m+4) = 4k(2m+1) edges, which must be divisible by 6m+3 = 3(2m+1).
That is, 4k must be divisible by 3, which means that k cannot be 2 or 4. Thus G has
neither 2-covers nor 4-covers. Consider the singed graph H consisting of three unbalanced
circuits of length 2m+1 with exactly one vertex in common. Then each signed circuit of H
is a barbell of 4m+2 edges. Any k-cover of H contains k|E(G)| = k(6m+3) = 3k(2m+1)
edges, which must be divisible by 4m + 2 = 2(2m + 1). That is, 3k must be divisible
by 2, which means that k cannot be odd. Thus H has no k-cover for any odd k. These
counterexamples were first given by Fan [5], who also proposed the following conjecture.

Conjecture 1.1. Every flow-admissible signed graph has a 6-cover.

In this paper, we prove

Theorem 1.2. Conjecture 1.1 holds for signed Eulerian graphs.

In [3], Cheng, Lu, Luo, and Zhang proved that each signed Eulerian graph with an
even number of negative edges has a 2-cover. We will prove Theorem 1.2 from a different
aspect, and our proof does not rely on their result.

This paper is organised as follows. Definitions and results needed in the proof of The-
orem 1.2 are given in Section 2. Theorem 1.2 will be proved in Section 4 by contradiction.
All “small” signed Eulerian graphs occurring in Section 4 in the proof by contradiction
are dealt with in Section 3.

2 Preliminaries

Let G be a finite graph. Let loops(G) denote the set of loops in G. Let ∆(G) and δ(G) be
the maximal and minimal degree of G, respectively. For a positive integer k, let Vk(G) be
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the subset of V (G) consisting of degree-k vertices of G. A subgraph H of G is spanning if
V (H) = V (G). In this paper, we will also use H to denote its edge-set. For example, we
will let G\H denote G\E(H). If exactly one component of G has edges, then we say that
G is connected up to isolated vertices. Evidently, a connected graph is also connected up
to isolated vertices, but the converse maybe not true.

We say that G is even if every vertex of G is of even degree. If an even graph is
connected, we say that it is Eulerian. A circuit C of G is non-separating if G\C is
connected, otherwise, it is separating. A theta graph is a graph that consists of a pair of
vertices joined by three internally vertex-disjoint paths. Let C be a circuit-decomposition
of an Eulerian graph G. Let H be a graph with C as its vertex set, where two vertices
in H are adjacent if and only if their corresponding circuits in G have a common vertex.
We say that H is determined by C.

Lemma 2.1. Let G be an Eulerian graph with ∆(G) > 4. Let C be a circuit of G. Then
there is a circuit C

′
of G with C ∩ C ′ = ∅ such that G\C ′

is connected up to isolated
vertices.

Proof. Since G is Eulerian, G has a circuit-decomposition C containing C. Let H be the
graph determined by C. Since G is connected with ∆(G) > 4, the graph H is connected
with at least two vertices. Let T be a spanning tree of H. Since T has at least two
degree-1 vertex, T has a degree-1 vertex, say C ′, which is not C. Then C ′ is the circuit
as required by the lemma.

Lemma 2.2. Let G be a 2-connected graph with |V (G)| > 3. For any vertex v of G, there
is an edge e of G− v such that G− V (e) is connected.

Proof. Let C be a circuit of G passing through v with |C| as large as possible. Evidently,
|C| > 3 as |V (G)| > 3 and G is 2-connected. Let e be an edge of C that is not incident
with v. Then G−V (e) is connected, otherwise we can find a longer circuit going through
v.

A set Σ′ ⊆ E(G) is a signature of (G,Σ) if (G,Σ) and (G,Σ′) have the same balanced
circuits and the same unbalanced circuits. Evidently, for any edge-cut C∗ of G, the
symmetric difference Σ4C∗ is a signature of (G,Σ). We say that (G,Σ′) is obtained from
(G,Σ) by switching. The following three lemmas are well-known results on signed graphs,
which will be frequently used in Section 3 without reference. Please refer to ( [2], Lemma
3.5.), if the reader needs more detail about Lemma 2.3.

Lemma 2.3. All edges of a balanced signed subgraph of (G,Σ) can be labelled by 1 by
switching.

Lemma 2.4. Each signed theta-graph has a balanced circuit and can not have exactly two
balanced circuits.

Lemma 2.5. Every 2-edge-connected signed graph containing two edge-disjoint unbalanced
circuits is flow-admissible.
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In ( [6], Theorem 4.2.), Máčajová and Škoviera proved that a flow-admissible signed
Eulerian graph with an odd number of negative edges contains three edge-disjoint unbal-
anced circuits. On the other hand, since each unbalanced Eulerian signed graph with an
even number of negative edges contains two edge-disjoint unbalanced circuits, we have

Lemma 2.6. A flow-admissible unbalanced signed Eulerian graph contains two edge-
disjoint unbalanced circuits.

For simplicity, we will also use G to denote a signed graph defined on G.

3 Signed Eulerian graphs with special circuit decompositions

Let k be a positive integer. Let kG be the graph obtained from G by replacing each edge
in G with exactly k parallel edges. Consider a graph constructed as follows. For k > 3,
let G be a circuit of length k and N be a subdivision of 2G. Let C be a circuit of N , we
say that C is small if |V (C)∩V4(N)| = 2, otherwise, C is long. When C is small, we also
say that each vertex in V (C)∩V4(N) is an end of C. Let e1, e2 be edges in a small circuit
of N such that {e1, e2} is not an edge-cut of N . That is, {e1, e2} separates the two ends
of the small circuit. We say that the signed graph obtained from N by labelling {e1, e2}
by −1 and all other edges by 1 is a necklace of length k. Evidently, all small circuits in a
necklace are balanced and all long circuits are unbalanced. Hence, the small circuits form
a 1-cover in a necklace.

In the rest of this section, we will always let G denote a 2-connected flow-
admissible signed Eulerian graph with δ(G) > 4, and C a circuit-decomposition
of G, and let H be the graph determined by C. We say that C is optimal if it
satisfies the following properties:

(CD1) C is chosen with the number of unbalanced circuits as large as possible.

(CD2) subject to (CD1), C is chosen with |C| as large as possible.

In the rest of this section, we will always assume that C is optimal. For any
C ∈ C, we say that C is a balanced vertex of H if C is a balanced circuit of G, otherwise
it is unbalanced.

The following lemma follows immediately from (CD1), (CD2), and Lemma 2.6.

Lemma 3.1. For every pair of adjacent vertices Ci and Cj in H, if Ci is balanced, we
have

1. 1 6 |VG(Ci) ∩ VG(Cj)| 6 2,

2. Ci ∪ Cj is balanced when Cj is balanced, and

3. Ci ∪ Cj is not flow-admissible when Cj is unbalanced.

Lemma 3.2. For every pair of adjacent unbalanced vertices Ci and Cj in H, if |VG(Ci)∩
VG(Cj)| > 3, then Ci ∪ Cj is a necklace.
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Proof. Since Ci and Cj are unbalanced, for any circuit decomposition C ′ of Ci∪Cj, either
all circuits in C ′ are balanced or at least two of them are unbalanced. If Ci ∪ Cj has an
unbalanced circuit avoiding some vertex in V4(Ci ∪Cj), then Ci ∪Cj can be decomposed
into at least three circuits and two of which are unbalanced, which is not possible as C is
optimal. So each circuit in Ci ∪ Cj avoiding a vertex in V4(Ci ∪ Cj) is balanced. Hence,
Ci ∪ Cj is a necklace.

We say that G is cover-decomposable if G can be decomposed into two proper edge-
disjoint flow-admissible signed Eulerian subgraphs.

Lemma 3.3. If H is isomorphic to a graph pictured as Figure 1 and G has no balanced
loops, then G is cover-decomposable or has a 6-cover.

C1 C2

C3

f1 f2

f3

C1 C2

f1 f2

C3

C1 C2

C3

f3 C3

C1 C2

(a) (b) (c) (d)

Figure 1: All degree-3 vertices are balanced, and others are unbalanced. All fi’s are loops
of G.

Proof. Assume otherwise. Assume that H is isomorphic to the graph pictured as Figure
1 (d). For any 1 6 i < j 6 3, when |V (Ci) ∩ V (Cj)| 6 2, it is obvious that Ci ∪ Cj

has a 1-cover; when |V (Ci) ∩ V (Cj)| > 3, it follows from Lemma 3.2 that Ci ∪ Cj is a
necklace, so Ci ∪ Cj has a 1-cover too. Then G has a 2-cover. So H is isomorphic to
a graph pictured as Figure 1 (a)-(c). Note that, 1 6 |VG(Ci) ∩ VG(Cj)| 6 2 when Ci is
balanced by Lemma 3.1. When some Ci is a loop, implying that G is isomorphic to the
graph pictured as Figure 1 (b) or (c), since each pair of adjacent circuits intersect in at
most 2 vertices, there are a few cases to check that G has a 6-cover. So no Ci is a loop.
When |VG(Ci) ∩ VG(Cj)| = 1 for all 1 6 i < j 6 3, since C1 ∪ C2 ∪ C3 is isomorphic to a
2K3-subdivision, combined the fact that all fi are unbalanced loops, it is easy to see that
G has a 6-cover. Hence, |VG(Ci) ∩ VG(Cj)| > 2 for some 1 6 i < j 6 3.

Assume that H is isomorphic to a graph pictured as Figure 1 (a). By Lemma 3.1 (1)
and symmetry we may assume that VG(C2) ∩ VG(C3) = {u, v}. Let C be the circuit of
C2 ∪ C3 that is incident to neither f2 nor f3. Since C is balanced by Lemma 3.1 (2),
G\C is not connected otherwise G is cover-decomposable, so VG(C1) ∩ VG(C2 ∪ C3) ⊆
VG(C) − {u, v}. When |VG(C1) ∩ VG(C2)| = |VG(C1) ∩ VG(C3)| = 1, the graph G has a
2-cover. When |VG(C1) ∩ VG(Ci)| = 2 for some 2 6 i 6 3, since G\loops(G) is balanced
by Lemma 3.1 (2), there is a non-separating balanced circuit C ′ contained in C ∪ Ci,

the electronic journal of combinatorics 28(1) (2021), #P1.14 5



implying that G is cover-decomposable. Hence, H is isomorphic to a graph pictured as
Figure 1 (b) or (c).

Assume that VG(C2) ∩ VG(C3) = {u, v}. Since exactly one of {C2, C3} is unbalanced,
there is a (u, v)-path P of C2 ∪ C3 such that a circuit in C2 ∪ C3 is unbalanced if and
only if it contains P . Since all degree-3 vertices in Figure 1 are balanced, P is not
incident to f2 or f3. Let C the unique balanced circuit of C2 ∪ C3 that is not incident
to f2 or f3. Since (C2 ∪ C3) − C and f3 are unbalanced, G\C is not connected, so
VG(C1)∩ VG(C2 ∪C3) ⊆ VG(C)− {u, v}. When C1 ∪C2 is a necklace, implying that H is
isomorphic to a graph pictured as Figure 1 (c) by Lemma 3.1, there is a non-separating
small circuit C ′ of the necklace C1 ∪ C2 with C ′ ⊆ C1 ∪ (C2 − P ). Since (C2 ∪ C3) − C
and f3 are unbalanced, G\C ′ is flow-admissible, so G is cover-decomposable as C ′ is
balanced. Hence, by Lemma 3.1 (1) or Lemma 3.2, we have |VG(C1) ∩ VG(Ci)| 6 2 for
each 2 6 i 6 3. Moreover, since VG(C1)∩VG(C2∪C3) ⊆ VG(C)−{u, v}, repeatedly using
a similar strategy, we can find a 6-cover of G or a non-separating balanced circuit C such
that G\C is flow-admissible, a contradiction.

By symmetry we may therefore assume that |VG(Ci)∩VG(C3)| = 1 for each 1 6 i 6 2.
Set m = |VG(C1) ∩ VG(C2)| > 2. When m = 2, by simple computation, the lemma holds.
So m > 3. By Lemmas 3.1 and 3.2, H is isomorphic to the graph pictured as Figure 1
(c) and C1 ∪ C2 is a necklace of length m. Assume that G is a counterexample to the
lemma with |V (G)| as small as possible. When C3 does not share a vertex with a small
circuit C of C1 ∪ C2, delete C and identify its two ends as a new vertex. Let G′ be the
new graph. Then G′ is cover-decomposable or has a 6-cover by the choice of G, so is G
since C is balanced. Hence, C3 intersects all small circuits of C1 ∪ C2. Moreover, since
m > 3 and |VG(Ci) ∩ VG(C3)| = 1 for each 1 6 i 6 2, there are edge-disjoint long circuits
C ′1, C

′
2 of C1∪C2 with |VG(C ′1)∩VG(C3)| = 2 and |VG(C ′2)∩VG(C3)| > 1. Since C ′1, C

′
2 are

unbalanced and C ′1∪C ′2 = C1∪C2, the graph determined by {C ′1, C ′2, C3, {f3}} isomorphic
to the graph pictured as Figure 1 (c). Since |VG(C ′1) ∩ VG(C3)| = 2, the lemma holds by
similar analysis in the second paragraph of the proof.

Let C be a separating circuit of a graph G with u, v ∈ V (C). Let P be an (u, v)-path
on C. For a component G′ of G\C, if V (G′) ∩ V (P ) 6= ∅ we say that G′ intersects P ; if
V (G′) ∩ V (C) ⊆ V (P )− {u, v} we say that G′ properly intersects with P .

Lemma 3.4. Let C be a separating circuit of G such that all components of G\C are
unbalanced. Let C ′ be a circuit-component of G\C with {u, v} = V (C) ∩ V (C ′). Let P1

and P2 be the (u, v)-paths of C. When C is balanced or G\C has at least three components,
one of the following holds.

(1) G is cover-decomposable, or

(2) G\C has exactly three components, none of which is flow-admissible and one of
which properly intersects with Pi for each 1 6 i 6 2.

Proof. Assume that (1) is not true. Without loss of generality we may assume that
C ′ = {e, f}. Since C ′ is unbalanced, we may assume that P1 ∪ {e} and P2 ∪ {x} are
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balanced for some x ∈ {e, f}. Since G\C has at least two components, besides C ′, some
component of G\C intersects with some Pi, say P2. Since C is balanced or G\C has at
least three components, G\(P1 ∪ {e}) has two edge-disjoint unbalanced circuits. Since
(1) does not hold, G\(P1 ∪ {e}) is disconnected, so there exists some non-flow-admissible
component of G\C properly intersecting with P1. Repeating the analysis, there is also
a non-flow-admissible component of G\C properly intersecting with P2. So G\C has at
least three components.

Let Gi be the union of the components of G\C that properly intersects with Pi for
each 1 6 i 6 2. Then G1 and G2 are not flow-admissible. Assume that G1 is disconnected.
Since G1 contains two edge-disjoint unbalanced circuits, G1 ∪P1 ∪ {x} and G\(G1 ∪P1 ∪
{x}) are flow-admissible, implying that (1) holds. Hence, G1 is connected, so is G2 by
symmetry. Besides C ′, G1 and G2, assume that G\C has another component G3. Since
G3 is unbalanced and intersects V (P1) and V (P2) by the definition of G1 and G2 and the
fact that G is 2-connected, both G1∪P1∪{f} and G\(G1∪P1∪{f}) are flow-admissible, a
contradiction. So G\C has exactly three components C ′, G1 and G2, that is, (2) holds.

For an (u, v)-path P of G, we say that P is pendant if u ∈ V1(G), v /∈ V1(G) ∪ V2(G)
and all internal vertices of P are in V2(G).

Lemma 3.5. Let H be a tree with a unique vertex C of degree at least three, all leaf
vertices are unbalanced, and all pendant paths have at most two edges. When C is balanced,
V2(H) = ∅. When C is unbalanced, all degree-2 vertices of H are balanced triangles and
leaf vertices that are adjacent to degree-2 vertices are loops. Then G is cover-decomposable
or has a 6-cover.

Proof. Assume that the lemma is not true. Since G has a 6-cover when each component
of G\C is a loop, there is a vertex C ′ in H adjacent to C with |C ′| > 2. Set m =
|VG(C) ∩ VG(C ′)|. Since G is 2-connected and δ(G) > 4, we have m > 2.

We claim that C ′ is balanced or |C ′| 6= 2. Assume otherwise. Then C ′ is a component
of G\C as all degree-2 vertices of H are balanced. Since |C ′| = 2, we have m = 2. Let
{u, v} = VG(C ′) ∩ VG(C), P1 and P2 be the (u, v)-paths of C. By Lemma 3.4, G\C has
exactly three components C ′, G1 and G2, where G1 and G2 properly intersect P1 and P2,
respectively. When C ∪ G1 is a necklace, there is a small circuit D of C ∪ G1 such that
G\D is connected. Since C ′ and G2 are unbalanced, G\D is flow-admissible, so G is
cover-decomposable. Hence, G1 is an unbalanced circuit of size at most 2 or G1 consists
of a balanced triangle and a loop, so is G2 by symmetry. By simple computation, G is
cover-decomposable or has a 6-cover.

Assume that C ′ is balanced. Then C ′ ∈ V2(H) is a triangle. So C is unbalanced and
|VG(C ′) ∩ VG(C)| = 2 by Lemma 3.1. Let u, v, P1, P2 be defined as above. Let e be the
loop incident with C ′ and f the edge in C ′ whose ends are u, v. Since C is unbalanced,
P1 ∪ {f} is balanced and P2 ∪ {f} is unbalanced. Evidently, (a) a component of G\C
properly intersects with P1, otherwise P1 ∪ {f} and its complement are flow-admissible;
and (b) no component of G\C intersects P2 − {u, v}, otherwise the union G′ of P2 ∪ {f}
and all components of G\C intersecting P2 − {u, v} and G\G′ are flow-admissible. Then
P2 ∪ (C ′ − {f}) ∪ {e} and its complement are flow-admissible, a contradiction.
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We may therefore assume that C ′ is unbalanced with |C ′| > 3, implying that C is
unbalanced by Lemma 3.1. By the choice of C ′, for each component G′ of G\C, either
G′ is a loop or |G′| > 3. When |G′| > 3, C ∪ G′ is a necklace by Lemma 3.2. Let D
be a small circuit of C ∪ C ′. Since G\D has two edge-disjoint unbalanced circuits, G\D
is disconnected, so a component GD of G\C properly intersects in C ∩D. Since C ∪ C ′
has three small circuits, GD is the unique component of G\C properly intersecting in
C ∩ D and C ∪ C ′ has exactly three small circuits, implying |C ′| = 3, otherwise G is
cover-decomposable. When GD is not a loop, there is a small circuit D′ of C ∪ GD such
that G\D′ is connected, so G is cover-decomposable. Hence, GD is a loop. By the choice
of C ′, each component G′ of G\C that is not a loop is an unbalanced triangle. When C ′ is
the unique component of G\C that is not a loop, G has a 3-cover. When there is another
component G1 of G\C that is not a loop, let D be a small circuit of C ∪ C ′ intersecting
G1. Let G′ be the union of D ∪G1 and the loop incident with D. Then G′ and G\G′ are
flow-admissible, so G is cover-decomposable.

4 Proof of Theorem 1.2.

In this section, we prove Theorem 1.2, which is restated here in a slightly different way.

Theorem 4.1. Every flow-admissible signed Eulerian graph has a 6-cover.

Proof. Assume that the result is not true. Let G be a counterexample with |V (G)| as
small as possible. Evidently, the following statements hold.

4.1.1.

• G is unbalanced with δ(G) > 4;

• G has no balanced loops; and

• G is not cover-decomposable, in particular, if C is a non-separating balanced circuit
of G, then G\C is not flow-admissible.

4.1.2. G is 2-connected.

Subproof. Assume otherwise. There are edge-disjoint Eulerian subgraphs G1, G2 of G with
|E(G1)|, |E(G2)| > 2, with {v} = V (G1)∩V (G2), and with E(G) = E(G1)∪E(G2). Since
G is a minimal counterexample and not cover-decomposable, G1 and G2 are unbalanced.
Let G+

i be a signed graph obtained from Gi by adding an unbalanced loop ei incident
with v for each integer 1 6 i 6 2. Since G+

1 and G+
2 are flow-admissible, both of them

have 6-covers by the choice of G. Since |V (G1) ∩ V (G2)| = 1, we can obtain a 6-cover of
G by combining 6-covers of G+

1 and G+
2 , a contradiction.

Let C be an optimal circuit decomposition of G and H the graph determined by C.
Since G is connected, so is H. By Lemma 2.6, at least two members of C are unbalanced.
Hence, by Lemma 3.2, |V (H)| > 3 and the following holds. If a block of H contains
exactly one cut-vertex of H, we say the block is a leaf block.
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4.1.3. Each balanced vertex of H is a cut-vertex, in particular, each vertex in a leaf block
of H that is not a cut-vertex is unbalanced.

By 4.1.3 or the third part of 4.1.1, for any vertex C of H, all components of G\C are
unbalanced. For a subgraph H ′ of H, each vertex v ∈ V (H ′) is labeled by a circuit Cv in
C. We say that the subgraph G′ = ∪v∈V (H′)E(Cv) corresponds to H ′.

4.1.4. Let e be a cut-edge of H whose ends are Ci and Cj. If e is not a leaf edge and
H − {Ci, Cj} has exactly two components, then Ci or Cj is unbalanced.

Subproof. Assume to the contrary that Ci and Cj are balanced. Let G1 and G2 be the
subgraphs of G corresponding to the two components of H − {Ci, Cj} with V (G1) ∩
VG(Ci) 6= ∅. It follows from 4.1.3 that G1, G2 are unbalanced. Moreover, since G is
2-connected, by Lemma 3.1, we have |VG(Ci)∩VG(Cj)| = 2. Let u ∈ VG(G1)∩VG(Ci) and
v ∈ V (G2)∩VG(Cj). Since |VG(Ci)∩VG(Cj)| = 2, the graph Ci∪Cj has a circuit C avoiding
u and v such that (Ci ∪ Cj)\C is connected up to isolated vertices. Since H − {Ci, Cj}
has exactly two components, G\C is connected, so G\C is flow-admissible. Moreover,
since Ci ∪ Cj is balanced by Lemma 3.1, C is balanced, so G is cover-decomposable, a
contradiction.

4.1.5. For any separating circuit C ∈ C, if G′ is a component of G\C that is not flow-
admissible, then one of the following holds.

(1) G′ is an unbalanced circuit such that |G′| 6 2 or C ∪G′ is a necklace. In particular,
when C is balanced, |G′| 6 2.

(2) G′ consists of a loop and a balanced triangle.

Subproof. When G′ is a circuit, since δ(G) > 4, by Lemmas 3.1 and 3.2, (1) holds.
Assume that G′ is not a circuit. When G′ consists of exactly two edge-disjoint circuits
that share exactly one vertex, since C only shares vertices with the balanced circuit of G′

and δ(G) > 4, the unbalanced circuit C ′ in G′ has at most two edges. When |C ′| = 2,
there is a non-separating balanced circuit of G contained in C∪C ′, a contradiction. So C ′

is a loop. By Lemma 3.1 and 4.1.2, the balanced circuit in G′ is a triangle, so (2) holds.
Hence, we may assume that ∆(G′) > 6 or |V4(G′)| > 2.

Since G′ is not flow-admissible, by switching we may assume that there is a unique
edge e of G′ labelled by −1 and all other edges in G′ are labelled by 1. When e is a
loop, let v be the end of e, and B a block of G′\{e} containing v, and let C ′ be a circuit
of B containing v; otherwise, let {v} = ∅, and B the block containing e, and let C ′

be a circuit of B with e ∈ C ′. If possible, we may further assume that C ′ is chosen
with VG(C ′) ∩ V2(G′) 6= ∅. By Lemma 2.1, there is a circuit C1 of G′\loops(G′) with
C ′ ∩ C1 = ∅ such that G′\C1 is connected up to isolated vertices. Since C1 is balanced
and G\C1 has two edge-disjoint unbalanced circuits, G\C1 is not connected. Hence,
VG(C)∩ V (G′) ⊆ VG(C1) and ∅ 6= V2(G

′) ⊆ VG(C1) as e is the only edge in G′ which has
a chance to be a loop. By the choice of C ′, the set V2(G

′) is contained in another block
B′ of G′ with B 6= B′ as C ′ contains no vertex in V2(G

′). Since VG(C) ∩ V (G′) ⊆ V (B′)
and G is 2-connected, |B| = 1, a contradiction to the choice of B.
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4.1.6. For any C ∈ C, the graph G\C has at most two components.

Subproof. Assume that G\C has three components. Since each component G′ of G\C
is unbalanced and G\G′ is flow-admissible, G′ is not flow-admissible. By 4.1.5, H is a
tree with C as a unique vertex of degree at least three, and all its pendant paths have at
most two edges. When C is balanced, 4.1.4 implies that V2(H) = ∅. Hence, by 4.1.5 and
Lemma 3.5, G is cover-decomposable or has a 6-cover, a contradiction.

4.1.7. For any balanced vertex C of H, each degree-1 vertex of H adjacent with C is a
loop of G.

Subproof. Let C ′ be a degree-1 vertex of H adjacent with C. Assume that C ′ is not a
loop of G. Then |C ′| = |VG(C) ∩ VG(C ′)| = 2 by 4.1.5. It follows from Lemma 3.4 and
4.1.6 that G is cover-decomposable, a contradiction.

4.1.8. H is not a tree.

Subproof. Assume otherwise. By 4.1.6, H is a path. Evidently, at most one vertex in
V2(H) is unbalanced, otherwise, G is cover-decomposable. By 4.1.4, no balanced vertices
of H are adjacent, so |V (H)| 6 5. Moreover, if |V (H)| > 4, then exactly one vertex in
V2(H) is unbalanced. Assume that H has two adjacent vertices C1, C2 with |VG(C1) ∩
VG(C2)| > 3. Then C1 ∈ V1(H), |V (H)| 6 4 and C1 ∪ C2 is a necklace by Lemma 3.2.
Let C3 be the other vertex adjacent to C2 in H. When VG(C2) ∩ VG(C3) is in a small
circuit of C1 ∪ C2, the graph G has a 6-cover. When VG(C2) ∩ VG(C3) is not in a small
circuit of C1∪C2, implying |VG(C2)∩VG(C3)| = 2, since VG(C1)∩VG(C3) = ∅, the graph
C1 ∪ C2 can be decomposed to two long circuits C ′1, C

′
2, where both share exactly one

vertex with C3. Note that the circuit decomposition (C − {C1, C2}) ∪ {C ′1, C ′2} is still
optimal. Hence, the graph determined by (C − {C1, C2}) ∪ {C ′1, C ′2} is isomorphic to a
graph pictured as Figure 1 (c) or (d). Lemma 3.3 implies that G is cover-decomposable
or has a 6-cover. Therefore, combined with Lemma 3.1 we can assume that every pair of
adjacent vertices in H share at most two vertices in G. Note that each degree-1 vertex
of H adjacent to a balanced vertex is a loop by 4.1.7. By simple computation, G has a
6-cover, a contradiction.

4.1.9. H is not 2-connected and whose leaf blocks are isomorphic to K2.

Subproof. Assume otherwise. When H is not 2-connected, let B be a leaf block of H
that is not isomorphic to K2, and v be the unique cut-vertex of H in V (B). When H
is 2-connected, let B = H and v any vertex of B. By Lemma 2.2, there is an edge e in
B − v such that B − VH(e) is connected, so H − VH(e) is also connected. Without loss
of generality assume that C1 and C2 are the ends of e. Then C1 ∪ C2 and G\(C1 ∪ C2)
are connected. Since C1 ∪ C2 is flow-admissible by 4.1.3, the graph G\(C1 ∪ C2) is not
flow-admissible. Since H is not isomorphic to the graph pictured as Figure 1 (d) by
Lemma 3.3, H has exactly three unbalanced vertices and exactly two leaf blocks, one of
which is B that is isomorphic to K3 and the other is isomorphic to K2. Let C1C2C3 . . . Cn

be a longest path in H. It follows from 4.1.4 that n = 4. By 4.1.7, the circuit C4 is a
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loop of G. That is, H is isomorphic to the graph pictured as Figure 1 (c). Hence, G is
cover-decomposable or has a 6-cover by Lemma 3.3, a contradiction.

Let B be a block of H with |V (B)| > 3. By 4.1.8 and 4.1.9, such B exists and B is not
a leaf block. When H has two blocks that are not isomorphic to K2, it follows from 4.1.3
and 4.1.9 that G is cover-decomposable. Hence, B is the unique block of H that is not
isomorphic to K2. By 4.1.3, each vertex in B that is not a cut-vertex of H is unbalanced.

Let u ∈ V (B) be a cut vertex of H. When u is unbalanced or H has two pendant
paths using u, let H1 be the union of all pendant paths containing u, and G1 the subgraph
of G corresponding to H1. Since |V (B)| > 3, by 4.1.3 and 4.1.9, both G1 and G\G1 are
flow-admissible, a contradiction. Hence, u is balanced and H has exactly one pendant
path using u. By the arbitrary choice of u, all cut-vertices of H in B are balanced. Using
a similar strategy, all vertices in V2(H) − V (B) are balanced. Combined with 4.1.4, we
have V2(H) − V (B) = ∅. That is, each pendant path of H has exactly one edge. By
4.1.7, each vertex in V1(H) is a loop of G.

When there is a vertex in V (B) that is not a cut-vertex of H, let v denote such a
vertex. Otherwise, let v be any vertex of B. By Lemma 2.2, there is an edge e ∈ B − v
such that B − V (e) is connected. Let H1 be the union of e and all pendant paths of H
using an end of e, and G1 be the subgraph of G corresponding to H1. Since each vertex
in B that is not a cut-vertex of H is unbalanced, H1 contains two unbalanced vertices,
so G1 is flow-admissible. Since H − V (H1) is connected and has an unbalanced vertex,
H is isomorphic to a graph pictured as Figure 1 (a) or (b). Lemma 3.3 implies that G is
cover-decomposable or has a 6-cover, a contradiction.
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