Circuit Covers of Signed Eulerian Graphs

Bo Bao Rong Chen* Genghua Fan'

Center for Discrete Mathematics
Fuzhou University
Fuzhou, P. R. China

tomcat08300163.com, {rongchen,fan}@fzu.edu.cn

Submitted: Oct 22, 2019; Accepted: Dec 7, 2020; Published: Jan 29, 2021
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A signed circuit cover of a signed graph is a natural analog of a circuit cover of
a graph, and is equivalent to a covering of its corresponding signed-graphic matroid
with circuits. It was conjectured that a signed graph whose signed-graphic matroid
has no coloops has a 6-cover. In this paper, we prove that the conjecture holds for
signed Eulerian graphs.

Mathematics Subject Classifications: 05C21, 05C22

1 Introduction

Let G be a graph. A signed graph is a pair (G,X) with X C E(G), each edge in X is
labelled by —1 and other edges are labelled by 1. The graph G can be viewed as the signed
graph (G,@). A circuit is a connected 2-regular graph. A circuit C' of G is balanced if
|C'NX| is even, otherwise it is unbalanced. We say that a subgraph of (G, X) is unbalanced
if it contains an unbalanced circuit, otherwise it is balanced. Signed graphs is a special
class of “biased graphs”, which was defined by Zaslavsky in [7,8]. Just as biased graphs,
there are two interesting classes of matroids, the class of signed-graphic matroids and
the class of even-cycle matroids, associated with signed graphs, which in fact are special
classes of “frame matroids” and “lifted-graphic matroids” associated with biased graphs,
respectively.

A barbell is a union of two unbalanced circuits sharing exactly one vertex or a union
of two vertex-disjoint unbalanced circuits together with a minimal path joining them. A
signed circuit of (G, %) is a balanced circuit or a barbell. We say the matroid with E(G)
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as its ground set and with the set of all signed circuits as its circuit set is the signed-
graphic matroid defined on (G, X). We say that (G,X) is flow-admissible if each element
of E(G) is in a circuit of its signed-graphic matroid, that is, each edge of G is in a signed
circuit of (G, X).

For a positive integer k, we say that a signed graph (G, X) has a k-cover if there is a
family C of signed circuits of (G, X) such that each edge of G belongs to exactly kK members
of C. For ordinary graphs G (signed graph (G, X) with X = @), a k-cover of G is just a
family of circuits which together covers each edge of G exactly k times. In [1], Bermond,
Jackson and Jaeger proved that every bridgeless graph G has a 4-cover. Fan [4] proved
that every bridgeless graph G has a 6-cover. Together it follows that every bridgeless
graph G has a k-cover, for every even integer k greater than 2. The only left case that
k = 2 is the famous Circuit Double Cover Conjecture: every bridgeless graph G has a
2-cover, which is still open and believed to be very hard. It is somehow a surprise that it
is even unknown whether there is an integer k such that every signed graph (G,X) has a
k-cover.

Let A and B be two vertex-disjoint unbalanced circuits of length 2m + 1. Let G
be the signed graph obtained from A and B by joining A and B with two internally
disjoint paths of length 2m + 1 such that the two paths form an unbalanced circuit.
Then each signed circuit of G is a barbell of 6m + 3 edges. Any k-cover of G contains
kE|E(G)| = k(8m+4) = 4k(2m+1) edges, which must be divisible by 6m+3 = 3(2m+1).
That is, 4k must be divisible by 3, which means that k£ cannot be 2 or 4. Thus G has
neither 2-covers nor 4-covers. Consider the singed graph H consisting of three unbalanced
circuits of length 2m+1 with exactly one vertex in common. Then each signed circuit of H
is a barbell of 4m+2 edges. Any k-cover of H contains k|E(G)| = k(6m+3) = 3k(2m+1)
edges, which must be divisible by 4m + 2 = 2(2m + 1). That is, 3k must be divisible
by 2, which means that £ cannot be odd. Thus H has no k-cover for any odd k. These
counterexamples were first given by Fan [5], who also proposed the following conjecture.

Conjecture 1.1. Fvery flow-admissible signed graph has a 6-cover.
In this paper, we prove
Theorem 1.2. Conjecture 1.1 holds for signed Eulerian graphs.

In [3], Cheng, Lu, Luo, and Zhang proved that each signed Eulerian graph with an
even number of negative edges has a 2-cover. We will prove Theorem 1.2 from a different
aspect, and our proof does not rely on their result.

This paper is organised as follows. Definitions and results needed in the proof of The-
orem 1.2 are given in Section 2. Theorem 1.2 will be proved in Section 4 by contradiction.
All “small” signed Eulerian graphs occurring in Section 4 in the proof by contradiction
are dealt with in Section 3.

2 Preliminaries

Let G be a finite graph. Let loops(G) denote the set of loops in G. Let A(G) and §(G) be
the maximal and minimal degree of G, respectively. For a positive integer k, let Vi(G) be
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the subset of V(G) consisting of degree-k vertices of G. A subgraph H of G is spanning if
V(H) = V(G). In this paper, we will also use H to denote its edge-set. For example, we
will let G\ H denote G\ E(H). If exactly one component of G has edges, then we say that
G is connected up to isolated vertices. Evidently, a connected graph is also connected up
to isolated vertices, but the converse maybe not true.

We say that G is even if every vertex of G is of even degree. If an even graph is
connected, we say that it is Fulerian. A circuit C' of G is non-separating if G\C' is
connected, otherwise, it is separating. A theta graph is a graph that consists of a pair of
vertices joined by three internally vertex-disjoint paths. Let C be a circuit-decomposition
of an Eulerian graph G. Let H be a graph with C as its vertex set, where two vertices
in H are adjacent if and only if their corresponding circuits in G have a common vertex.
We say that H is determined by C.

Lemma 2.1. Let G be an Eulerian graph with A(G) > 4. Let C be a circuit of G. Then
there is a circuit C' of G with C N C" = & such that G\C' is connected up to isolated
vertices.

Proof. Since G is Eulerian, G has a circuit-decomposition C containing C'. Let H be the
graph determined by C. Since G is connected with A(G) > 4, the graph H is connected
with at least two vertices. Let T be a spanning tree of H. Since T has at least two
degree-1 vertex, T has a degree-1 vertex, say C’, which is not C. Then C’ is the circuit
as required by the lemma. O]

Lemma 2.2. Let G be a 2-connected graph with |V (G)| = 3. For any vertez v of G, there
is an edge e of G — v such that G — V' (e) is connected.

Proof. Let C be a circuit of G passing through v with |C| as large as possible. Evidently,
|IC| = 3 as |[V(G)| > 3 and G is 2-connected. Let e be an edge of C' that is not incident
with v. Then G — V' (e) is connected, otherwise we can find a longer circuit going through
. [

A set ¥’ C E(Q) is a signature of (G, X) if (G, X) and (G, ¥') have the same balanced
circuits and the same unbalanced circuits. Evidently, for any edge-cut C* of G, the
symmetric difference XAC* is a signature of (G, ). We say that (G, ¥') is obtained from
(G, X)) by switching. The following three lemmas are well-known results on signed graphs,
which will be frequently used in Section 3 without reference. Please refer to ( [2], Lemma
3.5.), if the reader needs more detail about Lemma 2.3.

Lemma 2.3. All edges of a balanced signed subgraph of (G,X) can be labelled by 1 by
switching.

Lemma 2.4. Fach signed theta-graph has a balanced circuit and can not have exactly two
balanced circuits.

Lemma 2.5. Every 2-edge-connected signed graph containing two edge-disjoint unbalanced
circuits is flow-admissible.
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In ( [6], Theorem 4.2.), Mécajova and Skoviera proved that a flow-admissible signed
Eulerian graph with an odd number of negative edges contains three edge-disjoint unbal-
anced circuits. On the other hand, since each unbalanced Eulerian signed graph with an
even number of negative edges contains two edge-disjoint unbalanced circuits, we have

Lemma 2.6. A flow-admissible unbalanced signed FEulerian graph contains two edge-
disjoint unbalanced circuits.

For simplicity, we will also use G to denote a signed graph defined on G.

3 Signed Eulerian graphs with special circuit decompositions

Let k be a positive integer. Let kG be the graph obtained from G by replacing each edge
in G with exactly k parallel edges. Consider a graph constructed as follows. For k& > 3,
let G be a circuit of length &k and N be a subdivision of 2G. Let C be a circuit of N, we
say that C' is small if |V (C) N V4(N)| = 2, otherwise, C' is long. When C' is small, we also
say that each vertex in V/(C)NVy(N) is an end of C. Let ey, e5 be edges in a small circuit
of N such that {ej, e} is not an edge-cut of N. That is, {e1, e} separates the two ends
of the small circuit. We say that the signed graph obtained from N by labelling {e;, e}
by —1 and all other edges by 1 is a necklace of length k. Evidently, all small circuits in a
necklace are balanced and all long circuits are unbalanced. Hence, the small circuits form
a l-cover in a necklace.

In the rest of this section, we will always let G denote a 2-connected flow-
admissible signed Eulerian graph with §(G) > 4, and C a circuit-decomposition
of G, and let H be the graph determined by C. We say that C is optimal if it
satisfies the following properties:

(CD1) C is chosen with the number of unbalanced circuits as large as possible.
(CD2) subject to (CD1), C is chosen with |C| as large as possible.

In the rest of this section, we will always assume that C is optimal. For any
C € C, we say that C is a balanced vertex of H if C' is a balanced circuit of GG, otherwise
it is unbalanced.

The following lemma follows immediately from (CD1), (CD2), and Lemma 2.6.

Lemma 3.1. For every pair of adjacent vertices C; and C; in H, if C; is balanced, we
have

1.1 < |\Va(Cy) NVa(Cy)] <2,
2. C; UC; 1s balanced when Cj is balanced, and
3. C; U 1s not flow-admissible when C; is unbalanced.

Lemma 3.2. For every pair of adjacent unbalanced vertices C; and C; in H, if |Va(C;) N
Va(C;)| = 3, then C; UC; is a necklace.
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Proof. Since C; and C; are unbalanced, for any circuit decomposition C’ of C; U}, either
all circuits in C’ are balanced or at least two of them are unbalanced. If C; U C; has an
unbalanced circuit avoiding some vertex in V4(C; U C}), then C; U C; can be decomposed
into at least three circuits and two of which are unbalanced, which is not possible as C is
optimal. So each circuit in C; U C; avoiding a vertex in V4(C; U C}) is balanced. Hence,
C; U Cj is a necklace. O

We say that G is cover-decomposable if G can be decomposed into two proper edge-
disjoint flow-admissible signed Eulerian subgraphs.

Lemma 3.3. If H is isomorphic to a graph pictured as Figure 1 and G has no balanced
loops, then G is cover-decomposable or has a 6-cover.

Is

Figure 1: All degree-3 vertices are balanced, and others are unbalanced. All f;’s are loops

of G.

Proof. Assume otherwise. Assume that H is isomorphic to the graph pictured as Figure
1 (d). Forany 1 < i < j < 3, when |V(C;) N V(Cj)| < 2, it is obvious that C; U C}
has a 1-cover; when |V (C;) N V(C;)| > 3, it follows from Lemma 3.2 that C; U C; is a
necklace, so C; U C; has a 1-cover too. Then G has a 2-cover. So H is isomorphic to
a graph pictured as Figure 1 (a)-(c). Note that, 1 < |Ve(C;) N Ve(C;)| < 2 when C; is
balanced by Lemma 3.1. When some Cj is a loop, implying that G is isomorphic to the
graph pictured as Figure 1 (b) or (c), since each pair of adjacent circuits intersect in at
most 2 vertices, there are a few cases to check that GG has a 6-cover. So no C; is a loop.
When |V (C;) NVe(C;)| =1 forall 1 <@ < j < 3, since C; U Cy U Cs is isomorphic to a
2K 3-subdivision, combined the fact that all f; are unbalanced loops, it is easy to see that
G has a 6-cover. Hence, |Vo(C;) NV (Cy)| = 2 for some 1 <7 < j < 3.

Assume that H is isomorphic to a graph pictured as Figure 1 (a). By Lemma 3.1 (1)
and symmetry we may assume that Vg (Cq) N Ve (C3) = {u,v}. Let C be the circuit of
Cy U C3 that is incident to neither fy nor f;. Since C' is balanced by Lemma 3.1 (2),
G\C is not connected otherwise G is cover-decomposable, so Vg (C1) N Ve(Cy U C3) C
Va(C) — {u,v}. When |V5(Cy) N Ve(Cs)| = |Va(Cr) NVe(C3)| = 1, the graph G has a
2-cover. When |V5(C1) N Ve (Cy)| = 2 for some 2 < i < 3, since G'\loops(G) is balanced
by Lemma 3.1 (2), there is a non-separating balanced circuit C’ contained in C' U Cj,
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implying that G is cover-decomposable. Hence, H is isomorphic to a graph pictured as
Figure 1 (b) or (c).

Assume that Vg (Cy) N V5 (C3) = {u,v}. Since exactly one of {Cs, C3} is unbalanced,
there is a (u,v)-path P of Cy U C3 such that a circuit in Cy U C3 is unbalanced if and
only if it contains P. Since all degree-3 vertices in Figure 1 are balanced, P is not
incident to fy or f3. Let C' the unique balanced circuit of Cy U ('3 that is not incident
to fo or f3. Since (Cy U C5) — C and f3 are unbalanced, G\C' is not connected, so
Va(C) NVe(CoUls) CVe(C) —{u,v}. When Cy UC, is a necklace, implying that H is
isomorphic to a graph pictured as Figure 1 (¢) by Lemma 3.1, there is a non-separating
small circuit C” of the necklace C; U Cy with C" C Cy U (Cy — P). Since (Co U C3) — C
and f3 are unbalanced, G\C’ is flow-admissible, so G is cover-decomposable as C” is
balanced. Hence, by Lemma 3.1 (1) or Lemma 3.2, we have |V5(Cy) N Ve(C;)| < 2 for
each 2 < i < 3. Moreover, since Vg (Cp) NVe(CoUCs) C Ve (C) —{u, v}, repeatedly using
a similar strategy, we can find a 6-cover of GG or a non-separating balanced circuit C' such
that G\C' is flow-admissible, a contradiction.

By symmetry we may therefore assume that |V (C;) NVe(Cs)] = 1 for each 1 <@ < 2.
Set m = |V(C1) NVe(Cs)| = 2. When m = 2, by simple computation, the lemma holds.
So m > 3. By Lemmas 3.1 and 3.2, H is isomorphic to the graph pictured as Figure 1
(c) and Cy U Cy is a necklace of length m. Assume that G is a counterexample to the
lemma with |V(G)| as small as possible. When C3 does not share a vertex with a small
circuit C' of C7 U Cy, delete C' and identify its two ends as a new vertex. Let G’ be the
new graph. Then G’ is cover-decomposable or has a 6-cover by the choice of G, so is G
since C' is balanced. Hence, C3 intersects all small circuits of C; U C5. Moreover, since
m > 3 and |V (C;) NVe(Cs)| = 1 for each 1 < i < 2, there are edge-disjoint long circuits
1, CY of C1UCy with |V (CF) NVe(Cs)| = 2 and |V (CH) NV (Cs)| = 1. Since C7, C4 are
unbalanced and C]UCY, = CyUCy, the graph determined by {C, C4, Cs, { f3}} isomorphic
to the graph pictured as Figure 1 (c). Since |Vg(C]) N Ve (Cs)| = 2, the lemma holds by
similar analysis in the second paragraph of the proof. O

Let C be a separating circuit of a graph G with u,v € V(C). Let P be an (u,v)-path
on C. For a component G’ of G\C, if V(G") NV (P) # @ we say that G’ intersects P; if
V(G)NV(C) CV(P)—{u,v} we say that G’ properly intersects with P.

Lemma 3.4. Let C' be a separating circuit of G such that all components of G\C' are
unbalanced. Let C' be a circuit-component of G\C with {u,v} = V(C)NV(C"). Let P,
and Py be the (u,v)-paths of C. When C' is balanced or G\C' has at least three components,
one of the following holds.

(1) G is cover-decomposable, or

(2) G\C has exactly three components, none of which is flow-admissible and one of
which properly intersects with P; for each 1 <1 < 2.

Proof. Assume that (1) is not true. Without loss of generality we may assume that
C" = {e, f}. Since C’ is unbalanced, we may assume that P, U {e} and P, U {z} are
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balanced for some z € {e, f}. Since G\C has at least two components, besides C’, some
component of G\C' intersects with some P;, say P,. Since C' is balanced or G\C has at
least three components, G\(P; U {e}) has two edge-disjoint unbalanced circuits. Since
(1) does not hold, G\ (P, U {e}) is disconnected, so there exists some non-flow-admissible
component of G\C' properly intersecting with P;. Repeating the analysis, there is also
a non-flow-admissible component of G\C' properly intersecting with P,. So G\C' has at
least three components.

Let G; be the union of the components of G\C' that properly intersects with P; for
each 1 < i < 2. Then G, and G5 are not flow-admissible. Assume that GG; is disconnected.
Since G contains two edge-disjoint unbalanced circuits, Gy U P, U {z} and G\(G; U P, U
{z}) are flow-admissible, implying that (1) holds. Hence, G is connected, so is Gy by
symmetry. Besides €', G; and G, assume that G\C' has another component G5. Since
G5 is unbalanced and intersects V(P;) and V(P,) by the definition of G; and G5 and the
fact that G is 2-connected, both G;UP,U{ f} and G\ (G;UP,U{f}) are flow-admissible, a
contradiction. So G\C has exactly three components C’, G; and Gs, that is, (2) holds. [

For an (u,v)-path P of G, we say that P is pendant if u € V{(G), v ¢ V1(G) U Va(G)
and all internal vertices of P are in V5(G).

Lemma 3.5. Let H be a tree with a unique vertex C' of degree at least three, all leaf
vertices are unbalanced, and all pendant paths have at most two edges. When C' is balanced,
Vo(H) = @. When C' is unbalanced, all degree-2 vertices of H are balanced triangles and
leaf vertices that are adjacent to degree-2 vertices are loops. Then G is cover-decomposable
or has a 6-cover.

Proof. Assume that the lemma is not true. Since G has a 6-cover when each component
of G\C is a loop, there is a vertex C' in H adjacent to C' with |C'| > 2. Set m =
Ve (C) N Vg(C)|. Since G is 2-connected and 6(G) > 4, we have m > 2.

We claim that C’ is balanced or |C'| # 2. Assume otherwise. Then C”’ is a component
of G\C as all degree-2 vertices of H are balanced. Since |C’| = 2, we have m = 2. Let
{u,v} = Ve(C") NVe(C), P, and P, be the (u,v)-paths of C. By Lemma 3.4, G\C has
exactly three components C’, G; and G,, where G; and G4 properly intersect P, and Ps,
respectively. When C' U (G is a necklace, there is a small circuit D of C'U G such that
G\D is connected. Since C' and Go are unbalanced, G\D is flow-admissible, so G is
cover-decomposable. Hence, (G; is an unbalanced circuit of size at most 2 or (G; consists
of a balanced triangle and a loop, so is Gy by symmetry. By simple computation, G is
cover-decomposable or has a 6-cover.

Assume that C” is balanced. Then C” € V5(H) is a triangle. So C' is unbalanced and
|Va(C) N Ve(C)| = 2 by Lemma 3.1. Let u,v, P, P, be defined as above. Let e be the
loop incident with C” and f the edge in €’ whose ends are u,v. Since C' is unbalanced,
Py U {f} is balanced and P, U {f} is unbalanced. Evidently, (a) a component of G\C
properly intersects with P;, otherwise P; U {f} and its complement are flow-admissible;
and (b) no component of G\C' intersects P, — {u, v}, otherwise the union G’ of P, U {f}
and all components of G\C intersecting P> — {u,v} and G\G’ are flow-admissible. Then
P,U(C"—{f})U{e} and its complement are flow-admissible, a contradiction.
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We may therefore assume that C” is unbalanced with |C’| > 3, implying that C is
unbalanced by Lemma 3.1. By the choice of C’, for each component G’ of G\C, either
G’ is a loop or |G| = 3. When |G'| > 3, C UG’ is a necklace by Lemma 3.2. Let D
be a small circuit of C'UC". Since G\ D has two edge-disjoint unbalanced circuits, G\ D
is disconnected, so a component Gp of G\C' properly intersects in C'N D. Since C'U C’
has three small circuits, Gp is the unique component of G\C properly intersecting in
C N D and C U C" has exactly three small circuits, implying |C’| = 3, otherwise G is
cover-decomposable. When G p is not a loop, there is a small circuit D’ of C'U G p such
that G\ D' is connected, so G is cover-decomposable. Hence, G is a loop. By the choice
of C’, each component G’ of G\C that is not a loop is an unbalanced triangle. When C” is
the unique component of G\C' that is not a loop, G has a 3-cover. When there is another
component 7 of G\C' that is not a loop, let D be a small circuit of C'U C” intersecting
G1. Let G’ be the union of D UG, and the loop incident with D. Then G' and G\G' are
flow-admissible, so GG is cover-decomposable. n

4 Proof of Theorem 1.2.

In this section, we prove Theorem 1.2, which is restated here in a slightly different way:.
Theorem 4.1. FEvery flow-admissible signed Fulerian graph has a 6-cover.

Proof. Assume that the result is not true. Let G be a counterexample with |V(G)| as
small as possible. Evidently, the following statements hold.

4.1.1.
o G is unbalanced with 6(G) > 4;

e (G has no balanced loops; and

e (G is not cover-decomposable, in particular, if C' is a non-separating balanced circuit

of G, then G\C' is not flow-admissible.
4.1.2. G 1s 2-connected.

Subproof. Assume otherwise. There are edge-disjoint Eulerian subgraphs G, G5 of G with
|E(GY)],|E(G2)| = 2, with {v} = V(G1)NV(Gs), and with F(G) = E(G1)UE(G3). Since
(G is a minimal counterexample and not cover-decomposable, G; and G5 are unbalanced.
Let G be a signed graph obtained from G; by adding an unbalanced loop e; incident
with v for each integer 1 < i < 2. Since Gf and G are flow-admissible, both of them
have 6-covers by the choice of G. Since |V(G1) NV (G2)| = 1, we can obtain a 6-cover of
G by combining 6-covers of Gf and G, a contradiction. O

Let C be an optimal circuit decomposition of G and H the graph determined by C.
Since G is connected, so is H. By Lemma 2.6, at least two members of C are unbalanced.
Hence, by Lemma 3.2, |V(H)| > 3 and the following holds. If a block of H contains
exactly one cut-vertex of H, we say the block is a leaf block.
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4.1.3. FEach balanced vertex of H is a cut-vertex, in particular, each vertex in a leaf block
of H that is not a cut-vertex is unbalanced.

By 4.1.3 or the third part of 4.1.1, for any vertex C' of H, all components of G\C' are
unbalanced. For a subgraph H’ of H, each vertex v € V(H’) is labeled by a circuit C,, in
C. We say that the subgraph G’ = U,ey u)E(C,) corresponds to H'.

4.1.4. Let e be a cut-edge of H whose ends are C; and C;. If e is not a leaf edge and
H —{C;,C;} has exactly two components, then C; or C; is unbalanced.

Subproof. Assume to the contrary that C; and C; are balanced. Let G; and G5 be the
subgraphs of G corresponding to the two components of H — {C;,C;} with V(G;) N
Vo(C;) # @. Tt follows from 4.1.3 that Gy, Gy are unbalanced. Moreover, since G is
2-connected, by Lemma 3.1, we have |V (C;) NVa(C;)| = 2. Let u € Vg (G1)NVe(C;) and
v € V(G2)NVg(Cy). Since |V (C;)NVe(C))| = 2, the graph C;UC; has a circuit C' avoiding
w and v such that (C; U C;)\C is connected up to isolated vertices. Since H — {C;, C;}
has exactly two components, G\C' is connected, so G\C is flow-admissible. Moreover,
since C; U Cj is balanced by Lemma 3.1, C' is balanced, so G is cover-decomposable, a
contradiction. O]

4.1.5. For any separating circuit C' € C, if G' is a component of G\C' that is not flow-
admissible, then one of the following holds.

(1) G' is an unbalanced circuit such that |G'| < 2 or CUG’ is a necklace. In particular,
when C' is balanced, |G'| < 2.

(2) G’ consists of a loop and a balanced triangle.

Subproof. When G’ is a circuit, since §(G) > 4, by Lemmas 3.1 and 3.2, (1) holds.
Assume that G’ is not a circuit. When G’ consists of exactly two edge-disjoint circuits
that share exactly one vertex, since C' only shares vertices with the balanced circuit of G’
and 6(G) > 4, the unbalanced circuit C" in G’ has at most two edges. When |C'| = 2,
there is a non-separating balanced circuit of G contained in CUC", a contradiction. So C’
is a loop. By Lemma 3.1 and 4.1.2, the balanced circuit in G’ is a triangle, so (2) holds.
Hence, we may assume that A(G’) > 6 or |V4(G')| > 2.

Since G’ is not flow-admissible, by switching we may assume that there is a unique
edge e of G’ labelled by —1 and all other edges in G’ are labelled by 1. When e is a
loop, let v be the end of e, and B a block of G'\{e} containing v, and let C’ be a circuit
of B containing v; otherwise, let {v} = @, and B the block containing e, and let C’
be a circuit of B with e € C’. If possible, we may further assume that C” is chosen
with Vo (C') N V5(G') # @. By Lemma 2.1, there is a circuit Cy of G'\loops(G’) with
C' N Cy; = @ such that G'\C is connected up to isolated vertices. Since C is balanced
and G\Cj has two edge-disjoint unbalanced circuits, G\C; is not connected. Hence,
Ve(C)NV(G') CVg(Ch) and @ # Vo(G') C Ve (Ch) as e is the only edge in G’ which has
a chance to be a loop. By the choice of C’, the set V2(G’) is contained in another block
B’ of G' with B # B’ as C' contains no vertex in V5(G’). Since Vo(C) NV (G') C V(B')
and G is 2-connected, |B| = 1, a contradiction to the choice of B. O
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4.1.6. For any C € C, the graph G\C' has at most two components.

Subproof. Assume that G\C has three components. Since each component G’ of G\C
is unbalanced and G\G’ is flow-admissible, G’ is not flow-admissible. By 4.1.5, H is a
tree with C' as a unique vertex of degree at least three, and all its pendant paths have at
most two edges. When C' is balanced, 4.1.4 implies that Vo(H) = @. Hence, by 4.1.5 and
Lemma 3.5, G is cover-decomposable or has a 6-cover, a contradiction. O

4.1.7. For any balanced vertex C' of H, each degree-1 vertexr of H adjacent with C' 1is a
loop of G.

Subproof. Let C" be a degree-1 vertex of H adjacent with C. Assume that C’ is not a
loop of G. Then |C'| = |Va(C) N Ve(C)| = 2 by 4.1.5. It follows from Lemma 3.4 and

4.1.6 that GG is cover-decomposable, a contradiction. O
4.1.8. H s not a tree.

Subproof. Assume otherwise. By 4.1.6, H is a path. Evidently, at most one vertex in
Vo(H) is unbalanced, otherwise, G is cover-decomposable. By 4.1.4, no balanced vertices
of H are adjacent, so |V(H)| < 5. Moreover, if |V/(H)| > 4, then exactly one vertex in
Vo(H) is unbalanced. Assume that H has two adjacent vertices Cy,Cy with |Vg(Ch) N
Va(Cy)| = 3. Then C, € Vi(H), |V(H)| < 4 and Cy U Cy is a necklace by Lemma 3.2.
Let C3 be the other vertex adjacent to Cy in H. When Vi(Cy) N Vi (Cs) is in a small
circuit of C7 U Cy, the graph G has a 6-cover. When Vg (Cs) N V(Cs) is not in a small
circuit of Cy U Cy, implying |V (C2) NVe(C3)| = 2, since Vg (Cr) NVe(C3) = @, the graph
Cy U Cy can be decomposed to two long circuits C}, CY, where both share exactly one
vertex with C3. Note that the circuit decomposition (C — {C4,Cs2}) U {C], C%} is still
optimal. Hence, the graph determined by (C — {C},Cy}) U {C], C%} is isomorphic to a
graph pictured as Figure 1 (¢) or (d). Lemma 3.3 implies that G is cover-decomposable
or has a 6-cover. Therefore, combined with Lemma 3.1 we can assume that every pair of
adjacent vertices in H share at most two vertices in G. Note that each degree-1 vertex
of H adjacent to a balanced vertex is a loop by 4.1.7. By simple computation, G has a
6-cover, a contradiction. ]

4.1.9. H s not 2-connected and whose leaf blocks are isomorphic to K.

Subproof. Assume otherwise. When H is not 2-connected, let B be a leaf block of H
that is not isomorphic to K5, and v be the unique cut-vertex of H in V(B). When H
is 2-connected, let B = H and v any vertex of B. By Lemma 2.2, there is an edge e in
B — v such that B — Vg(e) is connected, so H — Vi(e) is also connected. Without loss
of generality assume that C; and Cy are the ends of e. Then C; U Cy and G\(C; U Cy)
are connected. Since C7 U Cy is flow-admissible by 4.1.3, the graph G\(C; U Cs) is not
flow-admissible. Since H is not isomorphic to the graph pictured as Figure 1 (d) by
Lemma 3.3, H has exactly three unbalanced vertices and exactly two leaf blocks, one of
which is B that is isomorphic to K3 and the other is isomorphic to K5. Let C;C2C5...C,
be a longest path in H. It follows from 4.1.4 that n = 4. By 4.1.7, the circuit C} is a
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loop of G. That is, H is isomorphic to the graph pictured as Figure 1 (c¢). Hence, G is
cover-decomposable or has a 6-cover by Lemma 3.3, a contradiction. O

Let B be a block of H with |V (B)| > 3. By 4.1.8 and 4.1.9, such B exists and B is not
a leaf block. When H has two blocks that are not isomorphic to K5, it follows from 4.1.3
and 4.1.9 that G is cover-decomposable. Hence, B is the unique block of H that is not
isomorphic to Ks. By 4.1.3, each vertex in B that is not a cut-vertex of H is unbalanced.

Let u € V(B) be a cut vertex of H. When u is unbalanced or H has two pendant
paths using u, let H; be the union of all pendant paths containing u, and GG the subgraph
of G corresponding to Hy. Since |V(B)| > 3, by 4.1.3 and 4.1.9, both G; and G\G; are
flow-admissible, a contradiction. Hence, u is balanced and H has exactly one pendant
path using u. By the arbitrary choice of u, all cut-vertices of H in B are balanced. Using
a similar strategy, all vertices in Vo(H) — V(B) are balanced. Combined with 4.1.4, we
have Vo(H) — V(B) = @. That is, each pendant path of H has exactly one edge. By
4.1.7, each vertex in Vi(H) is a loop of G.

When there is a vertex in V(B) that is not a cut-vertex of H, let v denote such a
vertex. Otherwise, let v be any vertex of B. By Lemma 2.2, there is an edge e € B — v
such that B — V (e) is connected. Let H; be the union of e and all pendant paths of H
using an end of e, and GG; be the subgraph of G corresponding to H;. Since each vertex
in B that is not a cut-vertex of H is unbalanced, H; contains two unbalanced vertices,
so (1 is flow-admissible. Since H — V(H;) is connected and has an unbalanced vertex,
H is isomorphic to a graph pictured as Figure 1 (a) or (b). Lemma 3.3 implies that G is
cover-decomposable or has a 6-cover, a contradiction. O
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